首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cbfa1 does not regulate RANKL gene activity in stromal/osteoblastic cells   总被引:4,自引:0,他引:4  
  相似文献   

3.
4.
5.
6.
Darville MI  Eizirik DL 《Diabetes》2001,50(8):1741-1748
Fas-mediated cell death may play a role in the autoimmune destruction of pancreatic beta-cells in type 1 diabetes. beta-Cells do not express Fas under physiological conditions, but Fas mRNA and protein are induced in cytokine-exposed mouse and human islets, rendering the beta-cells susceptible to Fas ligand-induced apoptosis. The aim of the present study was to investigate the molecular regulation of Fas by cytokines in rat beta-cells and in insulin-producing RINm5F cells. Fas mRNA expression was increased 15-fold in fluorescence-activated cell sorting-purified rat beta-cells exposed to interleukin (IL)-1beta, whereas gamma-interferon had no effect. Transfection experiments of rat Fas promoter-luciferase reporter constructs into purified rat beta-cells and RINm5F insulinoma cells identified an IL-1beta-responsive region between nucleotides -223 and -54. Inactivation of two adjacent NF-kappaB and C/EBP sites in this region abolished IL-1beta-induced Fas promoter activity in RINm5F cells. Binding of NF-kappaB and C/EBP factors to their respective sites was confirmed by gel shift assays. In cotransfection experiments, NF-kappaB p65 transactivated the Fas promoter. NF-kappaB p50 and C/EBPbeta overexpression had no effect by themselves on the Fas promoter activity, but when cotransfected with p65, each factor inhibited transactivation by p65. These results suggest a critical role for NF-kappaB and C/EBP factors in cytokine-regulation of Fas expression in insulin-producing cells.  相似文献   

7.
Lee SW  Kwak HB  Chung WJ  Cheong H  Kim HH  Lee ZH 《BONE》2003,32(3):217-227
  相似文献   

8.
Expression of RANKL by stromal cells and of RANK and both NF-kappaB p50 and p52 by osteoclast precursors is essential for osteoclast formation. To examine further the role of RANKL, RANK, and NF-KB signaling in this process, we used NF-kappaB p50-/- ;p52-/- double knockout (dKO) and wild-type (WT) mice. Osteoclasts formed in cocultures of WT osteoblasts with splenocytes from WT mice but not from dKO mice, a finding unchanged by addition of RANKL and macrophage colony-stimulating factor (M-CSF). NF-kappaB dKO splenocytes formed more colony-forming unit granulocyte macrophage (CFU-GM) colonies than WT cells, but no osteoclasts were formed from dKO CFU-GM colonies. RANKL increased the number of CFU-GM colonies twofold in WT cultures but not in dKO cultures. Fluorescence-activated cell sorting (FACS) analysis of splenocytes from NF-kappaB dKO mice revealed a two-to threefold increase in the percentage of CD11b (Mac-1) and RANK double-positive cells compared with WT controls. Treatment of NF-kappaB dKO splenocytes with interleukin (IL)-1, TNF-alpha, M-CSF, GM-CSF, and IL-6 plus soluble IL-6 receptor did not rescue the osteoclast defect. No increase in apoptosis was observed in cells of the osteoclast lineage in NF-kappaB dKO or p50-/-;p52+/- (3/4KO) mice. Thus, NF-kappaB p50 and p52 expression is not required for formation of RANK-expressing osteoclast progenitors but is essential for RANK-expressing osteoclast precursors to differentiate into TRAP+ osteoclasts in response to RANKL and other osteoclastogenic cytokines.  相似文献   

9.
RANKL and BSP are upregulated in several bone resorptive disorders. However, the mechanisms by which these two factors might induce osteoclastogenesis and bone resorption synergistically under pathological conditions remain largely unknown. INTRODUCTION: RANKL and bone sialoprotein II (BSP) have been shown to be upregulated in the serum of individuals with abnormally high osteoclastogenic and bone resorptive activities. Here we provide experimental evidence that RANKL and BSP induce osteoclastogenesis and bone resorption synergistically but mediate opposite effects in osteoclast survival and apoptosis. MATERIALS AND METHODS: RAW264.7 cells and mouse bone marrow-derived monocytes/macrophages were treated with human recombinant BSP in the presence and absence of RANKL. TRACP stainings, bone resorption assays, Western blotting, immunoprecipitation analyses, and semiquantitative RT-PCR were used to evaluate the effects of BSP in osteoclast differentiation and bone resorption. Survival, DNA condensation, and caspase activity assays were used to determine the putative effects of BSP in osteoclast survival and apoptosis. RESULTS AND CONCLUSIONS: RANKL induced osteoclast differentiation and bone resorption at a higher extent in the presence than in the absence of BSP in RAW264.7 cells and bone marrow-derived monocytes/macrophages. c-Src-dependent c-Cbl phosphorylation was 8-fold higher in RAW264.7 cells treated with BSP and RANKL than in those treated with RANKL alone. Furthermore, BSP and RANKL activated the master regulator of osteoclastogenesis nuclear factor of activated T cells (NFAT)-2 and increased the mRNA expression of other differentiation markers such as cathepsin K or TRACP. Inhibition of c-Src activity or chelating intracellular calcium inhibited the synergistic effects in bone resorption and the phosphorylation of the c-Src substrate c-Cbl. Inhibition of calcineurin or intracellular calcium elevation inhibited the synergistic effects in osteoclastogenesis and decreased NFAT-2 nuclear levels. On the other hand, BSP and RANKL mediated opposite effects in osteoclast survival and apoptosis. Thus, BSP increased survival and decreased apoptosis markers in differentiated RANKL-treated RAW267.5 cells and RANKL/macrophage-colony stimulating factor (M-CSF)-treated bone marrow-derived monocytes/macrophages. In addition, RAW267.5 cells treated with BSP and RANKL exhibited decreased activation of the proapoptotic Jun N-terminal kinase pathway and increased activation of anti-apoptotic AKT pathway than cells treated with RANKL or BSP alone. Taken together, our findings suggest that BSP contributes to RANKL-mediated bone resorption by inducing osteoclastogenesis and osteoclast survival and decreasing osteoclast apoptosis.  相似文献   

10.
Normal bone remodeling is a continuous process orchestrated by bone‐resorbing osteoclasts and bone‐forming osteoblasts, which an imbalance in bone remodeling results in metabolic bone diseases. RANKL, a member of the TNF cytokine family, functions as a key stimulator for osteoclast differentiation and maturation. Here, we report that RNF114, previously identified as a psoriasis susceptibility gene, plays a regulatory role in the RANKL/RANK/TRAF6 signaling pathway that mediates osteoclastogenesis. Our results demonstrated that RNF114 expression was significantly down‐regulated in mouse osteoclast precursor cells undergoing RANKL‐induced osteoclast differentiation. RNF114 knockout did not affect development or viability of the subpopulation of bone marrow macrophages capable of differentiating into osteoclasts in culture. However, in the presence of RANKL, RNF114 knockout bone marrow macrophages exhibited enhanced cell proliferation and augmented osteoclast differentiation, as shown by an increased expression of mature osteoclast markers, increased osteoclastic TRAP activity and bone resorption. Conversely, ectopic expression of RNF114 inhibited CTSK expression, TRAP activity, and bone resorption in RANKL‐treated pre‐osteoclasts. RNF114 also suppressed RANKL‐activated NFATc1 expression and NFAT‐regulated promoter activity. RNF114 suppressed TRAF6‐, but not TAK1/TAB2‐mediated NF‐κB activation downstream of RANKL/RANK. In particular, TRAF6 protein levels were down‐regulated by RNF114, possibly via K48‐mediated proteasome‐dependent degradation. These data suggested that RNF114's inhibitory effect on RANKL‐stimulated osteoclastogenesis was mediated by blocking RANK/TRAF6/NF‐κB signal transduction. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:159–166, 2018.  相似文献   

11.
Parathyroid hormone-related protein (PTHrP) is not required for osteoclastogenesis during embryonic development; however, after birth it has been shown to regulate osteoclast formation during tooth eruption. Our study explores the hypothesis that PTHrP also may regulate osteoclast differentiation in the regenerating skeletal tissues of deer antlers, bones capable of complete regeneration. Osteoclast-like multinucleated cells (MNCs) formed spontaneously in micromass cultures derived from antler cartilage and these cells had the phenotypic characteristics of osteoclasts. PTHrP and receptor activator of NF-kappaB ligand (RANKL) stimulated antler osteoclast formation although the effect of RANKL was less marked than that of PTHrP. The addition of osteoprotegerin (OPG) only partially decreased (by approximately 65%) the number of osteoclasts in PTHrP-treated cultures. To determine whether PTHrP also potentially could have direct effects on antler osteoclasts, we studied, by confocal microscopy, the expression of the type I PTH/PTHrP receptor (PTH1R) in MNCs cultured on glass and found the receptor protein to have a nuclear localization. In situ hybridization showed that antler MNCs also expressed PTH1R and PTHrP messenger RNAs (mRNAs). PTHrP was immunolocalized in MNCs cultured on glass but was undetectable in cells resorbing a dentine substrate. In tissue sections of antler cartilage, PTHrP and PTH1R were expressed in vitronectin receptor-positive (VNR+) osteoclast-like cells localized in the perivascular stroma. Thus, these data show that PTHrP plays a role in the regulation of osteoclast differentiation in regenerating skeletal tissues and that PTHrP can have effects on osteoclastogenesis that are independent of RANKL synthesis. Ours is the first study to describe the expression of the type I PTH/PTHrP receptor in mammalian osteoclasts at a protein and mRNA level, which indicates that PTHrP also may have a direct effect on osteoclasts. This also is the first study to show a nuclear localization of the PTHIR in cells of the osteoclast lineage, although the functional significance of this observation has yet to be established.  相似文献   

12.
Effective treatment for bacteria-induced bone lytic diseases is not yet available. In this study, we showed that PAR, an NF-kappaB inhibitor found in medicinal herbs, can block LPS-induced osteolysis. PAR does this by inhibiting osteoclastogenesis and bone resorption and promoting apoptosis of osteoclasts through the suppression of NF-kappaB activity. INTRODUCTION: Osteolysis induced by chronic gram-negative bacterial infection underlies many bone diseases such as osteomyelitis, septic arthritis, and periodontitis. Drugs that inhibit lipopolysaccharide (LPS)-induced osteolysis are critically needed for the prevention of bone destruction in infective bone diseases. In this study, we investigated the effect of parthenolide (PAR) on LPS-induced osteolysis in vivo and studied its role in osteoclastogenesis, bone resorption, apoptosis, and NF-kappaB activity. MATERIALS AND METHODS: The LPS-induced osteolysis in the mouse calvarium model was used to examine the effect of PAR in vivo. RANKL-induced osteoclast differentiation from RAW264.7 cells and bone resorption assays were used to assess the effect of PAR in vitro. Assays for NF-kappaB activation, p65 translocation, and IkappaB-alpha degradation were used to determine the mechanism of action of PAR in osteoclasts and their precursors. Flow cytometry and confocal microscopic analysis were used to examine cell apoptosis. Semiquantitative RT-PCR was performed to examine the effect of PAR on gene expression of RANK and TRAF6. RESULTS: We found that PAR (0.5 and 1 mg/kg), injected simultaneously with LPS (25 mg/kg) or 3 days later, blocked the LPS-induced osteolysis in the mouse calvarium model. In vitro studies showed that low concentrations of PAR (<1 microM) inhibited in vitro osteoclastogenesis and osteoclastic bone resorption, whereas higher concentrations (>5 microM) triggered apoptotic cell death of osteoclasts and their precursor cells in a dose-dependent manner. Furthermore, PAR inhibited LPS-induced NF-kappaB activation, p65 translocation, and IkappaB-alpha degradation both in mature osteoclasts and their precursors in a time- and dose-dependent manner. In addition, PAR inhibited NF-kappaB activation induced by osteoclastogenic factors RANKL, interleukin (IL)-1beta, or TNF-alpha to varying degrees and reduced the gene expression of RANK and TRAF6. CONCLUSION: The NF-kappaB pathway is known to mediate both osteoclast differentiation and survival. These findings indicate that PAR blocks LPS-induced osteolysis through the suppression of NF-kappaB activity and suggest that it might have therapeutic value in bacteria-induced bone destruction.  相似文献   

13.
目的探讨低分子量褐藻糖胶(LMWF)对小鼠单核细胞RAW264.7诱导成熟破骨细胞凋亡的影响。方法通过100ng/m L RANKL诱导RAW264.7细胞株分化为破骨细胞,经TRAP特异性染色和骨吸收陷窝对诱导后的细胞进行鉴定。鉴定成功后,用100 ng/m L RANKL诱导RAW264.7细胞株5 d后,使用含有LMWF的培养基继续培养3 d,通过对TRAP阳性细胞计数和分析骨吸收面积来观察低分子量褐藻糖胶对破骨细胞的抑制和骨吸收功能情况;采用流式细胞术检测LMWF对破骨细胞凋亡的影响,capsase-3活性测试试剂盒检测LMWF对capsase-3活性进行测定;RT-PCR检测LMWF对成熟破骨细胞BAX与BCL-2基因表达的影响。结果单纯采用100 ng/m L的RANKL可成功诱导成熟的、有功能的破骨细胞。LMWF可以明显抑制RANKL诱导成熟破骨细胞的形成以及成熟破骨细胞的骨吸收功能;流式细胞术显示LMWF可增加成熟破骨细胞的早期凋亡率;并且能升高capsase-3的活性;PCR显示LMWF可明显下调破骨细胞凋亡相关的BCL-2和上调BAX基因mRNA表达,降低BCL-2/BAX的比值。结论低分子量褐藻糖胶可抑制破骨细胞的活性与骨吸收能力,促进破骨细胞凋亡,其主要机制是通过下调BCL-2和上调BAX mRNA基因表达实现的。  相似文献   

14.
15.
It is important to understand the molecular mechanisms regulating osteoclast formation, as excess activation of osteoclasts is associated with various osteopenic disorders. Receptor activator of nuclear factor kappa B (RANKL) is a central player in osteoclastogenesis. Recent findings suggest that osteocytes are the major supplier of RANKL to osteoclast precursors. It has also been suggested that osteocyte cell death upregulates the RANKL/osteoprotegerin (OPG) ratio in viable osteocytes adjacent to apoptotic osteocytes in areas of bone microdamage, thus, contributing to localized osteoclast formation. Indeed, viable osteocytes can provide RANKL through direct interactions with osteoclast precursors at osteocyte dendritic processes. In addition, OPG tightly regulates RANKL cell surface presentation in osteocytes, which contributes to the inhibition of RANKL signaling, as well as the decoy receptor function of OPG. By contrast, the physiological role of RANKL in osteoblasts is yet to be clarified, although similar mechanisms of regulation are observed in both osteocytes and osteoblasts.  相似文献   

16.
Our study indicates that recombinant adiponectin induced RANKL and inhibited OPG expression in human osteoblasts through the AdipoR1/p38 MAPK pathway, and these responses contributed to the adiponectin-induced osteoclasts formation in the co-culture of osteoblast and peripheral blood monocytes systems. These findings showed that adiponectin increased osteoclast formation indirectly through stimulating RANKL and inhibiting OPG production in osteoblasts. It also suggests the pharmacological nature of recombinant adiponectin that indirectly induces osteoclasts formation. INTRODUCTION: Recently, adiponectin has emerged as an element in the regulation of bone metabolism, but the mechanism remains. This study was undertaken to investigate the action of adiponectin on osteoclastogenesis through revealing RANKL and osteoprotegerin (OPG) expression in osteoblasts and osteoclast formation. MATERIALS AND METHODS: Real-time quantitative PCR and ELISA were used to detect RANKL and OPG mRNA and protein expression in cultured human osteoblasts. The involved signal pathway was studied using mitogen-activated protein kinase (MAPK) inhibitor and adiponectin receptor 1 (AdipoR1) siRNA. The effects of recombinant adiponectin on osteoclasts formation also were examined in the co-culture systems of osteoblast and peripheral blood monocytes (PBMCs) systems or purified CD14 + PBMCs cultures. RESULTS: Our study showed that recombinant adiponectin induced RANKL and inhibited OPG mRNA expression in human osteoblasts in a dose- and time-dependent manner. Adiponectin also increased soluble RANKL and decreased OPG secretion in osteoblasts conditioned media. Suppression of AdipoR1 with siRNA abolished the adiponectin-regulated RANKL and OPG mRNA expression in osteoblasts. Furthermore, pretreatment of osteoblasts with the MAPK inhibitor SB203580 abolished adiponectin-regulated RANKL and OPG mRNA expression. Adiponectin induced osteoclast formation in the co-culture systems of osteoblast and PBMCs systems, and OPG entirely blocked this response. However, adiponectin had no direct effect on the differentiation of osteoclast precursor purified CD14 + PBMCs. CONCLUSIONS: These data indicate that recombinant adiponectin induced RANKL and inhibited OPG expression in human osteoblasts through the AdipoR1/p38 MAPK pathway, and these responses contributed to the adiponectin-induced osteoclast formation in the co-culture of osteoblast and PBMCs systems. These findings showed that adiponectin increased osteoclast formation indirectly through stimulating RANKL and inhibiting OPG production in osteoblasts. It suggests the pharmacological nature of recombinant adiponectin that indirectly induces osteoclasts formation.  相似文献   

17.
TRAF2 is essential for TNF-alpha-induced osteoclastogenesis.   总被引:1,自引:0,他引:1  
TRAF2-deficient mice show embryonic lethality, and we developed a new in vitro differentiation system to show the function of TRAF2 in osteoclastogenesis, in which osteoclast progenitors are derived from the fetal liver of TRAF2-deficient mice. Using this system, we showed that TRAF2 is required for TNF-alpha-induced osteoclastogenesis. INTRODUCTION: TNF receptor-associated factor 2 (TRAF2) is a signal transducer for RANK and for two TNF receptor isotypes, TNFR1 and TNFR2. Because TRAF2-deficient mice show embryonic lethality, it has remained unclear whether TRAF2 is crucial in RANKL- or TNF-alpha-induced osteoclastogenesis. MATERIALS AND METHODS: Osteoclast progenitors derived from fetal liver were cultured in the presence of monocyte macrophage colony-stimulating factor (M-CSF), and flow cytometry for characterization of surface markers on these cells was performed. To examine the involvement of TRAF2 in osteoclast differentiation, we cultured osteoclast progenitors from TRAF2-deficient and wildtype mice with soluble RANKL or TNF-alpha in the presence of M-CSF, and counted the number of TRACP(+) multinucleate cells formed. c-jun N-terminal kinase (JNK) and NF-kappaB activation in osteoclast progenitors was examined by Western blot analysis and electrophoretic mobility shift assay, respectively. Nuclear factor of activated T cells (NFATc1) expression and activation were analyzed by RT-PCR and immunofluorescence staining, respectively. To examine whether TRAF2 overexpression induced osteoclastogenesis, TRAF2 was overexpressed in osteoclast progenitors form wildtype bone marrow by retrovirus infection. RESULTS AND CONCLUSIONS: Osteoclast progenitors from normal fetal liver, which were cultured with M-CSF, expressed surface molecules c-fms, Mac-1, and RANK, and could differentiate into TRACP(+) multinucleate cells in the presence of soluble RANKL or TNF-alpha. RANKL-induced osteoclastogenesis gave a reduction of 20% in the progenitors from TRAF2-deficient mice compared with that of the cells from littermate wildtype mice, whereas TNF-alpha-induced osteoclastogenesis was severely impaired in the cells from the TRAF2-deficient mice. Only a few TRACP(+) multinucleate cells were formed, and TNF-alpha-mediated activation of JNK, NF-kappaB, and NFATc1 was defective. TRAF2 overexpression induced differentiation of osteoclast progenitors from wildtype mice into TRACP(+) multinucleate cells. These results suggest that TRAF2 plays an important role in TNF-alpha-induced osteoclastogenesis.  相似文献   

18.
We showed that IGF-I deficiency impaired osteoclastogenesis directly and/or indirectly by altering the interaction between stromal/osteoblastic cells and osteoclast precursors, reducing RANKL and M-CSF production. These changes lead to impaired bone resorption, resulting in high BV/TV in IGF-I null mice. INTRODUCTION: Although IGF-I has been clearly identified as an important growth factor in regulating osteoblast function, information regarding its role in osteoclastogenesis is limited. Our study was designed to analyze the role of IGF-I in modulating osteoclastogenesis using IGF-I knockout mice (IGF-I(-/-)). MATERIALS AND METHODS: Trabecular bone volume (BV/TV), osteoclast number, and morphology of IGF-I(-/-) or wildtype mice (IGF-I(+/+)) were evaluated in vivo by histological analysis. Osteoclast precursors from these mice were cultured in the presence of RANKL and macrophage-colony stimulating factor (M-CSF) or co-cultured with stromal/osteoblastic cells from either genotype. Osteoclast formation was assessed by measuring the number of multinucleated TRACP+ cells and pit formation. The mRNA levels of osteoclast regulation markers were determined by quantitative RT-PCR. RESULTS: In vivo, IGF-I(-/-) mice have higher BV/TV and fewer (76% of IGF-I(+/+)) and smaller osteoclasts with fewer nuclei. In vitro, in the presence of RANKL and M-CSF, osteoclast number (55% of IGF-I(+/+)) and resorptive area (30% of IGF-I(+/+)) in osteoclast precursor cultures from IGF-I(-/-) mice were significantly fewer and smaller than that from the IGF-I(+/+) mice. IGF-I (10 ng/ml) increased the size, number (2.6-fold), and function (resorptive area, 2.7-fold) of osteoclasts in cultures from IGF-I(+/+) mice, with weaker stimulation in cultures from IGF-I(-/-) mice. In co-cultures of IGF-I(-/-) osteoblasts with IGF-I(+/+) osteoclast precursors, or IGF-I(+/+) osteoblasts with IGF-I(-/-) osteoclast precursors, the number of osteoclasts formed was only 11% and 48%, respectively, of that from co-cultures of IGF-I(+/+) osteoblasts and IGF-I(+/+) osteoclast precursors. In the long bones from IGF-I(-/-) mice, mRNA levels of RANKL, RANK, M-CSF, and c-fms were 55%, 33%, 60%, and 35% of that from IGF-I(+/+) mice, respectively. CONCLUSIONS: Our results indicate that IGF-I regulates osteoclastogenesis by promoting their differentiation. IGF-I is required for maintaining the normal interaction between the osteoblast and osteoclast to support osteoclastogenesis through its regulation of RANKL and RANK expression.  相似文献   

19.
This study investigated the involvement of cell cycle factors in RANKL-induced osteoclast differentiation. Among the G1 cell cycle factors, Cdk6 was found to be a key molecule in determining the differentiation rate of osteoclasts as a downstream effector of the NF-kappaB signaling. INTRODUCTION: A temporal arrest in the G1 phase of the cell cycle is a prerequisite for cell differentiation, making it possible that cell cycle factors regulate not only the proliferation but also the differentiation of cells. This study investigated cell cycle factors that critically influence differentiation of the murine monocytic RAW264.7 cells to osteoclasts induced by RANKL. MATERIALS AND METHODS: Growth-arrested RAW cells were stimulated with serum in the presence or absence of soluble RANKL (100 ng/ml). Expressions of the G1 cell cycle factors cyclin D1, D2, D3, E, cyclin-dependent kinase (Cdk) 2, 4, 6, and Cdk inhibitors (p18 and p27) were determined by Western blot analysis. Involvement of NF-kappaB and c-jun N-terminal kinase (JNK) pathways was examined by overexpressing dominant negative mutants of the IkappaB kinase 2 (IKK(DN)) gene and mitogen-activated protein kinase kinase 7 (MKK7(DN)) gene, respectively, using the adenovirus vectors. To determine the direct effect of Cdk6 on osteoclast differentiation, stable clones of RAW cells transfected with Cdk6 cDNA were established. Osteoclast differentiation was determined by TRACP staining, and cell cycle regulation was determined by BrdU uptake and flow cytometric analysis. RESULTS AND CONCLUSION: Among the cell cycle factors examined, the Cdk6 level was downregulated by RANKL synchronously with the appearance of multinucleated osteoclasts. Inhibition of the NF-kappaB pathway by IKK(DN) overexpression, but not that of the JNK pathway by MKK7(DN) overexpression, caused the decreases in both Cdk6 downregulation and osteoclastogenesis by RANKL. RAW cells overexpressing Cdk6 resist RANKL-induced osteoclastogenesis; however, cell cycle regulation was not affected by the levels of Cdk6 overexpression, suggesting that the inhibitory effect of Cdk6 on osteoclast differentiation was not exerted through cell cycle regulation. These results indicate that Cdk6 is a critical regulator of RANKL-induced osteoclast differentiation and that its NF-kappaB-mediated downregulation is essential for efficient osteoclast differentiation.  相似文献   

20.
Kim CH  You L  Yellowley CE  Jacobs CR 《BONE》2006,39(5):1043-1047
Physical activity creates deformation in bone that leads to localized pressure gradients that drive interstitial fluid flow. Due to the cyclic nature of the applied load, this flow is oscillatory by nature. Oscillatory fluid flow (OFF) may lead to positive bone remodeling through effects on both osteoblasts and osteoclasts but its effect on osteoclastogenesis is poorly understood. In this study, the effects of OFF on expression of receptor activator of NF-kappaB ligand (RANKL) and osteoprotegerin (OPG), two important regulators of osteoclast differentiation, were investigated. In addition, its effect on osteoclast formation was quantified. ST-2 murine bone marrow stromal cells were plated on glass slides and cultured with 1,25-dihydroxyvitamin D(3) to express RANKL. Cells were exposed to various durations of OFF resulting in a peak shear stress of 1 Pa. Time course and dose-response studies were performed and real-time RT-PCR was used to quantify levels of RANKL, OPG mRNA. ST-2 cells exposed to OFF were also co-cultured with RAW 264.7 monocytes and osteoclast number quantified. Decrease in RANKL/OPG was maximal immediately after end of flow and there existed a significant increase in OPG and decrease in RANKL with increasing load duration of up to 2 h. OFF resulted in a decrease in osteoclast formation by ST-2 cells co-cultured with RAW 264.7 cells compared to co-culture of control (non-loaded) ST-2 cells with RAW 264.7 cells. These results suggest that indeed OFF is a potent regulator of bone remodeling, and that shift towards positive bone remodeling mediated by loading-induced fluid flow may occur via suppression of the formation of osteoclasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号