首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunological memory is characterized by heightened immunoglobulin (Ig) G antibody production caused in part by enhanced plasma cell formation conferred by conserved transmembrane and cytoplasmic segments in isotype-switched IgG B cell receptors. We tested the hypothesis that the IgG tail enhances intracellular B cell antigen receptor (BCR) signaling responses to antigen by analyzing B cells from Ig transgenic mice with IgM receptors or chimeric IgMG receptors containing the IgG tail segment. The IgG tail segment enhanced intracellular calcium responses but not tyrosine or extracellular signal-related kinase (ERK) phosphorylation. Biochemical analysis and crosses to CD22-deficient mice established that IgG tail enhancement of calcium and antibody responses, as well as marginal zone B cell formation, was not due to diminished CD22 phosphorylation or inhibitory function. Microarray profiling showed no evidence for enhanced signaling by the IgG tail for calcium/calcineurin, ERK, or nuclear factor kappaB response genes and little evidence for any enhanced gene induction. Instead, almost half of the antigen-induced gene response in IgM B cells was diminished 50-90% by the IgG tail segment. These findings suggest a novel "less-is-more" hypothesis to explain how switching to IgG enhances B cell memory responses, whereby decreased BCR signaling to genes that oppose marginal zone and plasma cell differentiation enhances the formation of these key cell types.  相似文献   

2.
The stimulatory and inhibitory pathways initiated by engagement of stimulatory receptors such as the B cell receptor for antigen (BCR) and inhibitory receptors such as Fcγ receptors of the IIB1 type (FcγRIIB1) intersect in ways that are poorly understood at the molecular level. Because the tyrosine kinase Csk is a potential negative regulator of lymphocyte activation, we examined the effects of BCR and FcγRIIB1 engagement on the binding of Csk to phosphotyrosine-containing proteins. Stimulation of a B lymphoma cell line, A20, with intact anti-IgG antibody induced a direct, SH2-mediated association between Csk and a 62-kD phosphotyrosine-containing protein that was identified as RasGTPase-activating protein–associated p62 (GAP-A.p62). In contrast, stimulation of A20 cells with anti-IgG F(ab′)2 resulted in little increase in the association of Csk with GAP-A.p62. The effect of FcγRIIB1 engagement on this association was abolished by blockade of FcγRIIB1 with the monoclonal antibody 2.4G2. Furthermore, the increased association between Csk and GAP-A.p62 seen upon stimulation with intact anti-Ig was abrogated in the FcγRIIB1-deficient cell line IIA1.6 and recovered when FcγRIIB1 expression was restored by transfection. The differential effects of BCR and BCR-FcγRIIB1–mediated signaling on the phosphorylation of GAP-A.p62 and its association with Csk suggest that docking of Csk to GAP-A.p62 may function in the negative regulation of antigen receptor–mediated signals in B cells.  相似文献   

3.
Peripheral tolerance mechanisms normally prevent delivery of T cell help to anergic self-reactive B cells that accumulate in the T zones of spleen and lymph nodes. Chronic exposure to self-antigens desensitizes B cell antigen receptor (BCR) signaling on anergic B cells so that they are not stimulated into clonal expansion by CD4+ T cells but instead are eliminated by Fas (CD95)-induced apoptosis. Because a range of BCR-induced signals and responses are repressed in anergic B cells, it is not known which of these are critical to regulate for Fas-mediated peripheral tolerance. Display of the costimulatory molecule, B7.2 (CD86), represents a potentially important early response to acute BCR engagement that is poorly induced by antigen on anergic B cells. We show here that restoring B7.2 expression on tolerant B cells using a constitutively expressed B7.2 transgene is sufficient to prevent Fas-mediated deletion and to trigger extensive T cell–dependent clonal expansion and autoantibody secretion in the presence of specific T cells. Dysregulated expression of B7.2 on tolerant B cells caused a more extreme reversal of peripheral tolerance than that caused by defects in Fas or Fas ligand, and resulted in T cell–dependent clonal expansion and antibody secretion comparable in magnitude to that made by foreign antigen-specific B cells. These findings demonstrate that repression of B7.2 is critical to eliminate autoreactive B cells by Fas in B cell–T cell interactions. The possible role of B7.2 dysregulation in systemic autoimmune diseases is discussed.  相似文献   

4.
The B cell antigen receptor (BCR) consists of the membrane-bound immunoglobulin (Ig) molecule as antigen-binding subunit and the Ig-α/Ig-β heterodimer as signaling subunit. BCR signal transduction involves activation of protein tyrosine kinases (PTKs) and phosphorylation of several proteins, only some of which have been identified. The phosphorylation of these proteins can be induced by exposure of B cells either to antigen or to the tyrosine phosphatase inhibitor pervanadate/H2O2. One of the earliest substrates in B cells is a 65-kD protein, which we identify here as a B cell adaptor protein. This protein, named SLP-65, is part of a signaling complex involving Grb-2 and Vav and shows homology to SLP-76, a signaling element of the T cell receptor. In pervanadate/H2O2-stimulated cells, SLP-65 becomes phosphorylated only upon expression of the BCR. These data suggest that SLP-65 is part of a BCR transducer complex.  相似文献   

5.
B cells from young lyn−/− mice are hyperresponsive to anti-IgM–induced proliferation, suggesting involvement of Lyn in negative regulation of B cell antigen receptor (BCR)-mediated signaling. Here we show that tyrosine phosphorylation of FcγRIIB and CD22 coreceptors, which are important for feedback suppression of BCR-induced signaling, was severely impaired in lyn−/− B cells upon their coligation with the BCR. Hypophosphorylation on tyrosine residues of these molecules resulted in failure of recruiting the tyrosine phosphatase SHP-1 and inositol phosphatase SHIP, SH2-containing potent inhibitors of BCR-induced B cell activation, to the coreceptors. Consequently, lyn−/− B cells exhibited defects in suppressing BCR-induced Ca2+ influx and proliferation. Thus, Lyn is critically important in tyrosine phosphorylation of the coreceptors, which is required for feedback suppression of B cell activation.  相似文献   

6.
7.
The cytosolic SHP-1 and transmembrane CD45 protein tyrosine phosphatases (PTP) play critical roles in regulating signal transduction via the B cell antigen receptor (BCR). These PTPs differ, however, in their effects on BCR function. For example, BCR-mediated mitogenesis is essentially ablated in mice lacking CD45 (CD45), but is enhanced in SHP-1–deficient motheaten (me) and viable motheaten (mev) mice. To determine whether these PTPs act independently or coordinately in modulating the physiologic outcome of BCR engagement, we assessed B cell development and signaling in CD45-deficient mev (CD45/SHP-1) mice. Here we report that the CD45/SHP-1 cells undergo appropriate induction of protein kinase activity, mitogen-activated protein kinase activation, and proliferative responses after BCR aggregation. However, BCR-elicited increases in the tyrosine phosphorylation of several SHP-1–associated phosphoproteins, including CD19, were substantially enhanced in CD45/SHP-1, compared to wild-type and CD45 cells. In addition, we observed that the patterns of cell surface expression of μ, δ, and CD5, which distinguish the PTP-deficient from normal mice, are largely restored to normal levels in the double mutant animals. These findings indicate a critical role for the balance of SHP-1 and CD45 activities in determining the outcome of BCR stimulation and suggest that these PTPs act in a coordinate fashion to couple antigen receptor engagement to B cell activation and maturation.  相似文献   

8.
The antigen receptors on T and B lymphocytes can transduce both agonist and antagonist signals leading either to activation/survival or anergy/death. The outcome of B lymphocyte antigen receptor (BCR) triggering depends upon multiple parameters which include (a) antigen concentration and valency, (b) duration of BCR occupancy, (c) receptor affinity, and (d) B cell differentiation stages. Herein, using anti- immunoglobulin kappa and lambda light chain antibodies, we analyzed the response of human naive, germinal center (GC) or memory B cells to BCR cross-linking regardless of heavy chain Ig isotype or intrinsic BCR specificity. We show that after CD40-activation, anti-BCR (kappa + gamma) can elicit an intracellular calcium flux on both GC and non-GC cells. However, prolonged BCR cross-linking induces death of CD40- activated GC B cells but enhances proliferation of naive or memory cells. Anti-kappa antibody only kills kappa + GC B cells without affecting surrounding gamma + GC B cells, thus demonstrating that BCR- mediated killing of GC B lymphocytes is a direct effect that does not involve a paracrine mechanism. BCR-mediated killing of CD40-activated GC B cells could be partially antagonized by the addition of IL-4. Moreover, in the presence of IL-4, prestimulation through CD40 could prevent subsequent anti-Ig-mediated cell death, suggesting a specific role of this combination in selection of GC B cells. This report provides evidence that in human, susceptibility to BCR killing is regulated along peripheral B cell differentiation pathway.  相似文献   

9.
Genetic ablation of the B cell surface glycoprotein CD19 severely impairs the humoral immune response. This requirement is thought to reflect a critical role of CD19 in signal transduction that occurs upon antigen C3dg coligation of antigen receptors with CD19 containing type 2 complement receptors (CR2). Here we show that CD19 plays a key accessory role in B cell antigen receptor signaling independent of CR2 coligation and define molecular circuitry by which this function is mediated. While CD19 is not required for antigen-mediated activation of receptor proximal tyrosines kinases, it is critical for activation of phosphatidylinositol 3-kinase (PI3-kinase). PI3-Kinase activation is dependent on phosphorylation of CD19 Y484 and Y515. Antigen-induced CD19-dependent PI3-kinase activation is required for normal phosphoinositide hydrolysis and Ca2+ mobilization responses. Thus, CD19 functions as a B cell antigen receptor accessory molecule that modifies antigen receptor signaling in a qualitative manner.  相似文献   

10.
Ship is an Src homology 2 domain containing inositol polyphosphate 5-phosphatase which has been implicated as an important signaling molecule in hematopoietic cells. In B cells, Ship becomes associated with Fcγ receptor IIB (FcγRIIB), a low affinity receptor for the Fc portion of immunoglobulin (Ig)G, and is rapidly tyrosine phosphorylated upon B cell antigen receptor (BCR)–FcγRIIB coligation. The function of Ship in lymphocytes was investigated in Ship−/− recombination-activating gene (Rag)−/− chimeric mice generated from gene-targeted Ship−/− embryonic stem cells. Ship−/−Rag−/− chimeras showed reduced numbers of B cells and an overall increase in basal serum Ig. Ship−/− splenic B cells displayed prolonged Ca2+ influx, increased proliferation in vitro, and enhanced mitogen-activated protein kinase (MAPK) activation in response to BCR–FcγRIIB coligation. These results demonstrate that Ship plays an essential role in FcγRIIB-mediated inhibition of BCR signaling, and that Ship is a crucial negative regulator of Ca2+ flux and MAPK activation.  相似文献   

11.
Signal transduction through the B cell antigen receptor (BCR) is altered in B cells that express a receptor that recognizes self-antigen. To understand the molecular basis for the change in signaling in autoreactive B cells, a transgenic model was used to isolate a homogeneous population of tolerant B lymphocytes. These cells were compared with a similar population of naive B lymphocytes. We show that the BCR from naive B cells enters a detergent-insoluble domain of the cell within 6 s after antigen binding, before a detectable increase in BCR phosphorylation. This fraction appears to be important for signaling because it is enriched for lyn kinase but lacks CD45 tyrosine phosphatase and because the BCR that moves into this domain becomes more highly phosphorylated. Partitioning of the BCR into this fraction is unaffected by src family kinase inhibition. Tolerant B cells do not efficiently partition the BCR into the detergent-insoluble domain, providing an explanation for their reduced tyrosine kinase activation and calcium flux in response to antigen. These results identify an early, regulated step in antigen receptor signaling and self-tolerance.  相似文献   

12.
Adoptive T-cell transfer showed promising efficacy in recent trials raising interest in T cells with redirected specificity against tumors. T cells were engineered with a chimeric antigen receptor (CAR) with predefined binding and CD3ζ signaling to initiate T-cell activation. CD28 costimulation provided by a CD28-CD3ζ signaling CAR moreover improved T cell activation and persistence; however, it failed to meet the expectations with respect to mounting attacks against solid tumors infiltrated with regulatory T (Treg) cells. We revealed that a CD28 CAR–redirected T-cell attack is accompanied by higher numbers of Treg cells infiltrating the tumor and is less efficient against cancer cells in presence of Treg cells than a CD3ζ CAR T-cell attack. Deletion of the lck binding moiety in the CD28 CAR endodomain, however, improved redirected anti-tumor activity in presence of Treg cells without impairing interferon-γ (IFN-γ) secretion, proliferation, and cytolysis. CD28 modification abrogated interleukin-2 (IL-2) induction upon CAR engagement which in turn is no longer available to sustain Treg cell persistence. CARs with the modified CD28 endodomain thereby expedite the implementation of adoptive T-cell therapy in patients with a variety of cancer types that are heavily infiltrated by Treg cells.  相似文献   

13.
The germinal center (GC) is a site where somatic hypermutation and clonal selection are coupled for antibody affinity maturation against infections. However, how GCs are formed and regulated is incompletely understood. Here, we identified an unexpected role of Tank-binding kinase-1 (TBK1) as a crucial B cell–intrinsic factor for GC formation. Using immunization and malaria infection models, we show that TBK1-deficient B cells failed to form GC despite normal Tfh cell differentiation, although some malaria-infected B cell–specific TBK1-deficient mice could survive by GC-independent mechanisms. Mechanistically, TBK1 phosphorylation elevates in B cells during GC differentiation and regulates the balance of IRF4/BCL6 expression by limiting CD40 and BCR activation through noncanonical NF-κB and AKTT308 signaling. In the absence of TBK1, CD40 and BCR signaling synergistically enhanced IRF4 expression in Pre-GC, leading to BCL6 suppression, and therefore failed to form GCs. As a result, memory B cells generated from TBK1-deficient B cells fail to confer sterile immunity upon reinfection, suggesting that TBK1 determines B cell fate to promote long-lasting humoral immunity.  相似文献   

14.
Resting antigen-experienced memory B cells are thought to be responsible for the more rapid and robust antibody responses after antigen reencounter, which are the hallmark of memory humoral responses. The molecular basis for the development and survival of memory B cells remains largely unknown. We report that phospholipase C (PLC) γ2 is required for efficient formation of germinal center (GC) and memory B cells. Moreover, memory B cell homeostasis is severely hampered by inducible loss of PLC-γ2. Accordingly, mice with a conditional deletion of PLC-γ2 in post-GC B cells had an almost complete abrogation of the secondary antibody response. Collectively, our data suggest that PLC-γ2 conveys a survival signal to GC and memory B cells and that this signal is required for a productive secondary immune response.Humoral memory is characterized by recall immune responses, which are more rapid than the primary response, and by production of higher serum titers of antigen-specific antibodies, mostly of the IgG isotype. The prevailing view is that antigen-specific B cells are maintained as a pool of memory B cells after clonal expansion during the primary immune response (14). Most memory B cells have been thought to originate from the germinal center (GC) reaction. In the GC, the combined processes of somatic hypermutation and selection based on the affinity of the B cell receptor (BCR) for the antigen are responsible for the generation of high-affinity antibody variants that ultimately differentiate into long-lived plasma cells or long-lived memory B cells (5, 6). The GC is also a preferential site of antibody class switching. In the GC reaction, de novo–generated antigen-specific memory B cells are thought to acquire intrinsically different traits from their naive predecessors, accounting for faster and heightened secondary responses. Thus, understanding the mechanism by which memory B cells are generated and maintained, as well as the intrinsic functional differences between naive and memory B cells, is of fundamental interest to reveal the basis of immunological memory.The analysis of gene-targeted mice lacking the cytoplasmic tail of the IgG1 or IgE BCR has revealed its essential function in secondary responses (7, 8). In response to T cell–dependent antigens, mice harboring the tailless IgG1 had ∼25-fold fewer IgG1-expressing B cells, presumably reflecting a reduced number of GC and memory B cells and raising the possibility that the IgG1 cytoplasmic tail is involved in the generation and/or maintenance of memory B cells or their direct precursors. Two non–mutually exclusive models have been proposed to explain the function of the IgG1 tail (9). First, it may be required for efficient BCR-mediated internalization and, hence, presentation of antigen to T cells (10). As T cells facilitate productive IgG1 memory responses, inefficient antigen presentation by mutant B cells could lead to defective proliferation of GC B cells and, consequently, diminished generation of memory B cells. Second, the IgG1 tail may contribute to memory responses by modifying the BCR signal, for example by transmitting survival signals to memory B cells and/or their direct precursors (11, 12).To define the signaling molecules required for the establishment and maintenance of memory B cells, we focused on the function of phospholipase C (PLC) γ2 because this enzyme is well recognized as an important component of the BCR signaling pathway (13, 14). Indeed, PLC-γ2–deficient mice show a differentiation block between the immature and mature B cell stages owing to defective BCR signaling (15, 16). However, given the expression of PLC-γ2 in several immune cell types (17, 18) and the premature block in B cell development in conventional PLC-γ2 KO mice, these mice are not ideal for analyzing the role of PLC-γ2 in a B cell–intrinsic manner during T cell–dependent antibody responses. Thus, we used conditional mice in which PLC-γ2 function was specifically inactivated in GC B cells and in an inducible manner. We show in this paper that PLC-γ2 is required for the efficient generation and maintenance of memory B cells, probably through the delivery of a prosurvival signal.  相似文献   

15.
The recently described ligand-receptor pair, B7h-inducible costimulator (ICOS), is critical for germinal center formation and antibody responses. In contrast to the induced expression of the related costimulatory ligands B7.1 and B7.2, B7h is constitutively expressed on naive B cells and is surprisingly extinguished after antigen engagement and interleukin (IL)-4 cytokine signaling. Although signaling through both B cell receptor (BCR) and IL-4 receptor (R) converge on the extinction of B7h mRNA levels, BCR down-regulation occurs through Ca2+ mobilization, whereas IL-4R down-regulation occurs through a distinct Stat6-dependent pathway. During antigen-specific B cell activation, costimulation through CD40 signaling can reverse both BCR- and IL-4R-mediated B7h down-regulation. These data suggest that the CD40-CD40 ligand signaling pathway regulates B7h expression on activated B cells and may control whether antigen-activated B cells can express B7h and costimulate cognate antigen-activated T cells through ICOS.  相似文献   

16.
Recent data implicating loss of PTP1C tyrosine phosphatase activity in the genesis of the multiple hemopoietic cell defects found in systemic autoimmune/immunodeficient motheaten (me) and viable motheaten (mev) mice suggest that PTP1C plays an important role in modulating intracellular signaling events regulating cell activation and differentiation. To begin elucidating the role for this cytosolic phosphatase in lymphoid cell signal transduction, we have examined early signaling events and mitogenic responses induced by B cell antigen receptor (BCR) ligation in me and mev splenic B cells and in CD5+ CH12 lymphoma cells, which represent the lymphoid population amplified in motheaten mice. Despite their lack of functional PTP1C, me and mev B cells proliferated normally in response to LPS. However, compared with wild-type B cells, cells from the mutant mice were hyperresponsive to normally submitogenic concentrations of F(ab')2 anti- Ig antibody, and they exhibited reduced susceptibility to the inhibitory effects of Fc gamma IIRB cross-linking on BCR-induced proliferation. Additional studies of unstimulated CH12 and wild-type splenic B cells revealed the constitutive association of PTP1C with the resting BCR complex, as evidenced by coprecipitation of PTP1C protein and phosphatase activity with BCR components and the depletion of BCR- associated tyrosine phosphatase activity by anti-PTP1C antibodies. These results suggest a role for PTP1C in regulating the tyrosine phosphorylation state of the resting BCR complex components, a hypothesis supported by the observation that PTP1C specifically induces dephosphorylation of a 35-kD BCR-associated protein likely representing Ig-alpha. In contrast, whereas membrane Ig cross-linking was associated with an increase in the tyrosine phosphorylation of PTP1C and an approximately 140-kD coprecipitated protein, PTP1C was no longer detected in the BCR complex after receptor engagement, suggesting that PTP1C dissociates from the activated receptor complex. Together these results suggest a critical role for PTP1C in modulating BCR signaling capacity, and they indicate that the PTP1C influence on B cell signaling is likely to be realized in both resting and activated cells.  相似文献   

17.
Signaling through the high affinity receptor for immunoglobulin E (FcεRI) results in the coordinate activation of tyrosine kinases before calcium mobilization. Receptors capable of interfering with the signaling of antigen receptors, such as FcεRI, recruit tyrosine and inositol phosphatases that results in diminished calcium mobilization. Here, we show that antibodies recognizing CD81 inhibit FcεRI-mediated mast cell degranulation but, surprisingly, without affecting aggregation-dependent tyrosine phosphorylation, calcium mobilization, or leukotriene synthesis. Furthermore, CD81 antibodies also inhibit mast cell degranulation in vivo as measured by reduced passive cutaneous anaphylaxis responses. These results reveal an unsuspected calcium-independent pathway of antigen receptor regulation, which is accessible to engagement by membrane proteins and on which novel therapeutic approaches to allergic diseases could be based.  相似文献   

18.
B cells responding to T-dependent antigen either differentiate rapidly into extrafollicular plasma cells or enter germinal centers and undergo somatic hypermutation and affinity maturation. However, the physiological cues that direct B cell differentiation down one pathway versus the other are unknown. Here we show that the strength of the initial interaction between B cell receptor (BCR) and antigen is a primary determinant of this decision. B cells expressing a defined BCR specificity for hen egg lysozyme (HEL) were challenged with sheep red blood cell conjugates of a series of recombinant mutant HEL proteins engineered to bind this BCR over a 10,000-fold affinity range. Decreasing either initial BCR affinity or antigen density was found to selectively remove the extrafollicular plasma cell response but leave the germinal center response intact. Moreover, analysis of competing B cells revealed that high affinity specificities are more prevalent in the extrafollicular plasma cell versus the germinal center B cell response. Thus, the effectiveness of early T-dependent antibody responses is optimized by preferentially steering B cells reactive against either high affinity or abundant epitopes toward extrafollicular plasma cell differentiation. Conversely, responding clones with weaker antigen reactivity are primarily directed to germinal centers where they undergo affinity maturation.  相似文献   

19.
We have demonstrated for the first time that mouse spleen cells stimulated in vitro with heterologous erythrocytes developed immunoglobulin class-specific γM, γ1, γ2a+2b, and γA plaque-forming cell (PFC) responses. A modification of the hemolytic plaque technique, the addition of goat anti-mouse µ-chain antibody to the assay preparation, specifically prevented development of all γM PFC and enabled accurate and reproducible enumeration of immunoglobulin class-specific PFC after treatment with appropriate monospecific anti-globulins and complement. Culture conditions, with regard to medium, atmosphere, agitation, and spleen cell densities, were similar to those previously shown to support only γM PFC responses. Evaluation of the kinetics of appearance of PFC showed that γM PFC reached maximum numbers on days 4–5; the magnitude of this response was 3–10 times greater than γ1 γ2a+2b, or γA PFC which reached maximum numbers on days 5–6. Optimal erythrocyte antigen dose for γM PFC responses was 107/culture, whereas a dose of 106 erythrocytes/culture consistently stimulated optimal γ1 γ2a+2b, or γA PFC responses. Investigations of the effects of anti-erythrocyte antibody on γM and γG PFC responses indicated that antibody suppressed these responses by neutralizing the effective antigenic stimulus at the macrophage-dependent phase of the response. At the same antibody concentration, γG PFC responses were more effectively suppressed than γM PFC responses. Further, γG responses could be almost completely suppressed by antibody as long as 48 hr after initiation of cultures, whereas γM PFC responses could only be completely suppressed during the first 24 hr. These results were discusssed in terms of the role of antigen in the stimulation γM and γG antibody.  相似文献   

20.
We show that the enzymatic acetylation and deacetylation of a cell surface carbohydrate controls B cell development, signaling, and immunological tolerance. Mice with a mutation in sialate:O-acetyl esterase, an enzyme that specifically removes acetyl moieties from the 9-OH position of α2–6-linked sialic acid, exhibit enhanced B cell receptor (BCR) activation, defects in peripheral B cell development, and spontaneously develop antichromatin autoantibodies and glomerular immune complex deposits. The 9-O-acetylation state of sialic acid regulates the function of CD22, a Siglec that functions in vivo as an inhibitor of BCR signaling. These results describe a novel catalytic regulator of B cell signaling and underscore the crucial role of inhibitory signaling in the maintenance of immunological tolerance in the B lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号