首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Neuroscience》1999,95(1):273-282
The functional role of muscarinic acetylcholine receptors in the lateral spiriform nucleus was studied in chick brain slices. Whole-cell patch-clamp recordings of neurons in the lateral spiriform nucleus revealed that carbachol enhanced GABAergic spontaneous inhibitory postsynaptic currents. The duration of the response to carbachol was significantly reduced after blockade of muscarinic receptors with atropine. In the presence of the nicotinic receptor antagonist dihydro-β-erythroidine, carbachol produced a delayed but prolonged enhancement of spontaneous GABAergic inhibitory postsynaptic currents that was completely blocked by atropine. Muscarine also enhanced the frequency of spontaneous GABAergic inhibitory postsynaptic currents in a dose-dependent manner, but had no effect on inhibitory postsynaptic current amplitude. While 4-diphenylacetoxy-N-(2-chloroethyl)-piperidine hydrochloride, a M3 antagonist, completely blocked muscarine's effect, telenzepine, a M1 antagonist, and tropicamide, a M4 antagonist, only partially decreased the response to muscarine. Pirenzepine, a M1 antagonist, and methoctramine, a M2 antagonist, potentiated muscarine's enhancement of spontaneous GABAergic inhibitory postsynaptic currents. Muscarine's action was blocked by tetrodotoxin, cadmium chloride and ω-conotoxin GVIA, but was not affected by dihydro-β-erythroidine, 6-cyano-7-nitroquinoxaline-2,3-dione, d(−)-2-amino-5-phosphonopentanoic acid, naloxone or fluphenazine.These results demonstrate that activation of both muscarinic and nicotinic acetylcholine receptors can enhance GABAergic inhibitory postsynaptic currents in the lateral spiriform nucleus. The muscarinic response has a slower onset but lasts longer than the nicotinic effect. The M3 receptor subtype is predominantly involved in enhancing spontaneous GABAergic inhibitory postsynaptic currents. These M3 receptors must be located some distance from GABA release sites, since activation of voltage-dependent sodium channels, and consequent activation of N-type voltage-dependent calcium channels, is required to trigger enhanced GABA release following activation of muscarinic receptors.  相似文献   

2.
The functional role of muscarinic acetylcholine receptors in the lateral spiriform nucleus was studied in chick brain slices. Whole-cell patch-clamp recordings of neurons in the lateral spiriform nucleus revealed that carbachol enhanced GABAergic spontaneous inhibitory postsynaptic currents. The duration of the response to carbachol was significantly reduced after blockade of muscarinic receptors with atropine. In the presence of the nicotinic receptor antagonist dihydro-beta-erythroidine, carbachol produced a delayed but prolonged enhancement of spontaneous GABAergic inhibitory postsynaptic currents that was completely blocked by atropine. Muscarine also enhanced the frequency of spontaneous GABAergic inhibitory postsynaptic currents in a dose-dependent manner, but had no effect on inhibitory postsynaptic current amplitude. While 4-diphenylacetoxy-N-(2-chloroethyl)-piperidine hydrochloride, a M3 antagonist, completely blocked muscarine's effect, telenzepine, a M1 antagonist, and tropicamide, a M4 antagonist, only partially decreased the response to muscarine. Pirenzepine, a M1 antagonist, and methoctramine, a M2 antagonist, potentiated muscarine's enhancement of spontaneous GABAergic inhibitory postsynaptic currents. Muscarine's action was blocked by tetrodotoxin, cadmium chloride and omega-conotoxin GVIA, but was not affected by dihydro-beta-erythroidine, 6-cyano-7-nitroquinoxaline-2,3-dione, D(-)-2-amino-5-phosphonopentanoic acid, naloxone or fluphenazine. These results demonstrate that activation of both muscarinic and nicotinic acetylcholine receptors can enhance GABAergic inhibitory postsynaptic currents in the lateral spiriform nucleus. The muscarinic response has a slower onset but lasts longer than the nicotinic effect. The M3 receptor subtype is predominantly involved in enhancing spontaneous GABAergic inhibitory postsynaptic currents. These M3 receptors must be located some distance from GABA release sites, since activation of voltage-dependent sodium channels, and consequent activation of N-type voltage-dependent calcium channels, is required to trigger enhanced GABA release following activation of muscarinic receptors.  相似文献   

3.
Noradrenaline enhanced in a concentration-dependent way the basal release of endogenous GABA from superfused rat hippocampus synaptosomes. The alpha 2-adrenoceptor antagonist yohimbine prevented the releasing effect of noradrenaline while the alpha 1-adrenoceptor antagonist prazosin was ineffective. It is concluded that GABAergic nerve terminals in rat hippocampus possess adrenoceptors of the alpha 2-subtype whose activation causes enhancement of GABA release.  相似文献   

4.
The effects of acetylcholine (ACh) on the depolarization-evoked release of endogenous glutamic acid (Glu) have been studied using synaptosomes prepared from rat hippocampus and depolarized in superfusion with 15 mM KCl. Acetylcholine inhibited Glu release in a concentration-dependent way. The natural agonist was particularly effective causing 50% inhibition of Glu release at 10 microM in the absence of acetylcholinesterase (AChE) inhibitors. The inhibitory effect of ACh on the K+-evoked release of Glu was antagonized by the selective muscarinic receptor antagonist atropine but not by the nicotinic receptor antagonist mecamylamine. The data represent the first demonstration that muscarinic receptors located on Glu axon terminals in rat hippocampus may modulate the release of Glu.  相似文献   

5.
The daily rhythm of melatonin production in the mammalian pineal is driven by the endogenous circadian pacemaker in the suprachiasmatic nuclei. The major release period of melatonin is closely linked to the dark phase of the 24-h day/night cycle. Environmental light will affect melatonin release in two ways: (i) it entrains the rhythm of the circadian oscillator; and (ii) it causes an acute suppression of nocturnal melatonin release. These two effects of light are both mediated by the suprachiasmatic nucleus and enable the pineal gland to convey information about day length to the reproductive system through changes in melatonin levels. Glutamate is currently believed to be the major transmitter in the retinal ganglion cell fibers reaching the suprachiasmatic nucleus. At present no information is available, however, about the transmitter(s) implicated in the further propagation, i.e. from the suprachiasmatic nucleus onwards, of the light information. In the present study we provide evidence that the endogenous release of GABA from suprachiasmatic nucleus terminals is implicated in the further transmission of light information to the pineal gland. Bilateral administration of the GABA-antagonist bicuculline to hypothalamic target areas of the suprachiasmatic nucleus completely prevents the inhibitory effect of nocturnal light on melatonin secretion and the present study thus documents that retina-mediated photic activation of suprachiasmatic nucleus neurons induces the release of GABA from efferent suprachiasmatic nucleus nerve terminals, resulting in an inhibition of melatonin release by the pineal gland. Together with our previous (electro)physiological data these results identify GABA as an important mediator of rapid synaptic transmission of suprachiasmatic nucleus output to its target areas.  相似文献   

6.
Wang SJ  Wang KY  Wang WC 《Neuroscience》2004,125(1):191-201
We have examined the effect of riluzole, a neuroprotective agent with anticonvulsant properties, on the release of endogenous glutamate from rat cerebrocortical synaptosomes using an on-line enzyme-coupled fluorometric assay. Riluzole inhibited the calcium-dependent release of glutamate that was evoked by exposing cerebrocortical synaptosomes to the potassium channel blocker 4-aminopyridine, and this presynaptic inhibition was concentration-dependent. Riluzole did not alter either 4-aminopyridine-evoked depolarization of the synaptosomal membrane potential or ionomycin-mediated glutamate release, indicating that riluzole-mediated inhibition of glutamate release is not due to a decrease in synaptosomal excitability or a direct effect on the exocytotic machinery. Examination of the effect of riluzole on Ca2+ influx revealed that the diminution of glutamate release could be attributed to a reduction in cytosolic calcium. A possible effect of riluzole on synaptosomal calcium channels was confirmed in experiments where synaptosomes pretreated with P/Q-type calcium channel blocker omega-agatoxin IVA, which abolished the riluzole-mediated inhibition of glutamate release. In addition, pretreatment of synaptosomes with either the Gi/Go protein inhibitor pertussis toxin or the GABAB receptor agonist baclofen, completely prevented the inhibitory effect of riluzole on 4-aminopyridine-evoked glutamate release. It is concluded that riluzole exerts their presynaptic inhibition, likely through a reduction in the calcium influx mediated by P/Q-type calcium channels, and thereby inhibits the release of glutamate from rat cerebrocortical nerve terminals. This release inhibition may involve a pertussis toxin-sensitive G protein signalling pathway. This finding provides further support that presynaptic calcium channel blockade concomitant with inhibition of glutamate release could be an important mechanism underlying the therapeutic actions of this drug.  相似文献   

7.
Dopamine release from sympathetic nerve terminals   总被引:3,自引:0,他引:3  
  相似文献   

8.
Muscarinic receptors are involved in CNS neurotransmissions and have been shown to transduce their message by modulating cAMP, calcium, inositol phosphates, and more recently, by liberating arachidonic acid via phospholipase A1. We have previously shown that the alpha 1-adrenergic and 5-HT2 serotonergic neurotransmitter receptors cause the release of arachidonic acid from spinal cord and hippocampal neurons, respectively, in primary culture. In this study, we demonstrated a muscarinic receptor-mediated release of arachidonic acid in these two neural segments which occurred independent of phosphatidylinositol-specific phospholipase C. This release of arachidonic acid was neuronal (not glial) in origin and exhibited M1 muscarinic receptor pharmacology.  相似文献   

9.
1. The frequency (0.5-150 Hz) and calcium dependence (0.5-2.0 mM) of the effects of the nicotinic antagonist tubocurarine (0.2 microM) on acetylcholine (ACh) liberation from motor nerve terminals has been examined using binomial analysis of quantal transmitter release. 2. At an extracellular calcium ion concentration ([Ca2+]o) of 2.0 mM, tubocurarine produced a decrease in the endplate current (EPC) quantal content of approximately 30% at high frequencies of motor nerve stimulation (50-150 Hz). In contrast, at low frequencies of stimulation (0.5-1.0 Hz), tubocurarine enhanced the EPC quantal content by approximately 20%. 3. The enhancement of EPC quantal content produced by tubocurarine at low frequencies of motor nerve stimulation was [Ca2+]o dependent, being abolished when [Ca2+]o was lowered from 2.0 to 0.5 mM. In contrast, the decrease in quantal content produced by tubocurarine at high frequencies of motor nerve stimulation was independent of [Ca2+]o, being approximately 30% at all calcium ion concentrations studied. 4. In direct contrast to tubocurarine, the nicotinic antagonist vecuronium (1.0 microM) produced no increase in EPC quantal content at low frequencies of nerve stimulation. However, at high frequencies of nerve stimulation it decreased EPC quantal content to a similar extent to 0.2 microM tubocurarine. The frequency-dependent decrease in EPC quantal content produced by 1.0 microM vecuronium in 2.0 mM [Ca2+]o was very similar to that seen with 0.2 microM tubocurarine in 0.5 mM [Ca2+]o. 5. Binomial analysis revealed that all the changes in EPC quantal content associated with both nicotinic antagonists were due to changes in the size of the pool of quanta in the nerve terminal available for immediate release with no effect on the probability of release of an individual quantum. 6. The results are interpreted in terms of two separately identifiable prejunctional actions of the nicotinic antagonists, both involving an action at nicotinic ACh receptors situated on the motor nerve terminal. Thus, at high frequencies of motor nerve stimulation tubocurarine and vecuronium produce a [Ca2+]o-independent decrease in ACh release, probably through an inhibitory action on a positive-feedback prejunctional nicotinic autoreceptor closely related to the muscle-type nicotinic ACh autoreceptor. However, at low frequencies of motor nerve stimulation we suggest that tubocurarine, but not vecuronium, produces a [Ca2+]o-dependent increase in ACh release through an action at a negative-feedback prejunctional neuronal-type nicotinic ACh autoreceptor.  相似文献   

10.
Smith AB  Motin L  Lavidis NA  Adams DJ 《Neuroscience》2000,95(4):1121-1127
Little is known about the nature of the calcium channels controlling neurotransmitter release from preganglionic parasympathetic nerve fibres. In the present study, the effects of selective calcium channel antagonists and amiloride were investigated on ganglionic neurotransmission. Conventional intracellular recording and focal extracellular recording techniques were used in rat submandibular and pelvic ganglia, respectively. Excitatory postsynaptic potentials and excitatory postsynaptic currents preceded by nerve terminal impulses were recorded as a measure of acetylcholine release from parasympathetic and sympathetic preganglionic fibres following nerve stimulation. The calcium channel antagonists omega-conotoxin GVIA (N type), nifedipine and nimodipine (L type), omega-conotoxin MVIIC and omega-agatoxin IVA (P/Q type), and Ni2+ (R type) had no functional inhibitory effects on synaptic transmission in both submandibular and pelvic ganglia. The potassium-sparing diuretic, amiloride, and its analogue, dimethyl amiloride, produced a reversible and concentration-dependent inhibition of excitatory postsynaptic potential amplitude in the rat submandibular ganglion. The amplitude and frequency of spontaneous excitatory postsynaptic potentials and the sensitivity of the postsynaptic membrane to acetylcholine were unaffected by amiloride. In the rat pelvic ganglion, amiloride produced a concentration-dependent inhibition of excitatory postsynaptic currents without causing any detectable effects on the amplitude or configuration of the nerve terminal impulse. These results indicate that neurotransmitter release from preganglionic parasympathetic and sympathetic nerve terminals is resistant to inhibition by specific calcium channel antagonists of N-, L-, P/Q- and R-type calcium channels. Amiloride acts presynaptically to inhibit evoked transmitter release, but does not prevent action potential propagation in the nerve terminals, suggesting that amiloride may block the pharmacologically distinct calcium channel type(s) on rat preganglionic nerve terminals.  相似文献   

11.
《Neuroscience》1999,95(4):1121-1127
Little is known about the nature of the calcium channels controlling neurotransmitter release from preganglionic parasympathetic nerve fibres. In the present study, the effects of selective calcium channel antagonists and amiloride were investigated on ganglionic neurotransmission. Conventional intracellular recording and focal extracellular recording techniques were used in rat submandibular and pelvic ganglia, respectively. Excitatory postsynaptic potentials and excitatory postsynaptic currents preceded by nerve terminal impulses were recorded as a measure of acetylcholine release from parasympathetic and sympathetic preganglionic fibres following nerve stimulation. The calcium channel antagonists ω-conotoxin GVIA (N type), nifedipine and nimodipine (L type), ω-conotoxin MVIIC and ω-agatoxin IVA (P/Q type), and Ni2+ (R type) had no functional inhibitory effects on synaptic transmission in both submandibular and pelvic ganglia. The potassium-sparing diuretic, amiloride, and its analogue, dimethyl amiloride, produced a reversible and concentration-dependent inhibition of excitatory postsynaptic potential amplitude in the rat submandibular ganglion. The amplitude and frequency of spontaneous excitatory postsynaptic potentials and the sensitivity of the postsynaptic membrane to acetylcholine were unaffected by amiloride. In the rat pelvic ganglion, amiloride produced a concentration-dependent inhibition of excitatory postsynaptic currents without causing any detectable effects on the amplitude or configuration of the nerve terminal impulse.These results indicate that neurotransmitter release from preganglionic parasympathetic and sympathetic nerve terminals is resistant to inhibition by specific calcium channel antagonists of N-, L-, P/Q- and R-type calcium channels. Amiloride acts presynaptically to inhibit evoked transmitter release, but does not prevent action potential propagation in the nerve terminals, suggesting that amiloride may block the pharmacologically distinct calcium channel type(s) on rat preganglionic nerve terminals.  相似文献   

12.
13.
Transmitter release from insect excitatory motor nerve terminals   总被引:2,自引:2,他引:2  
1. Intracellular and extracellular electrodes were used to study spontaneous and impulse-linked release of transmitter at locust retractor unguis nerve-muscle synapses.2. At most extracellular recording sites the amplitude distributions of the excitatory post-synaptic potentials (e.p.s.p.s) were apparently non-Poisson. However, interpretation of these amplitude distributions was complicated by the effect on the extracellular recordings of the complex structural organization of the retractor unguis nerve terminal with its spatially distinct transmitter release sites extending over distances of 15-30 mum.3. The spontaneous miniature excitatory post-synaptic potentials (min e.p.s.p.s) did not occur at random intervals, bursts of min e.p.s.p.s being frequently recorded. As a result the spontaneous release of transmitter rarely approximated a Poisson process.4. For a period of at least 390 msec following a conditioning nerve impulse a test e.p.s.p. was facilitated and the probability of spontaneous transmitter release was enhanced. A large primary phase of facilitation of impulse-linked and spontaneous release was invariably followed by one or more secondary phases of smaller magnitude.  相似文献   

14.
We determined that activation of adenosine A1 receptors in striatal synaptosomes with 100 nM N6-cyclopentyladenosine (CPA) inhibited both the release of endogenous glutamate and the increase of intracellular free Ca2+ concentration ([Ca2+]i), due to 4-aminopyridine (4-AP) stimulation, by 28 and 19%, respectively. Furthermore, CPA enhanced the inhibition of endogenous glutamate release due to ω-conotoxin GVIA (ω-Cgtx GVIA), ω-Cgtx MVIIC or ω-Cgtx GVIA plus ω-Cgtx MVIIC. Similar effects were observed in the [Ca2+]i signal. The inhibitory effects of CPA and ω-Cgtx GVIA were additive, but the effects of CPA and ω-Cgtx MVIIC were only partially additive. These results suggest that P/Q-type Ca2+ channels and other type(s) of Ca2+ channel(s), coupled to glutamate release, are inhibited subsequently to activation of adenosine A1 receptors.  相似文献   

15.
16.
Airway remodeling is a structural alteration associated with chronic inflammatory and obstructive airway diseases, wherein fibroblasts are crucially involved. The present study investigates whether lung fibroblast proliferation is influenced by muscarinic mechanisms. For this purpose, expression of muscarinic receptors in MRC-5 human lung fibroblasts was characterized by semiquantitative RT-PCR, and the effects of muscarinic agonists and antagonists on ((3)H)-thymidine incorporation as a measure of proliferative activity were studied under different culture conditions. MRC-5 fibroblasts express mRNA encoding different subtypes of muscarinic receptors (M(2) > M(3) > M(4), traces for M(5) and no M(1)). Expression of M(2) and M(3) receptors was confirmed at the protein level by immunoblot analysis. Under different culture conditions, carbachol (up to 10 microM) or oxotremorine (10 microM) stimulated ((3)H)-thymidine incorporation, with maximum increases between about 40 and 100%. The stimulatory effect of 10 microM carbachol was prevented by pretreatment with pertussis toxin and antagonized in a concentration-dependent manner by the muscarinic receptor antagonists tiotropium, AQ-RA 741, AF-DX 384, 4-diphenylacetoxy-N-methylpiperidine methoiodide, himbacine, p-fluorohexahydrosiladifenidol, and pirenzepine, with concentrations producing 50% inhibition of 14 pM, 24, 64, 127, 187, 452 nM, and 1.5 microM, respectively. Primary human lung fibroblasts were also found to express mRNA for muscarinic receptors (M(2) > M(1) > M(3), traces for M(4) and no M(5)), and showed a pertussis toxin-sensitive proliferative response to muscarinic receptor stimulation. In conclusion, proliferation of human lung fibroblasts can be stimulated by activation of muscarinic receptors with a pharmacologic profile correlating best to M(2) receptors.  相似文献   

17.
18.
We have investigated the role of Ca2+ and Ca2+ channels in the modulation of GABA release. Brain slices prepared from rat striatum were preincubated with [3H]GABA, superfused with Krebs bicarbonate buffer, and exposed to electrical field stimulation (2 Hz for 3 min). Tritium efflux was measured as an index of GABA release. Both resting and evoked efflux were greatly accelerated by deleting Ca2+ from the medium and adding EGTA (1 mM). However, when the concentration of Mg2+ in the buffer was elevated to 10 mM, no effect of the Ca2(+)-deficiency was observed on resting release and its impact on evoked overflow was diminished. Moreover, addition of verapamil (10 microM), a Ca2+ channel blocking agent, reduced evoked overflow even in the absence of external Ca2+, while 4-aminopyridine (10 microM), a K+ channel inhibitor, enhanced GABA efflux in normal buffer but had no effect in the absence of Ca2+. Finally, we have shown previously that nipecotic acid, an inhibitor of high affinity GABA transport, increases GABA overflow in normal buffer, but blocks it in Ca2(+)-free buffer. Collectively, these results suggest that Ca2+ channels may play two roles in the regulation of depolarization-induced GABA release. Firstly, these channels permit a depolarization-induced influx of Ca2+ which then promotes GABA release. In addition, these channels influence GABA release through a mechanism that does not involve external Ca2+. Although the precise nature of this latter involvement is unclear, we propose that the Ca2+ channels serve to permit an influx of Na+, which in turn promotes Ca2(+)-independent release through an influence on the high affinity GABA transport system.  相似文献   

19.
Early in postnatal development, inhibitory inputs to rat lateral superior olive (LSO) neurons change from releasing predominantly GABA to releasing predominantly glycine into the synapse. Here we show that spontaneous miniature inhibitory postsynaptic currents (mIPSCs) also change from GABAergic to glycinergic over the first two postnatal weeks. Many 'mixed' mIPSCs, resulting from co-release of glycine and GABA from the same vesicles, are seen during this transition. Immunohistochemistry showed that a large number of terminals contained both GABA and glycine at postnatal day 8 (P8). By P14, both the content of GABA in these mixed terminals and the contribution of GABA to the mixed mIPSCs had decreased. The content of glycine in terminals increased over the same period. Our results indicate that switching from GABAergic to glycinergic inputs to the LSO may occur at the level of a single presynaptic terminal. This demonstrates a new form of developmental plasticity at the level of a single central synapse.  相似文献   

20.
Calcium influx into the presynaptic nerve terminal is well established as a trigger signal for transmitter release by exocytosis. By studying dissociated preoptic neurons with functional adhering nerve terminals, we here show that presynaptic Ca2+ influx plays dual and opposing roles in the control of spontaneous transmitter release. Thus, application of various Ca2+ channel blockers paradoxically increased the frequency of spontaneous (miniature) inhibitory GABA-mediated postsynaptic currents (mIPSCs). Similar effects on mIPSC frequency were recorded upon washout of Cd2+ or EGTA from the external solution. The results are explained by a model with parallel Ca2+ influx through channels coupled to the exocytotic machinery and through channels coupled to Ca2+-activated K+ channels at a distance from the release site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号