首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Activation of mitogen activated protein kinases (MAPK) is a critical event in pro-inflammatory cytokine-induced signaling cascade in synoviocytes and chondrocytes that lead to the production of several mediators of cartilage damage in an arthritic joint. Green tea (Camellia sinensis) is a widely consumed beverage and we earlier showed that polyphenols present in green tea (GTP) inhibit the development of inflammation and cartilage damage in an animal model of arthritis. In this study we evaluated the role of epigallocatechin-3-gallate (EGCG), a green tea polyphenol which mimics its anti-inflammatory effects, in modulating the IL-1beta-induced activation of MAPK's in human chondrocytes. We discovered that EGCG inhibited the IL-1beta-induced phosphorylation of c-Jun N-terminal kinase (JNK) isoforms, accumulation of phospho-c-Jun and DNA binding activity of AP-1 in osteoarthritis (OA) chondrocytes. Also IL-1beta, but not EGCG, induced the expression of JNK p46 without modulating the expression of JNK p54 in OA chondrocytes. In immunecomplex kinase assays, EGCG completely blocked the substrate phosphorylating activity of JNK but not of p38-MAPK. EGCG had no inhibitory effect on the activation of extracellular signal-regulated kinase p44/p42 (ERKp44/p42) or p38-MAPK in OA chondrocytes. EGCG or IL-1beta did not alter the total non-phosphorylated levels of either p38-MAPK or ERKp44/p42 in OA chondrocytes. These are novel findings and indicate that EGCG may be of potential benefit in inhibiting IL-1beta-induced catabolic effects in OA chondrocytes that are dependent on JNK activity.  相似文献   

4.
BACKGROUND: Vascular endothelial cell apoptosis is central in atherosclerosis and intimal hyperplasia. Transforming growth factor (TGF)-beta1 induces endothelial cell apoptosis through unidentified mechanism(s). Although TGF-beta1 signals through the Smad proteins, in some nonendothelial cell types it also activates the mitogen-activated protein kinase (MAPK) (extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK [p38(MAPK)]). p38(MAPK) relays apoptotic signals in several cell types. We hypothesized that TGF-beta1 activates endothelial cell MAPKs and induces apoptosis through p38(MAPK) activation. METHODS: Human umbilical vein or bovine capillary endothelial cells were incubated with TGF-beta1 for 0.5 to 12 hours. MAPK activation was characterized by Western blotting with antibodies to phosphorylated extracellular signal-regulated kinase 1/2, p38(MAPK), or c-Jun N-terminal kinases 1/2. To study apoptosis, extracts of cells incubated with TGF-beta1 for 6 hours with or without MAPK inhibitors were characterized by Western blotting analysis of poly (ADP-Ribose) polymerase degradation. RESULTS: TGF-beta1 induced p38(MAPK), extracellular signal-regulated kinase 1/2, and c-Jun N-terminal kinase 1/2 activation and increased apoptosis. Inhibition of p38(MAPK) significantly reduced TGF-beta1-induced apoptosis. In contrast, inhibition of other signaling pathways was ineffective. CONCLUSIONS: TGF-beta1 induces endothelial cell apoptosis through p38(MAPK) activation. Because TGF-beta1 is upregulated in vascular remodeling, p38(MAPK) is a potential target to prevent endothelial cell apoptosis during this process.  相似文献   

5.
C D Major  B A Wolf 《Diabetes》2001,50(12):2721-2728
Cytokines have been shown to have dramatic effects on pancreatic islets and insulin-secreting beta-cell lines. It is well established that cytokines such as interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), and gamma-interferon (IFN-gamma) inhibit beta-cell function and are cytotoxic to human and rodent pancreatic islets in vitro. Despite the pleiotropic effects of cytokines on beta-cells, the specific signal transduction pathways and molecular events involved in beta-cell dysfunction remain largely unresolved. In this report, we have examined IL-1beta stimulation of c-Jun NH(2)-terminal kinase (JNK) activity in insulin-secreting clonal cell lines. We demonstrate that IL-1beta transiently activates 46- and 54-kDa isoforms of JNK in cultured RINm5F beta-cells. Furthermore, IL-1beta stimulation of JNK activity is specific, because TNF-alpha and IFN-gamma were without effect. Stable overexpression of JNK1 in RINm5F cells increased levels of activated JNK without affecting kinase activity. JNK-interacting protein (JIP) associates with endogenous as well as overexpressed JNK, suggesting that JIP may serve to regulate JNK activity. Finally, we demonstrate that activated JNK is fully retained in cytoplasmic and membrane compartments without any nuclear translocation. Together, these data indicate that IL-1beta-stimulated JNK activity may be distinctly targeted to cytoplasmic and/or membrane compartments in clonal insulin-producing cells, and that JIP may serve to localize JNK activity to specific substrates.  相似文献   

6.
Beta-cell maturation leads to in vitro sensitivity to cytotoxins   总被引:7,自引:0,他引:7  
Pancreatic beta-cells are more sensitive to several toxins (e.g., streptozotocin, alloxan, cytokines) than the other three endocrine cell types in the islets of Langerhans. Cytokine-induced free radicals in beta-cells may be involved in beta-cell-specific destruction in type 1 diabetes. To investigate if this sensitivity represents an acquired trait during beta-cell maturation, we used two in vitro cultured cell systems: 1) a pluripotent glucagon-positive pre-beta-cell phenotype (NHI-glu) that, after in vivo passage, matures into an insulin-producing beta-cell phenotype (NHI-ins) and 2) a glucagonoma cell-type (AN-glu) that, after stable transfection with pancreatic duodenal homeobox factor-1 (PDX-1), acquires the ability to produce insulin (AN-ins). After exposure to interleukin (IL)-1beta, both of the insulin-producing phenotypes were significantly more susceptible to toxic effects than their glucagon-producing counterparts. Nitric oxide (NO) production was induced in both NHI phenotypes, and inhibition with 0.5 mmol/l N(G)-monomethyl-L-arginine (NMMA) fully protected the cells. In addition, maturation into the NHI-ins phenotype was associated with an acquired dose-dependent sensitivity to the toxic effect of streptozotocin. Our results support the hypothesis that the exquisite sensitivity of beta-cells to IL-1beta and streptozotocin is an acquired trait during beta-cell maturation. These two cell systems will be useful tools for identification of molecular mechanisms involved in beta-cell maturation and sensitivity to toxins in relation to type 1 diabetes.  相似文献   

7.
BACKGROUND: After long-term treatment with continuous ambulatory peritoneal dialysis (CAPD), some patients may develop peritoneal fibrosis. Peritoneal mesothelial cells (PMCs) participate in the inflammatory reactions in the peritoneal cavity, and transforming growth factor-beta1 (TGF-beta1) and interleukin-1beta (IL-1beta) are involved in peritoneal fibrosis. Diltiazem is used frequently in patients with CAPD to treat hypertension. The objectives of this study were to examine the effects of diltiazem on collagen- and IL-1beta-induced TGF-beta1 production on human PMCs and the signalling pathway of diltiazem in this induction. METHODS: Human PMCs were cultured from the enzymatic disaggregation of human omentum. Collagen synthesis was measured by [3H]proline incorporation into pepsin-resistant, salt-precipitated collagen. The expression of collagen I and III, and TGF-beta1 mRNA was evaluated by northern blotting. The production of TGF-beta1 by human PMCs was measured by immunoassay. The changes of intracellular calcium level after adding Fura-2-AM were measured by fluorescence spectrophotometry. Western blotting was used to assess mitogen-activated protein kinase (MAPK) signalling proteins. RESULTS: We found that diltiazem (<0.2 mM) inhibited collagen I and III mRNA expression and collagen syntheses on a dose-dependent basis. Diltiazem (0.2 mM) suppressed IL-1beta- (5 ng/ml) induced TGF-beta1 production on human PMCs at both the protein and mRNA levels. Diltiazem (0.2 mM) also inhibited IL-1beta- (5 ng/ml) induced collagen I and III mRNA expression. Intracellular calcium levels did not change after the treatment with diltiazem, IL-1beta or both. The IL-1beta-treated human PMCs increased phospho-JNK (stress-activated c-Jun N-terminal kinase) and phospho-p38 MAPK expression, while diltiazem could suppress this phenomenon. CONCLUSIONS: Diltiazem suppressed collagen synthesis of human PMCs and inhibited IL-1beta-induced TGF-beta1 production on human PMCs. This signalling transduction may be through p38 MAPK and JNK pathways instead of intracellular calcium. These results suggest diltiazem to be a potential therapeutic regimen in preventing peritoneal fibrosis and support further in vivo studies.  相似文献   

8.
Expression of mitogen-activated protein kinase family in rat renal development   总被引:11,自引:0,他引:11  
BACKGROUND: Among mitogen-activated protein kinase (MAPK) family members, extracellular signal-regulated kinase (ERK) promotes proliferation or differentiation, whereas c-Jun N-terminal kinase (JNK) and p38 MAPK (p38) are thought to inhibit cell growth and induce apoptosis. MAPK phosphatase-1 (MKP-1) inactivates and modulates MAPKs. During renal development, large scale proliferation and apoptosis occur. We investigated the temporal and spatial expression patterns of MAPKs and MKP-1 in rat kidney during development. METHODS: Western blot analysis and immunohistochemistry were performed in the developing and mature kidney of the rat. RESULTS: The expression of ERK, p38, and MKP-1 were high in developing kidney. On the other hand, JNK was abundantly expressed in adult kidney. Active forms of ERK, p38, and JNK correlated with the protein expression levels. Immunohistochemical studies revealed that ERK was strongly expressed by blastema cells, mesenchymal cells, and ureteric bud tips in nephrogenic zone of embryonic kidney. In neonatal kidney, ERK was more abundant in the deep cortex and the medulla corresponding to tubule maturation. p38 and MKP-1 were detected uniformly in mesenchymal cells, mesangial cells, and ureteric bud epithelia of fetal kidney without an obvious correlation with the occurrence of apoptosis. JNK was expressed by tubular cells and podocytes of adult kidney. CONCLUSIONS: ERK, p38, and MKP-1 are strongly expressed in developing kidney, and JNK is detected predominantly in adult kidney. Both the temporal and spatial expression of ERK coincides with the maturation of the kidney.  相似文献   

9.
Increasing evidence indicates that a progressive decrease in the functional beta-cell mass is the hallmark of both type 1 and type 2 diabetes. The underlying causes, beta-cell apoptosis and impaired secretory function, seem to be partly mediated by macrophage production of interleukin (IL)-1beta and/or high-glucose-induced beta-cell production of IL-1beta. Treatment of type 1 and type 2 diabetic patients with the potassium channel opener diazoxide partially restores insulin secretion. Therefore, we studied the effect of diazoxide and of the novel potassium channel opener NN414, selective for the beta-cell potassium channel SUR1/Kir6.2, on glucose- and IL-1beta-induced apoptosis and impaired function in human beta-cells. Exposure of human islets for 4 days to 11.1 and 33.3 mmol/l glucose, 2 ng/ml IL-1beta, or 10 and 100 micromol/l of the sulfonylurea tolbutamide induced beta-cell apoptosis and impaired glucose-stimulated insulin secretion. The deleterious effects of glucose and IL-1beta were blocked by 200 micromol/l diazoxide as well as by 3 and 30 micromol/l NN414. By Western blotting with phosphospecific antibodies, glucose and IL-1beta were shown to activate the extracellular signal-regulated kinase (ERK) 1/2, an effect that was abrogated by 3 micromol/l NN414. Similarly, 1 micromol/l of the mitogen-activated protein kinase/ERK kinase 1/2 inhibitor PD098059 or 1 micromol/l of the l-type Ca(2+) channel blocker nimodipine prevented glucose- and IL-1beta-induced ERK activation, beta-cell apoptosis, and impaired function. Finally, islet release of IL-1beta in response to high glucose could be abrogated by nimodipine, NN414, or PD098059. Thus, in human islets, glucose- and IL-1beta-induced beta-cell secretory dysfunction and apoptosis are Ca(2+) influx and ERK dependent and can be prevented by the beta-cell selective potassium channel opener NN414.  相似文献   

10.
PURPOSE: Mitogen-activated protein kinases (MAPKs) comprise 3 subgroups, that is extracellular signal-regulated protein kinase, c-Jun N-terminal kinase (JNK) and p38 MAPK (p38). In this study we analyzed the role of JNK as well as the expression of MAPK phosphatase-1 (MKP-1) in renal cancers. MATERIALS AND METHODS: Four renal cell carcinoma (RCC) cell lines were used. The effects of anisomycin (JNK activator) and Ro-318220 (MKP-1 expression inhibitor) were analyzed by alamar blue assay. Apoptosis was determined by flow cytometric TUNEL analysis, nuclear morphological alternations and the detection of DNA fragmentation. Changes in MKP-1 expression as well as the activation of extracellular signal-regulated protein kinases and JNK were analyzed by Western blotting. RESULTS: All cell lines treated with anisomycin resulted in a transient activation of JNK without inducing apoptosis. Since we hypothesized that elevated MKP-1 expression could possibly prevent persistent JNK activation, Ro-318220 was used. When cells were treated with Ro-318220, MKP-1 expression decreased in Caki-1 and KU 20-01 cells but not in ACHN or 769P cells. Combined treatment of Caki-1 and KU 20-01 cells with anisomycin and Ro-318220 resulted in a decrease in MKP-1 expression concomitant with persistent JNK activation. Apoptosis was induced in each cell line. CONCLUSIONS: These results suggest that prevalent MKP-1 expression in RCC contributes to cancer cell survival by attenuating an apoptosis inducing signal cascade via JNK. Since Ro-318220 potentiated JNK related apoptosis, JNK activation by blocking MKP-1 expression may be an effective therapeutic approach to RCC.  相似文献   

11.
BACKGROUND: Several studies have implicated the mitogen-activated protein kinase (MAPK) signal pathway in non-hepatic organ ischemia-reperfusion injury. However, the role of p38 MAPK in hepatic ischemia-reperfusion injury remains unclear. This study investigated the role of p38 MAPK in hepatic ischemia-reperfusion injury. METHODS: Male Sprague-Dawley rats were divided into 4 groups (sham, FR-only, control, and FR-treated groups). The animals in the control and FR-treated groups were subjected to 30 minutes of warm ischemia with congestion of the gut. The FR-only and FR-treated groups received FR167653 (FR), which is a novel p38 MAPK inhibitor. The serum levels of aspartate transaminase, alanine transaminase, lactate dehydrogenase, tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta) were measured (each, n = 6). Liver tissue blood flow was measured at pre-ischemia, end-ischemia, and 30, 60, 90, and 120 minutes after reperfusion (each, n = 4). The liver tissues in the control and FR-treated groups were excised for p38 MAPK and c-Jun N-terminal kinase (JNK) analyses and histopathology (each, n = 4). RESULTS: Serum levels of aspartate transaminase, alanine transaminase, lactate dehydrogenase, TNF-alpha, and IL-1beta were significantly lower in the FR-treated group than in the control group, and liver tissue blood flow was significantly higher in the FR-treated group than in the control group. Histopathologically, tissue damage was milder in the FR-treated group than in the control group. Both p38 MAPK and JNK were markedly phosphorylated after 30 minutes of reperfusion, and FR inhibited the phosphorylation of p38 MAPK without affecting the JNK. CONCLUSIONS: FR decreased serum TNF-alpha and IL-1beta levels and liver injury associated with the inhibition of p38 MAPK activation. These results suggest that inhibiting the activation of p38 MAPK may attenuate warm ischemia-reperfusion injury of the liver.  相似文献   

12.
Tan Z  Dohi S  Chen J  Banno Y  Nozawa Y 《Anesthesiology》2002,96(5):1191-1201
BACKGROUND: To explore whether cytotoxicity of local anesthetics is related to apoptosis, the authors examined how local anesthetics affect mitogen-activated protein kinase (MAPK) family members, extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs)-stress-activated protein kinases, and p38 kinase, which are known to play important roles in apoptosis. METHODS: Cell death was evaluated using PC12 cells. Morphologic changes of cells, cellular membrane, and nuclei were observed. DNA fragmentation was electrophoretically assayed. Western blot analysis was performed to analyze phosphorylation of the MAPK family, cleavage of caspase-3 and poly(adenosine diphosphate-ribose) polymerase. Intracellular Ca2+ concentration was measured using a calcium indicator dye. RESULTS: Tetracaine-induced cell death was shown in a time- and concentration-dependent manner and characterized by nuclear condensation or fragmentation, membrane blebbing, and internucleosomal DNA fragmentation. Caspase-3 activation and phosphorylation of ERK, JNK, and p38 occurred in the cell death. PD98059, an inhibitor of ERK, enhanced tetracaine-induced cell death and JNK phosphorylation, whereas ERK phosphorylation was inhibited. Curcumin, an inhibitor of JNK pathway, attenuated the cell death. Increase of intracellular Ca2+ concentration was detected. In addition to the increase of ERK phosphorylation and the decrease of JNK phosphorylation, two Ca2+ chelators protected cells from death. Neither cell death nor phosphorylation of the MAPK family was caused by tetrodotoxin. Nifedipine did not affect tetracaine-induced apoptosis. CONCLUSIONS: Tetracaine induces apoptosis of PC12 cells via the MAPK family. ERK activation protects cells from death, but JNK plays the opposite role. Toxic Ca2+ influx caused by tetracaine seems to be responsible for the cell death, but blocking of Na+ channels or L-type Ca2+ channels is unlikely involved in the tetracaine's action for apoptosis.  相似文献   

13.
Chen XL  Xia ZF  Wei D  Ben DF  Wang YJ 《中华外科杂志》2005,43(3):185-188
目的 探讨p38丝裂原活化蛋白激酶(MAPK)信号转导通路在严重烧伤大鼠枯否细胞(KCs)促炎性细胞因子肿瘤坏死因子α(TNF-α)和白细胞介素1β(IL-1β)产生中的作用。方法 健康成年的雄性SD大鼠32只,随机分为:假烫组;假烫 SB203580组;烧伤对照组;烧伤 SB203580组,每组8只。假烫或烧伤24h后分离出肝脏KCs,培养18h后加入50ng/ml的LPS进行刺激,18h后取上清液,用酶联免疫吸附法(ELISA)测定TNF-α和IL-1β的含量,并收集KCs,实时逆转录聚合酶链反应检测KCs内TNF-α和IL-1β mRNA表达的改变,蛋白印迹(Western blot)法检测KCs中p38MAPK和JNK活性的变化。结果 烧伤大鼠分离出的KCs培养上清液中TNF-α和IL-1β含量、KCs中TNF-α和IL-1β mRNA的表达均较假烫组的明显增强,同时KCs中p38 MAPK活性和JNK活性升高,SB203580能显著抑制大鼠KCs上清液中TNF-α和IL-1β含量、KCs中TNF-α和IL-1β mRNA的表达和p38MAPK活性的升高,对JNK活性无影响。结论p38MAPK信号转导通路介导了严重烧伤大鼠KCs促炎性细胞因子TNF-α和IL-1β的产生。  相似文献   

14.
BACKGROUND: Bioflavonoid quercetin inhibits hydrogen peroxide (H2O2)-induced apoptosis via intervention in the activator protein 1 (AP-1)-mediated apoptotic pathway. In this report, we investigated molecular events involved in the anti-apoptotic effect of quercetin, focusing especially on its effects on the family of mitogen-activated protein (MAP) kinases. METHODS: Cultured mesangial cells were exposed to H2O2, and activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERKs), and p38 MAP kinase was evaluated in the presence or absence of quercetin. Using pharmacological and genetic inhibitors, the roles for individual MAP kinases in H2O2-induced apoptosis were examined. Involvement of ERKs in the induction and activation of AP-1 was also investigated using Northern blot analysis and a reporter assay. RESULTS: Mesangial cells exposed to H2O2 exhibited rapid phosphorylation of JNK, ERKs, and p38 MAP kinase. Quercetin abrogated the activation of all three MAP kinases in response to H2O2. Pretreatment with MAP kinase kinase inhibitor PD098059 or JNK-c-Jun/AP-1 inhibitor curcumin attenuated the H2O2-induced apoptosis. In contrast, the p38 MAP kinase inhibitor SB203580 did not improve the cell survival. Consistently, transfection with dominant-negative mutants of ERK1 and ERK2 or a dominant-negative mutant of JNK inhibited H2O2-induced apoptosis. Transfection with a dominant-negative p38 MAP kinase did not attenuate the apoptotic process. Inhibition of ERKs by PD098059 suppressed induction of c-fos without affecting early induction of c-jun, leading to attenuated activation of AP-1 in response to H2O2. CONCLUSIONS: These results suggested that (1) activation of JNK and ERKs, but not p38 kinase, is required for the H2O2-induced apoptosis; and (2) suppression of the JNK-c-Jun/AP-1 pathway and the ERK-c-Fos/AP-1 pathway is involved in the anti-apoptotic effect of quercetin.  相似文献   

15.
Activation of p38 mitogen-activated protein kinase (MAPK) is known to be important in cytokine production and cell survival in inflammation. This study examined the effect of inhibiting p38 MAPK after onset of renal injury in an experimental model of crescentic glomerulonephritis. Furthermore, this study investigated whether p38 MAPK inhibition would cause widespread suppression of the cytokine network in vivo or uncontrolled apoptosis. In the in vivo studies, daily treatment with a p38 MAPKalpha/beta inhibitor was started 1 h (early treatment study) or 4 d (late treatment study) after induction of nephrotoxic nephritis in Wistar Kyoto rats. The treated rats remained healthy with normal weight gain during the study. Both early and late treatment with p38 MAPK inhibitor reduced renal monocyte chemoattractant protein-1 (MCP-1) levels, the number of glomerular macrophages, the severity of tissue injury, and proteinuria compared with the vehicle group. Unexpected, treatment with p38 MAPK inhibitor did not suppress renal levels of IL-1beta or IL-6. In the in vitro study, the p38 MAPKalpha/beta inhibitor reduced production of MCP-1 and IL-6 by TNF-alpha-or IL-1beta-stimulated mesangial cells without any effect on cell viability or apoptosis. In conclusion, p38 MAPK inhibition is effective in reducing the severity of crescentic glomerulonephritis even when treatment is started after onset of disease. The therapeutic effect is associated with selective suppression of MCP-1, without widespread suppression of cytokine production or increased apoptosis. Therefore, p38 MAPK therapeutic blockade is a promising strategy in the treatment of antibody-mediated glomerulonephritis.  相似文献   

16.
Imidazoline compounds have been considered for the treatment of type 2 diabetes. We have now investigated the effects of imidazolines on interleukin (IL)-1beta-induced beta-cell apoptosis and the signal transduction pathways involved. Inhibition of Ca2+ influx into beta-cells by D-600, a blocker of voltage-gated L-type Ca2+ channels, suppressed IL-1beta-induced apoptosis. Our data show that calcineurin, Ca2+/calmodulin-dependent serine/threonine protein phosphatase 2B, is responsible for the effect of Ca2+ on beta-cell apoptosis. We also demonstrate that IL-1beta-mediated apoptosis correlates with expression of inducible nitric oxide synthase (iNOS) and the increase in intracellular production of nitric oxide. An inhibitor of cGMP-dependent protein kinase (PKG), KT5823, suppressed IL-1beta-induced apoptosis, suggesting the involvement of a PKG-dependent pathway in the apoptotic process. One of the major findings in this study is that imidazoline compounds RX871024 and efaroxan, suggested as prototypes of a new generation of drugs against type 2 diabetes, can protect against IL-1beta-induced apoptosis in pancreatic beta-cells, possibly by their inhibition of the expression of iNOS, a key element in the IL-1beta-induced apoptotic pathway in pancreatic beta-cells. These data suggest that imidazoline compounds should be explored as a potential therapeutic agent for the treatment of both type 1 and type 2 diabetes.  相似文献   

17.
Background: To explore whether cytotoxicity of local anesthetics is related to apoptosis, the authors examined how local anesthetics affect mitogen-activated protein kinase (MAPK) family members, extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs)-stress-activated protein kinases, and p38 kinase, which are known to play important roles in apoptosis.

Methods: Cell death was evaluated using PC12 cells. Morphologic changes of cells, cellular membrane, and nuclei were observed. DNA fragmentation was electrophoretically assayed. Western blot analysis was performed to analyze phosphorylation of the MAPK family, cleavage of caspase-3 and poly(adenosine diphosphate-ribose) polymerase. Intracellular Ca2+ concentration was measured using a calcium indicator dye.

Results: Tetracaine-induced cell death was shown in a time- and concentration-dependent manner and characterized by nuclear condensation or fragmentation, membrane blebbing, and internucleosomal DNA fragmentation. Casepase-3 activation and phosphorylation of ERK, JNK, and p38 occurred in the cell death. PD98059, an inhibitor of ERK, enhanced tetracaine-induced cell death and JNK phosphorylation, whereas ERK phosphorylation was inhibited. Curcumin, an inhibitor of JNK pathway, attenuated the cell death. Increase of intracellular Ca2+ concentration was detected. In addition to the increase of ERK phosphorylation and the decrease of JNK phosphorylation, two Ca2+ chelators protected cells from death. Neither cell death nor phosphorylation of the MAPK family was caused by tetrodotoxin. Nifedipine did not affect tetracaine-induced apoptosis.  相似文献   


18.
Zhang Z  Wang Y 《中华外科杂志》2001,39(11):878-881
目的研究白细胞介素-1β(IL-1β)对原代培养大鼠肝细胞细胞毒性作用的细胞内信号传导机制. 方法使用雄性Wistar大鼠,原位胶原酶灌注分离肝细胞.应用比色法测定乳酸脱氢酶(LDH)活性,Wes tern Blot方法分析c-Jun N末端激酶(JNK)、p38激酶的表达,凝胶电泳移动抑制实验检测激活物蛋白-1(AP-1)的结合活性. 结果 IL-1 β促进原代培养大鼠肝细胞LDH释放(IL-1β刺激组与对照组LDH活性分别为21.9%±3.6% 和11.0%±1.8%,P<0.01);IL-1β通过激活JNK途径,激活转录因子AP-1,对原代培养大鼠肝细胞产生细胞毒性作用,而同时激活的p38激酶途径对这一过程起负性调节作用. 结论 IL-1β通过激活JNK途径,激活转录因子AP-1,对原代培养大鼠肝细胞产生细胞毒性作用.  相似文献   

19.
Mycophenolic acid (MPA), an inosine monophosphate dehydrogenase inhibitor, is widely used as an immunosuppressive drug after transplantations including those of pancreas islet cells. However, recent reports have indicated that MPA has apoptotic effects on islet cells in vitro. To study the effect of MPA on islet cells and determine its mechanism, we used an insulin secreting cell-line, HIT-T15. We examined mitogen-activated protein kinase (MAPK) activation after MPA treatment, and determining cell death levels using methylthiazdetetrazolium assays. The activations of extracellular signal-regulated protein kinase (ERK), c-jun N-terminal kinase (JNK), and p38 MAPK and caspase-3 cleavage were measured by Western blotting. MPA (1, 10, 30 micromol/L) increased cell death and caspase-3 cleavage within 24 hours. Exogenous 500 micromol/L guanosine reversed the MPA-induced islet cell death, but exogenous adenosine did not. MPA 10 micromol/L induced cell apoptosis and increased the activations of JNK, ERK, and p38 MAPK. Furthermore, exogenous guanosine, but not exogenous adenosine, reversed these effects induced by MPA. This study demonstrated that MPA may induce islet apoptosis in HIT-T15 cells by increasing activations of JNK, ERK, and p38 MAPK in a guanosine-dependent manner.  相似文献   

20.
BACKGROUND: It has recently become clear that interleukin (IL)-8 plays a role in chronic neutrophilic inflammatory disorders, such as chronic rejection after lung transplantation. We have shown that IL-17--stimulated human airway smooth muscle cells (HASMC) are able to produce IL-8. The aim of this study was to determine whether p38 mitogen-activated protein kinase (MAPK), c-Jun amino-terminal kinase (JNK), p42/p44 extracellular signal-related kinase (ERK) and nuclear factor-kappaB (NF-kappaB) are involved in IL-17--induced IL-8 production in HASMC in vitro. METHODS: We used human airway smooth muscle cells in culture. Western blotting was done to obtain data regarding activation of MAPK. Furthermore, we used specific inhibitors of MAPK to investigate their involvement in IL-17--induced IL-8 release, which was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: Western blotting clearly demonstrated that p38 MAPK, JNK and p42/p44 ERK were activated by IL-17 in HASMC. Using SB203580, a specific inhibitor of p38 MAPK, we detected a concentration-dependent inhibition of IL-17--induced IL-8 production with a maximal decrease of 63 +/- 5% (n=8, p<0.01). Curcumin, a specific inhibitor of JNK, also concentration-dependently reduced IL-17--induced IL-8 production, with a maximal decrease of 82+/-4% (n=8, p<0.01). U0126, a specific inhibitor of p42/p44 ERK, induced a maximal decrease of 84+/-5% (n=8, p<0.001). Pyrrolydine dithiocarbamate (PDTC), an inhibitor of NF-kappaB, caused a 70+/-5% (n=8, p<0.01) decrease in IL-17--induced IL-8 production. CONCLUSIONS: We found that IL-17 induces activation of p38MAPK, JNK and p42/p44ERK in HASMC. We also found that p38MAPK, JNK, p42/p44 ERK and NF-kappaB play an important role in IL-17--induced IL-8 production in HASMC in vitro. This may open up new opportunities for further treatment of this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号