首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Interstitial deletion of the long arm of chromosome 5 is a recurrent abnormality, mainly associated with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), and it has been proposed therefore that the deleted region may contain a myeloid tumor suppressor gene. We have recently mapped a human translation termination factor gene, ETF1, to band 5q31 at D5S500, and thus to the smallest commonly deleted segment. We have evaluated ETF1 as a candidate myeloid tumor suppressor gene by analysis of the human acute myeloid leukemia cell line HL60, and of patients suffering from malignant myeloid diseases with cytogenetically-defined abnormalities of chromosome 5. Fluorescence in situ hybridization analysis revealed hemizygous loss of the ETF1 locus in HL60 cells and in four of five leukemic samples, but no inactivating mutations were identified by sequencing of the remaining ETF1 allele.  相似文献   

3.
Mitotic arrest deficiency 1 (MAD1) is a component of the spindle checkpoint factors that monitor fidelity of chromosomal segregation. We previously confirmed that the level of MAD1 protein was decreased in gastric carcinoma compared with non-tumoral mucosa by conducting proteome-based analyses (Nishigaki R, Osaki M, Hiratsuka M, Toda T, Murakami K, Jeang KT, Ito H, Inoue T, Oshimura M, Proteomics 5:3205–3213, 29). In this study, an immunohistochemical analysis was performed to examine MAD1 expression histologically in gastric mucosa and tumor. MAD1 was detected in the supranuclear portion of normal epithelial, intestinal metaplasia, and adenoma cells, but its expression was not restricted to any specific area in carcinoma cells. Lower levels of expression were noted in 16 (47.1%) of 34 adenomas and in 52 (60.5%) of 86 carcinomas, whereas all normal mucosae and intestinal metaplasias were grouped into cases with higher level of expression. Moreover, the expression of MAD1 was significantly lower in advanced carcinomas than early carcinomas and in intestinal than diffuse type, respectively (P < 0.05). Exogenous expression of wild-type MAD1, but not the mutant MAD1, inhibited cell proliferation and resulted in G2/M accumulation in MKN-1, a gastric carcinoma cell line. Taken together, our findings suggest that the MAD1 gene could be a candidate tumor suppressor gene and that down-regulation of MAD1 expression contribute to tumorigenesis in human stomach.  相似文献   

4.
Ductal pancreatic carcinoma (DPC) is a deadly disease with an incidence of 9 cases in 100,000 people per year and a mortality rate close to 100%. Allelic losses in the long arm of chromosome 9 are commonly encountered in many human malignancies but no data are yet available about DPC. We screened 40 laser-microdissected DPC samples and 6 pre-invasive lesions for 9 microsatellite mapping markers of region 9q21.3 through 9q34.2. A small overlapping region of deletion, spanning 8 million base pairs, was identified between D9S127 and D9S105. Two genes, RSG3 and KLF4, mapped to 9q31.1 through 9q32, were further investigated. A highly significant association was found between KLF4 gene expression levels and genomic status. Similarly, absence of immunohistochemical expression of KLF4 protein was found in 86.8% cases of DPC (33/38). Overexpression of KLF4 in a human pancreatic carcinoma cell line induced a significant decrease in the proliferation associated with up-regulation of p21 and the down-regulation of cyclin D1. In conclusion, we identified a novel oncosuppressor region located at the 9q 31.1-3 locus that is lost in DPC at high frequency. Loss of KLF4 expression is closely related to the genomic loss, and its restoration inhibits cancer cell proliferation, suggesting a key suppressor role in pancreatic tumorigenesis.  相似文献   

5.
6.
Mounting evidence exists that alterations of ubiquitination processes are involved in cancer pathogenesis. Speckle‐type POZ protein (SPOP) is a key adaptor for Cul3‐based ubiquitination process. Recent studies reported that SPOP may be a tumor suppressor gene (TSG) and somatic mutation of SPOP was detected in prostate cancer (PCA). The aim of this study was to see whether alterations of SPOP protein expression and somatic mutation of SPOP gene are features of cancers. In this study, we analyzed SPOP somatic mutation in 45 gastric (GC), 45 colorectal cancer (CRC) and 45 PCA by single‐strand conformation polymorphism (SSCP). Also, we analyzed SPOP protein expression in 60 GC, 60 CRC and 60 PCA by immunohistochemistry. Overall, we detected three somatic missense mutations of SPOP gene in the coding sequences (p.Ser14Leu, p.Tyr87Cys and p.Phe133Leu). The mutations were observed in two PCA and one CRC. Of note, the p.Phe133Leu was a recurrent mutation reported in an earlier study. In the immunohistochemistry, SPOP protein was expressed in normal gastric, colonic and prostate epithelial cells, whereas it was lost in 30% of GC, 20% of CRC and 37% of PCA. Our data indicate that loss of SPOP expression was common in GC, CRC and PCA, but somatic mutation of SPOP in this study was rare in these tumors. Also, the data provide a possibility that loss of expression of SPOP gene might play a role in cancer pathogenesis by altering TSG functions of SPOP.  相似文献   

7.
8.
A SNP‐based array analysis of 100 Wilms tumors (WT) from 97 patients identified 7p alterations (hemizygous and homozygous deletions and uniparental disomy) in nine tumors. The homozygous deletion (HD) region of 7p21 found in one tumor partially overlapped with another HD region reported previously, and was narrowed down to a 2.1‐Mb region. Based on an expression analysis of 10 genes located in the HD region in 3 WT lines and previous studies on tumorigenic roles of MEOX2 and SOSTDC1, we further analyzed these two genes. Sequencing showed no mutation in MEOX2, but two missense mutations (L50F and Q129L) in SOSTDC1 in four tumors; L50F in two tumors was of germline origin. Expression levels (0, 1+ and 2+) of MEOX2 were lower in four tumors with 7p alterations than in 18 tumors with no 7p alterations (P = 0.017), and those of SOSTDC1 tended to be lower in five tumors with 7p alterations or SOSTDC1 mutation than in 17 tumors with no 7p alterations or SOSTDC1 mutation (P = 0.056). There were no significant differences in clinical characteristics between nine patients with 7p alterations and 88 patients with no 7p alterations; however, there was a difference in the status of IGF2 (uniparental disomy, loss of imprinting, or retention of imprinting) between the two patient groups (P = 0.028). Losses of MEOX2 and SOSTDC1 may accelerate angiogenesis and augment signals in the Wnt pathway, respectively. Both genes may be prime candidates for 7p tumor suppressor genes, which may have a role in the progression of Wilms tumorigenesis. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
HIC1 is a candidate tumor suppressor gene which is frequently hypermethylated in human tumors, and its location within the Miller-Dieker syndrome's critical deletion region at chromosome 17p13.3 makes it a candidate gene for involvement in this gene deletion syndrome. To study the function of murine Hic1 in development, we have created Hic1 -deficient mice. These animals die perinatally and exhibit varying combinations of gross developmental defects throughout the second half of development, including acrania, exencephaly, cleft palate, limb abnormalities and omphalocele. These findings demonstrate a role for Hic1 in the development of structures affected in the Miller-Dieker syndrome, and provide functional evidence to strengthen its candidacy as a gene involved in this disorder.  相似文献   

10.
We have isolated a human cDNA encoding a 115-amino-acid polypeptide that revealed 97% identity to a candidate tumor suppressor gene for oral cancer in Mesocricetus auratus (deleted in oral cancer-1; doc-1). It also showed a high degree of homology to a gene induced by TNF-α in Mus musculus. To investigate its possible role in esophageal carcinogenesis, we examined genetic alterations and expression levels of the gene in 13 esophageal carcinoma cell lines and 10 primary esophageal carcinomas. No mutation nor reduction of expression was observed in any of the 23 cancer materials examined. These results imply that the human doc-1 homologue is unlikely to play a significant role in esophageal carcinogenesis, although its role in the TNF-α signaling pathway remains unclear. We mapped human DOC1 to chromosome band 12q24.31 by fluorescence in situ hybridization. Genes Chromosomes Cancer 20: 204–207, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
The candidate tumor-suppressor gene ING1 encodes p33(ING1), a nuclear protein which physically interacts with TP53. It has been shown that p33(ING1) acts in the same biochemical pathway as TP53, leading to cell growth inhibition. Interestingly, a rearrangement of the ING1 gene was found in a neuroblastoma cell line, supporting its involvement in tumor development. Because ING1 resides on the long arm of chromosome 13 (13q34) (a region frequently deleted in many tumor types), we sought to characterize its role in head and neck squamous-cell carcinoma (HNSCC). We first analyzed 44 primary tumors for loss of heterozygosity (LOH) at 13q, using four widely spaced microsatellite markers (13q14, 13q14.3-q22, 13q22, and 13q34). Twenty (48%) of the tumor samples showed LOH in all of the informative markers tested, including D13S1315 at 13q34. Two of the tumors displayed partial losses restricted to one marker (D13S118 at 13q14 in tumor 1164, and D13S135 at 13q14.3-q22 in tumor 1398). We then determined the genomic structure of the ING1 gene and sequenced the entire coding region in 20 primary tumors showing 13q LOH and in five head and neck cancer cell lines. A single germline polymorphism was detected in 10 of the tumors analyzed (T to C change) located 110 nucleotides upstream of the starting methionine. No somatic mutations were found in any of the samples, suggesting that ING1 is not a tumor suppressor gene target in head and neck cancer. Genes Chromosomes Cancer 27:319-322, 2000.  相似文献   

12.
肿瘤转移抑制基因Kai1的研究状况   总被引:8,自引:0,他引:8  
随着分子生物学的深入研究 ,人们对肿瘤发生的分子基础有了明确的认识。然而 ,对威胁肿瘤患者生存的主要原因———肿瘤转移的分子基础却了解较少。目前已知 ,肿瘤转移与肿瘤发生一样 ,不仅有促进基因的激活 ,还伴有抑制基因的失活。肿瘤转移抑制基因的存在是在细胞融合实验中证实的。鼠前列腺癌细胞系AT3.1具有高转移特性 ,AT2 .1则是非转移的 ,两种细胞融合后 ,得到的细胞仍然保持肿瘤细胞的特点 ,却不具备高转移特性。将人的第 11号染色体转移到鼠高转移的前列腺癌细胞系AT6 .1中 ,也观察到相同的结果 ,提示有转移抑制基因定位于该…  相似文献   

13.
14.
越来越多的研究结果显示,HIT家族的一员--HINT1是一个新近发现的肿瘤抑制因子.但它抑制肿瘤发生的机制尚未明确.已涉及的研究包括HINT1通过抑制T细胞/β-catenin介导的转录调控影响Wnt通路;调节多种分子从而介入对细胞周期、凋亡及DNA损伤后修复的调控.而对肿瘤细胞系和样本中Hint1启动子区甲基化的研究也受到越来越多的关注.本文就目前对H1NT1的研究进展及潜在的临床意义作一综述.
Abstract:
There are accumulating evidences that histidine traid (HIT) nucleotide-binding protein 1 ( HINT1 ) , a member of the HIT protein super-family, is a novel tumor suppressor. However,the underlying mechanism of its tumor suppressing activity is still unknown. It has been found that HINT1regulates various proteins and thus is involved in Wnt pathway, cell cycle, apoptosis and DNA damage repair regulation. The studies on the promoter CpG island methylation of Hint 1 in tumor cell lines and tumor samples have received more and more attentions. In this article, we will review the current research advances of HINT1 and the potental clinical significance in future.  相似文献   

15.
16.
A novel gene ING1 was recently cloned and defined as a candidate tumor suppressor gene. Reduced expression and rearrangements of ING1 are found in several tumor cell lines, ING1 overexpression is associated with cell growth arrest and ING1 suppression promotes neoplastic transformation (1). Using radiation hybrid mapping technique ING1 was assigned to subtelomeric region of the long arm of human chromosome 13 (13q34) which is known to be frequently rearranged in squamous carcinomas of head and neck.  相似文献   

17.
Defining CD95 as a tumor suppressor gene   总被引:11,自引:0,他引:11  
The CD95 (Apo-1/Fas) receptor-ligand system is one of the key regulators of apoptosis and is particularly important for the maintenance of lymphocyte homeostasis. There is now broad evidence that susceptibility of tumor cells towards CD95-mediated apoptosis is largely reduced. In the human, germline and somatic mutations of the CD95 gene are associated with a high risk of both lymphoid and solid tumors. Based on these observations a new concept defining CD95 as a tumor suppressor gene is discussed. In addition to CD95, its natural ligand (CD95L) is also implicated in malignant progression. Compared to their nonmalignant counterparts, malignant cells frequently exhibit aberrant de novo expression of CD95L and are able to induce CD95L-mediated apoptosis in bystander cells. The role for neoplastic CD95L expression in local tissue destruction, invasion, and metastatic spread has been established for many tumor types. CD95L expression by malignant cells may counteract the host's antitumor immunity and favors immune escape of the tumor. On this basis, the significance of loss of CD95 and gain of CD95L expression for tumor progression is discussed.  相似文献   

18.
Aims: Cervical Cancer (CC) is one of the most important health problems in women. It frequently presents genetic changes at chromosome region 3q21. This region contains the Cellular Retinol Binding Protein 1 gene (CRBP1) which has been implicated as an important element in the development of other types of cancer. The main goal of the present work was to determine the molecular alterations of CRBP1 and its relationship to CC. Methods: To determine the molecular alterations of CRBP1 gene in CC; twenty-six CC and twenty-six healthy cervix samples were evaluated for: 1) Copy number gain by real-time PCR analysis, 2) expression levels by an immunohistochemistry assay on tissue microarray, and 3) the methylation status of the CRBP1 promoter region. Results: The increase in CRBP1 copy number was observed in 10 out of the 26 CC samples analyzed, while healthy cervices samples showed no changes in the copy number. In addition, there was a lack of expression of the CRBP1 gene in an important number of the CC samples (17/26), and the CRBP1 gene promoter was methylated in 15/26 of the CC samples. Interestingly, there was a significant association between the lack of expression of the CRBP1 gene and its methylation status. Conclusions: The data indicates that, both activating and inactivating changes in the CRBP1 gene could be significant events in the development and progression of CC, and the lack of expression of the CRBP1 protein could be related with to the development of CC. We believe that there is enough evidence to consider to CRBP1 gene as a tumor suppressor gene for CC.  相似文献   

19.
20.
This study reports on the evaluation of the Wilms tumor suppressor gene WT1 in 14 endometrial carcinomas. Despite the fact that several endometrial carcinomas were shown to express WT1, we were unable to demonstrate mutations in the MT1 zinc finger region, suggesting that WT1 does not play a prominent role in the etiology of this malignancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号