首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The intracellular metabolism of the beta-L- enantiomer of 2', 3'-dideoxyadenosine (beta-L-ddA) was investigated in HepG2 cells, human peripheral blood mononuclear cells (PBMC), and primary cultured human hepatocytes in an effort to understand the metabolic basis of its limited activity on the replication of human immunodeficiency virus and hepatitis B virus. Incubation of cells with 10 microM [2',3',8-(3)H]-beta-L-ddA resulted in an increased intracellular concentration of beta-L-ddA with time, demonstrating that these cells were able to transport beta-L-ddA. However, it did not result in the phosphorylation of beta-L-ddA to its pharmacologically active 5'-triphosphate (beta-L-ddATP). Five other intracellular metabolites were detected and identified as beta-L-2', 3'-dideoxyribonolactone, hypoxanthine, inosine, ADP, and ATP, with the last being the predominant metabolite, reaching levels as high as 5.14 +/- 0.95, 8.15 +/- 2.64, and 15.60 +/- 1.74 pmol/10(6) cells at 8, 4, and 2 h in HepG2 cells, PBMC, and hepatocytes, respectively. In addition, a beta-glucuronic derivative of beta-L-ddA was detected in cultured hepatocytes, accounting for 12.5% of the total metabolite pool. Coincubation of hepatocytes in primary culture with beta-L-ddA in the presence of increasing concentrations of 5'-methylthioadenosine resulted in decreased phosphorolysis of beta-L-ddA and formation of associated metabolites. These results indicate that the limited antiviral activity of beta-L-ddA is the result of its inadequate phosphorylation to the nucleotide level due to phosphorolysis and catabolism of beta-L-ddA by methylthioadenosine phosphorylase (EC 2.4.2.28).  相似文献   

3.
4.
beta-L-Thymidine (L-dT) and beta-L-2'-deoxycytidine (L-dC) are potent and highly specific inhibitors of hepatitis B virus (HBV) replication both in vivo and in vitro (50% effective concentrations, 0.19 to 0.24 microM in 2.2.15 cells). The intracellular metabolisms of L-dT and L-dC were investigated in HepG2 cells and primary cultured human hepatocytes. L-dT and L-dC were extensively phosphorylated in both cell types, with the 5'-triphosphate derivative being the predominant metabolite. In HepG2 cells, the 5'-triphosphate levels were 27.7 +/- 12.1 and 72.4 +/- 1.8 pmol/10(6) cells for L-dT and L-dC, respectively. In primary human hepatocytes, the 5'-triphosphate levels were 16.5 +/- 9.8 and 90.1 +/- 36.4 pmol/10(6) cells for L-dT and L-dC, respectively. Furthermore, a choline derivative of L-dCDP was detected at concentrations of 15.8 +/- 1.8 and 25.6 +/- 0.1 pmol/10(6) cells in human hepatocytes and HepG2 cells, respectively. In HepG2 cells exposed to L-dC, the 5'-monophosphate and 5'-triphosphate derivatives of beta-L-2'-deoxyuridine (L-dUMP and L-dUTP, respectively) were also observed, reaching intracellular concentrations of 6.7 +/- 0.4 and 18.2 +/- 1.0 pmol/10(6) cells, respectively. In human hepatocytes, L-dUMP and L-dUTP were detected at concentrations of 5.7 +/- 2.4 and 43.5 +/- 26.8 pmol/10(6) cells, respectively. It is likely that deamination of L-dCMP by deoxycytidylate deaminase leads to the formation of L-dUMP, as the parent compound, L-dC, was not a substrate for deoxycytidine deaminase. The intracellular half-lives of L-dTTP, L-dCTP, and L-dUTP were at least 15 h, with intracellular concentrations of each metabolite remaining above their respective 50% inhibitory concentrations for the woodchuck hepatitis virus DNA polymerase for as long as 24 h after removal of the drug from cell cultures. Exposure of HepG2 cells to L-dT in combination with L-dC led to concentrations of the activated metabolites similar to those achieved with either agent alone. These results suggest that the potent anti-HBV activities of L-dT and L-dC are associated with their extensive phosphorylation.  相似文献   

5.
6.
7.
Novel synthetic sulfated polymers, namely, sulfated polyvinyl alcohol (PVAS) and sulfated copolymers of acrylic acid with vinyl alcohol (PAVAS), proved to be potent and selective inhibitors of human immunodeficiency virus type 1 (HIV-1) and HIV-2 in vitro. The compounds completely inhibited HIV-1-induced cytopathogenicity in MT-4 cells and HIV-1 antigen expression in CEM cells at a concentration of 0.8 micrograms/ml. They were equally effective against HIV-2 replication. In addition, and in contrast to azidothymidine, PAVAS and PVAS suppressed HIV-1-induced giant cell (syncytium) formation, a process that may account for the depletion of T4 lymphocytes in patients with acquired immunodeficiency syndrome. PAVAS and PVAS completely blocked giant cell formation at a concentration of 4 micrograms/ml, whereas for dextran sulfate a concentration of 100 micrograms/ml was required to achieve complete inhibition of giant cell formation. As has been demonstrated previously for the sulfated polysaccharides, the mechanism of action of PAVAS and PVAS resides in the inhibition of virus adsorption to the cells.  相似文献   

8.
Myeloperoxidase is virucidal to human immunodeficiency virus type 1 (HIV-1) in the persistently infected CEM human T-cell line or in acutely infected human peripheral blood mononuclear cells, as judged by viral infectivity and P24 radioimmunoassay. HIV-1 was specifically inactivated by low doses of the human myeloperoxidase (1.4 to 14.3 mU/ml) and the cells were spared. A higher enzyme concentration (143 mU/m) was cytotoxic, but uninfected CEM cells and normal lymphocytes were resistant to > or = 143 mU of myeloperoxidase per ml. The enzyme was virucidal with the Cl- present in medium and did not require exogenous H2O2. Catalase, an antioxidant enzyme, partially inhibited the virucidal effect of myeloperoxidase. Hence, the H2O2 probably came from the HIV-infected cells themselves. These in vitro findings indicate that the myeloperoxidase system is capable of inactivating HIV-1 of infected cells.  相似文献   

9.
3'-Fluoro-3'-deoxythymidine (FLT), a candidate anti-AIDS compound in clinical trials, showed anti-human immunodeficiency virus type 1 (HIV-1) potency (50% effective concentration, 0.0052 microM) slightly better than or equal to that of 3'-azido-3'-deoxythymidine (AZT) in MT4 cells and was threefold more potent in H9 cells. There was no FLT resistance demonstrable in the AZT-resistant HIV-1 strains. Both FLT and AZT showed low cytotoxicity for MT4 cells, with selectivity indices (efficacy/toxicity ratio) of greater than 47,000 and greater than 33,000, respectively. Cellular permeation of FLT and thymidine (dThd) was greater than that of AZT, and FLT and dThd permeated the cell membranes by a carrier-mediated mechanism as well as by simple diffusion, as indicated by the existence of nitrobenzylthioinosine-5'-monophosphate-sensitive and -insensitive components. By contrast, transport of AZT into cells was by simple diffusion. The intracellular level of the triphosphate of FLT (FLTTP) in MT4 cells was two- to threefold higher than that of AZT (AZTTP) after exposure to 1.8 microM each compound for 12 h. The elimination kinetics of FLTTP and AZTTP in HIV-1-infected MT4 cells in fresh medium showed biphasic patterns, with initial half-lives of 1.03 and 1.09 h, respectively. In phytohemagglutinin-stimulated human peripheral blood lymphocytes, the FLTTP level was increased 59-fold compared with that in unstimulated cells at 12 h, was four- to sixfold higher than the level of AZTTP in stimulated cells at 12 h, and remained four- to fivefold higher during a 4-h elimination period in fresh medium and twofold higher at the end of a 12-h elimination period. Two- to eightfold more [3H]AZT than [3H]FLT was incorporated into the host cell DNA, and both [3H]AZT and [3H]FLT remained persistently incorporated for over 24 h. The incorporated [3H]AZT and [3H]FLT were alkali labile, whereas incorporated [3H]dThd was alkali stable. Pharmacokinetics of FLT in plasma of monkeys after intravenous (i.v.) administration showed that the FLT concentration in plasma declined, with a half-life of 1.19 +/- 0.1 h; the steady-state volume of distribution was 0.93 +/- 0.2 liter/kg of body weight, and total clearance was 0.56 +/- 0.15 liter/kg. Oral bioavailability of FLT was excellent and comparable to i.v. bioavailability in terms of areas under the concentration-time curves for three monkeys. Of the total dose, 41 to 61% was excreted in urine as unchanged FLT, and only 3.2 to 7.4% of the total dose was identified as glucuronide-conjugated FLT in urine 48 h after i.v. administration to monkeys. We conclude that FLT exhibits an anti-HIV-1 potency similar to that of AZT but with slightly better selectivity of effects and with higher intracellular active metabolite levels.  相似文献   

10.
The antiviral efficacies and cytotoxicities of 2',3'- and 4'-substituted 2',3'-didehydro-2',3'-dideoxycytidine analogs were evaluated. All compounds were tested (i) against a wild-type human immunodeficiency virus type 1 (HIV-1) isolate (strain xxBRU) and lamivudine-resistant HIV-1 isolates, (ii) for their abilities to inhibit hepatitis B virus (HBV) production in the inducible HepAD38 cell line, and (iii) for their abilities to inhibit bovine viral diarrhea virus (BVDV) production in acutely infected Madin-Darby bovine kidney cells. Some compounds demonstrated potent antiviral activities against the wild-type HIV-1 strain (range of 90% effective concentrations [EC(90)s], 0.14 to 5.2 micro M), but marked increases in EC(90)s were noted when the compounds were tested against the lamivudine-resistant HIV-1 strain (range of EC(90)s, 53 to >100 micro M). The beta-L-enantiomers of both classes of compounds were more potent than the corresponding beta-D-enantiomers. None of the compounds showed antiviral activity in the assay that determined their abilities to inhibit BVDV, while two compounds inhibited HBV production in HepAD38 cells (EC(90), 0.25 micro M). The compounds were essentially noncytotoxic in human peripheral blood mononuclear cells and HepG2 cells. No effect on mitochondrial DNA levels was observed after a 7-day incubation with the nucleoside analogs at 10 micro M. These studies demonstrate that (i) modification of the sugar ring of cytosine nucleoside analogs with a 4'-thia instead of an oxygen results in compounds with the ability to potently inhibit wild-type HIV-1 but with reduced potency against lamivudine-resistant virus and (ii) the antiviral activity of beta-D-2',3'-didehydro-2',3'-dideoxy-5-fluorocytidine against wild-type HIV-1 (EC(90), 0.08 micro M) and lamivudine-resistant HIV-1 (EC(90) = 0.15 micro M) is markedly reduced by introduction of a 3'-fluorine in the sugar (EC(90)s of compound 2a, 37.5 and 494 micro M, respectively).  相似文献   

11.
12.
Human vascular endothelial cells may serve as targets and a reservoir for human immunodeficiency virus type 1 (HIV-1). The antiviral activity of HIV protease inhibitors is reported to be related directly to the intracellular amount of the drug. To assess intracellular concentrations of two HIV protease inhibitors, human umbilical venous endothelial cells (HUVECs) were exposed for 3 h and 24 h to 100, 10 and 1 mg/L indinavir and saquinavir. Intracellular drug concentrations and the total drug amount in the supernatant were measured by means of high-performance liquid chromatography (HPLC). Exposure of HUVECs to 10 and 1 mg/L indinavir and saquinavir resulted in undetectable intracellular drug levels in 6 x 10(5) cells/well. Incubation of cells with solutions of 100 mg/L indinavir and saquinavir led to mean intracellular concentrations of indinavir (132 +/- 56 mg/L after 3 h and 150 +/- 29 mg/L after 24 h, respectively) and of saquinavir (96 +/- 10 mg/L after 3 h and 100 +/- 5 mg/L after 24 h) that were comparable to the levels determined for the substances in the supernatant over time (P > 0.001). These data indicate that intracellular concentrations of indinavir and saquinavir correlate well with the extracellular levels. Consequently, measurements of drug concentrations in patient's plasma by HPLC are assumed to be a good means of monitoring the intracellular drug concentration.  相似文献   

13.
A human immunodeficiency virus type 1 (HIV-1)-based retroviral vector pseudotyped with HIV envelope containing the herpes simplex virus-thymidine kinase (HSV-TK) gene under the control of the HIV LTR promoter (pHXTKN) was constructed and stably transferred into human CD4(+) H9, CEM, and U937 cells. RNase protection assays did not initially detect expression of the HSV-TK gene in HXTKN-transduced CD4(+) cells (HXTKN/CD4), but expression was then efficiently induced by infection with HIV-1. MTT assays showed that after HIV-1 infection, the susceptibility of HXTKN/CD4 cells to ganciclovir (GCV) was 1000-fold higher than prior to infection. This enabled HIV-1-infected cells to be selectively killed by transduction with HXTKN followed by exposure to GCV. Because the HSV-TK gene is specifically transferred into HIV-1-permissive cells and expressed only after HIV-1 infection, the frequency of unwanted cell death should be low. Elimination of the HIV-1-infected cells effectively inhibited further spread of infectious virus. In addition, the integrated HIV vector sequences were repackaged on infection with HIV-1 and transferred to surrounding untransduced cells. These results are indicative of the potential benefits of using HIV vectors in gene therapies for the treatment of HIV-1 infection.  相似文献   

14.
15.
beta-L-2',3'-Dideoxy-5-fluorocytidine (beta-L-FddC), a novel cytidine analog with an unnatural beta-L sugar configuration, has been demonstrated by our group and others to exhibit highly selective in vitro activity against human immunodeficiency virus types 1 and 2 and hepatitis B virus. This encouraging in vitro antiviral activity prompted us to assess its pharmacokinetics in rhesus monkeys. Three monkeys were administered an intravenous dose of [3H] beta-L-FddC at 5 mg/kg of body weight. Following a 3-month washout period, an equivalent oral dose was administered. Plasma and urine samples were collected at various times for up to 24 h after dosing, and drug levels were quantitated by high-pressure liquid chromatography. Pharmacokinetic parameters were obtained on the basis of a two-compartment open model with a first-order elimination from the central compartment. After intravenous administration, the mean peak concentration in plasma (Cmax) was 29.8 +/- 10.5 microM. Total clearance, steady-state volume of distribution, terminal-phase plasma half-life (t1/2 beta), and mean residence time were 0.7 +/- 0.1 liters/h/kg, 1.3 +/- 0.1 liters/kg, 1.8 +/- 0.2 h, and 1.9 +/- 0.2 h, respectively. Approximately 47% +/- 16% of the intravenously administered radioactivity was recovered in the urine as the unchanged drug with no apparent metabolites. beta-L-FddC exhibited a Cmax of 3.2 microM after oral administration, with a time to peak drug concentration of approximately 1.5 h and a t1/2 of 2.2 h. One monkey in the oral administration arm of the study had a significant delay in the absorption of the aqueous administered dose. The absolute bioavailability of orally administered beta-L-FddC ranged from 56 to 66%.  相似文献   

16.
Glucose oxidase and peroxidase (lactoperoxidase or myeloperoxidase) are virucidal to human immunodeficiency virus type 1 (HIV-1) in the presence of sodium iodide, as assessed by the loss of viral replication in a syncytium-forming assay or by the inhibition of cytopathic effects on infected cells. In the presence of low concentrations of sodium iodide, five HIV-1 isolates were equally susceptible to this virucidal system at enzyme concentrations of a few milliunits. The loss of viral replication was linearly related to the time of incubation in the enzyme solutions, with an inactivation rate of 1 log unit every 30 min. These enzymes and this halide were also cytotoxic to chronically infected, but not to uninfected, cultured CEM cells. Protein conjugates were prepared by using the enzymes and murine antibody 105.34, which recognized the V3 loop of HIV-1 LAI isolate surface glycoprotein, or recombinant human CD4. The protein conjugates inactivated free virus at rates similar to those of the free enzymes and were more effective than antibody or recombinant CD4 alone. These in vitro findings demonstrate that the peroxidase-H2O2-halide system provides potent virucidal activity against HIV-1.  相似文献   

17.
The human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs)—saquinavir, ritonavir, nelfinavir, and indinavir—interact with the ABC-type multidrug transporter proteins MDR1 and MRP1 in CEM T-lymphocytic cell lines. Calcein fluorescence was significantly enhanced in MDR1+ CEM/VBL100 and MRP1+ CEM/VM-1-5 cells incubated in the presence of various HIV PIs and calcein acetoxymethyl ester. HIV PIs also enhanced the cytotoxic activity of doxorubicin, a known substrate for MDR1 and MRP1, in both VBL100 and VM-1-5 CEM lines. Saquinavir, ritonavir, and nelfinavir enhanced doxorubicin toxicity in CEM/VBL100 cells by approximately three- to sevenfold. Saquinavir and ritonavir also enhanced doxorubicin toxicity in CEM/VM-1-5 cells. HIV-1 replication was effectively inhibited by the various PIs in all of the cell lines, and the 90% inhibitory concentration for a given compound was comparable between the different cell types. Therefore, overexpression of MDR1 or MRP1 by T lymphocytes is not likely to limit the antiviral efficacy of HIV PI therapy.  相似文献   

18.
19.
The JAK-STAT pathway is activated in both macrophages and lymphocytes upon human immunodeficiency virus type 1 (HIV-1) infection and thus represents an attractive cellular target to achieve HIV suppression and reduced inflammation, which may impact virus sanctuaries. Ruxolitinib and tofacitinib are JAK1/2 inhibitors that are FDA approved for rheumatoid arthritis and myelofibrosis, respectively, but their therapeutic application for treatment of HIV infection was unexplored. Both drugs demonstrated submicromolar inhibition of infection with HIV-1, HIV-2, and a simian-human immunodeficiency virus, RT-SHIV, across primary human or rhesus macaque lymphocytes and macrophages, with no apparent significant cytotoxicity at 2 to 3 logs above the median effective antiviral concentration. Combination of tofacitinib and ruxolitinib increased the efficacy by 53- to 161-fold versus that observed for monotherapy, respectively, and each drug applied alone to primary human lymphocytes displayed similar efficacy against HIV-1 containing various polymerase substitutions. Both drugs inhibited virus replication in lymphocytes stimulated with phytohemagglutinin (PHA) plus interleukin-2 (IL-2), but not PHA alone, and inhibited reactivation of latent HIV-1 at low-micromolar concentrations across the J-Lat T cell latency model and in primary human central memory lymphocytes. Thus, targeted inhibition of JAK provided a selective, potent, and novel mechanism to inhibit HIV-1 replication in lymphocytes and macrophages, replication of drug-resistant HIV-1, and reactivation of latent HIV-1 and has the potential to reset the immunologic milieu in HIV-infected individuals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号