首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
OBJECTIVE: To review preclinical and clinical information related to pharmacologic modulation of dopamine D2 receptors as potential novel antipsychotic therapy. Specifically, to summarize the data that suggest a modulatory action of adenosine A2A receptors on dopamine D2 receptors and, therefore, a possible rational role of adenosine A2A agonists as novel antipsychotic agents. DATA SOURCES: Primary and review articles were identified by MEDLINE search (from 1966 to May 1998) and through secondary sources. STUDY SELECTION AND DATA EXTRACTION: All of the articles identified from the data sources were evaluated and all information deemed relevant was included in this review. DATA SYNTHESIS: For all of the older and many of the newer antipsychotic agents, there is a strong correlation between clinical antipsychotic activity and affinity for dopamine D2 receptors. Unfortunately, dopamine D2 receptors are believed to also be involved in the adverse effect profile of these agents. The indirect modulation of dopamine D2 receptors, rather than direct block, might produce antipsychotic effects without the usual adverse reactions. Several lines of evidence from animal studies suggest that the use of selective A2A agonists might represent a novel approach to the treatment of psychoses. CONCLUSIONS: Dopamine receptor modulation might represent a novel antipsychotic approach or adjunct therapy. The data regarding adenosine agonists (particularly selective A2A receptor agonists) are inconclusive at the present time. Direct clinical demonstration of effectiveness is required.  相似文献   

2.
Present antipsychotic drugs, whose clinical activity correlates with direct binding to dopamine D2 or other receptors, alleviate some of the symptoms of schizophrenia, but not all and not completely in many patients. In continuation of our overview of potential novel antipsychotic pharmacotherapy that would be based upon indirect modulation of dopamine or other neurotransmitter functioning, we focus in this article on the postulated use of retinoid analogs as novel antipsychotic agents. Several lines of evidence can be viewed as implicating retinoid dysregulation in schizophrenia, either as a causative or contributory factor. It has been proposed that using retinoid analogs to alter the downstream expression of dopamine D2 receptors might represent a novel approach to the treatment of the disease or amelioration of symptoms when used either as monotherapy or as adjunct pharmacotherapy to dopamine D2 receptor antagonists.  相似文献   

3.
The reinforcing effects of D(1-like) and D(2-like) agonists, and their capacity to modify cocaine self-administration, were compared in rats with extensive cocaine self-administration experience. Cocaine (0.01-1.0 mg i.v.) dose-dependently maintained responding under a fixed ratio (FR) 5 schedule of reinforcement, and an inverted U-shaped function characterized the relationship between unit dose and self-administration behavior. When substituted for cocaine, the D(1-like) agonists SKF 82958 (0.001-0.032 mg i.v.) and SKF 77434 (0.001-0.1 mg i.v.) did not maintain responding above levels observed during saline substitution. In contrast, the D(2-like) agonists quinelorane (0.001-0.1 mg i.v.) and 7-hydroxy-dipropylaminotetralin (7-OH-DPAT; 0.01-0.32 mg i.v.) reliably maintained i.v. self-administration behavior that was characterized by inverted U-shaped dose-effect functions. Pretreatment with the D(1-like) agonists SKF 82958 and SKF 77434 (0.1-1.0 mg/kg i.p.) shifted the dose-effect function for cocaine self-administration downward, whereas pretreatment with the D(2-like) agonists quinelorane (0.01 mg/kg i.p.) and 7-OH-DPAT (0.32-1.0 mg/kg i.p.) shifted the cocaine dose-effect function to the left. Effects of D(1-like) and D(2-like) agonists on patterns of responding maintained by cocaine (0.32 mg i.v.) also differed: D(1-like) agonists increased the latency to the first response but did not otherwise alter patterns of cocaine self-administration, whereas D(2-like) agonists increased the intervals between self-administered cocaine injections. The results suggest that D(2-like) agonists, but not D(1-like) agonists, have prominent reinforcing effects and enhance the effects of self-administered cocaine in rats with extensive cocaine self-administration experience. Consequently, D(2) receptor-related neuronal mechanisms may be especially important in mediating the abuse-related effects of cocaine.  相似文献   

4.
Dihydrexidine (DHX), the first high-affinity D(1) dopamine receptor full agonist, is only 10-fold selective for D(1) versus D(2) receptors, having D(2) affinity similar to the prototypical agonist quinpirole. The D(2) functional properties of DHX and its more D(2) selective analog N-n-propyl-dihydrexidine (PrDHX) were explored in rat brain and pituitary. DHX and PrDHX had binding characteristics to D(2) receptors in rat striatum typical of D(2) agonists, binding to both high- and low-affinity sites and being sensitive to guanine-nucleotides. Consistent with these binding data, both DHX and PrDHX inhibited forskolin-stimulated cAMP synthesis in striatum with a potency and intrinsic activity equivalent to that of quinpirole. Unexpectedly, however, DHX and PrDHX had little functional effect at D(2) receptors expressed on dopaminergic neurons that mediate inhibition of cell firing, dopamine release, or dopamine synthesis. Quantitative receptor competition autoradiography demonstrated that DHX bound to D(2) receptors in striatum (predominantly postsynaptic receptor sites) with equal affinity as D(2) sites in the substantia nigra (autoreceptor sites). The data from these experiments, coupled with what is known about the location of specific dopamine receptor isoforms, lead to the hypothesis that DHX, after binding to D(2L) and D(2S) receptors, causes agonist-typical functional changes only at some of these receptors. This phenomenon (herein termed "functional selectivity") suggests that drugs may be targeted not only at specific receptor isoforms but also at separate functions mediated by a single isoform, yielding novel approaches to drug discovery.  相似文献   

5.
The firing rates of many basal ganglia neurons recorded in awake rats oscillate at seconds-to-minutes time scales, and the D1/D2 agonist apomorphine has been shown to robustly modulate these oscillations. The use of selective D1 and D2 antagonists suggested that both these receptor subfamilies are involved in apomorphine's effects. In the present study, spectral analysis revealed that baseline multisecond oscillations were significantly periodic in 71% of globus pallidus neurons. Baseline oscillations had a wide range of periods within the analyzed range, with a population mean of 32 +/- 2 s. Administration of the D1 agonist SKF 81297 (6-chloroPB) at 1.0 or 5.0 mg/kg significantly changed these oscillations, reducing means of spectral peak periods to 14 to 16 s (i.e., increasing oscillatory frequency). This effect was attenuated by D2 antagonist pretreatment. The D2 agonist quinpirole did not cause a significant population change in multisecond periodicities. The strongest effects on multisecond periodicities occurred after combined treatment with SKF 81297 and quinpirole. Low, ineffective doses of SKF 81297 and quinpirole, when combined, produced a significant increase in oscillatory frequency. Also, when quinpirole was administered after an already effective dose of SKF 81297, quinpirole shifted oscillations to an even faster range (typically to periods of <10 s). The dopaminergic control of multisecond periodicities in globus pallidus firing rate demonstrates D1/D2 receptor synergism, in that the effects of D1 agonists are potentiated by and partially dependent on D2 receptor activity. Modulation of multisecond oscillations in firing rate represents a novel means by which dopamine can influence globus pallidus physiology.  相似文献   

6.
In primates, CB(1) cannabinoid receptor agonists produce sedation and psychomotor slowing, in contrast to behavioral stimulation produced by high doses of dopamine receptor agonists. To investigate whether dopamine agonists attenuate the sedative effects of a cannabinoid agonist in monkeys, we compared the effects of D(1) or D(2) dopamine receptor agonists on spontaneous behavior in three to six cynomolgus monkeys (Macaca fasicularis) alone and after administration of a low dose of the CB(1) agonist levonantradol. Alone, the CB(1) cannabinoid receptor agonist levonantradol (0.01-0. 3 mg/kg) induced sedation, ptosis, and decreased locomotor and general activity. Alone, D(2)-type dopamine agonists quinelorane (0. 001-1.0 mg/kg; n = 4) or pergolide (0.01-1.0 mg/kg) or a D(1) dopamine agonist 6-chloro-7,8-dihydroxy-1-phenyl-2,3,4, 5-tetrahydro-3-allyl-[1H]-3-benzazepine (0.3-3.0 mg/kg) produced either no effect or promoted hyperactivity. Thirty minutes after administration of a threshold dose of levonantradol (0.03 mg/kg), D(2)-type agonists, but not the D(1) agonist, precipitated marked sedation, ptosis, and decreased general activity and locomotor activity. These data inducate the following: 1) D(2,) but not D(1) dopamine agonists, potentiate sedation in monkeys treated with a CB(1) cannabinoid agonist, at doses of agonists that alone do not produce sedation; 2) the threshold dose for cannabinoid-induced sedation is reduced by D(2) agonists, but not by a D(1) dopamine agonist, differentiating D(1) and D(2) dopamine receptor linkage to cannabinoid receptors; and 3) modulation of D(2) dopamine receptor activity by a nonsedating dose of a cannabinoid agonist has implications for the pathophysiology and treatment of dopamine-related neuropsychiatric disorders and drug addiction. Cannabinoid agonists and D(2) dopamine agonists should be combined with caution.  相似文献   

7.
The periaqueductal grey (PAG) area is involved in pain modulation as well as in opiate-induced anti-nociceptive effects. The PAG possess dopamine neurons, and it is likely that this dopaminergic network participates in anti-nociception. The objective was to further study the morphology of the PAG dopaminergic network, along with its role in nociception and opiate-induced analgesia in rats, following either dopamine depletion with the toxin 6-hydroxydopamine or local injection of dopaminergic antagonists. Nociceptive responses were studied through the tail-immersion (spinal reflex) and the hot-plate tests (integrated supraspinal response), establishing a cut-off time to further minimize animal suffering. Heroin and morphine were employed as opiates. Histological data indicated that the dopaminergic network of the PAG is composed of two types of neurons: small rounded cells, and large multipolar neurons. Following dopamine depletion of the PAG, large neurons (not small ones) were selectively affected by the toxin (61.9% dopamine cell loss, 80.7% reduction of in vitro dopaminergic peak), and opiate-induced analgesia in the hot-plate test (not the tail-immersion test) was reliably attenuated in lesioned rats (P < 0.01). After infusions of dopaminergic ligands into the PAG, D(1) (not D(2)) receptor antagonism attenuated opiate-induced analgesia in a dose-dependent manner in the hot-plate test. The present study provides evidence that large neurons of the dopaminergic network of the PAG participate in supraspinal (not spinal) nociceptive responses after opiates through the involvement of D(1) dopamine receptors. This dopaminergic system should be included as another network within the PAG involved in opiate-induced anti-nociception.  相似文献   

8.
Persistent activation of Galpha(i/o)-coupled receptors results in an enhanced responsiveness of drug-stimulated adenylate cyclase activity through an unknown mechanism. This agonist-induced heterologous sensitization of drug-stimulated cyclic AMP accumulation has been proposed to be a mechanism by which cells adapt to prolonged Galpha(i/o) activation. Heterologous sensitization was examined in human embryonic kidney 293 cells stably expressing D(2L) dopamine receptors in combination with recombinant isoforms of adenylate cyclase. The ability of each isoform to be differentially regulated by G protein subunits and other signaling intermediates allowed us to identify potential mechanisms that are involved in heterologous sensitization of adenylate cyclase. We now report that both short- and long-term activation of D(2L) dopamine receptors resulted in a marked degree of sensitization of ACI, ACII, ACV, and ACIX, but not ACVIII. The effects of agonist treatment on ACI, ACII, and ACVIII appeared to be dependent upon the ability of these adenylate cyclase isoforms to synergistically respond to selective activators in the presence of activated Galpha(s). Sensitization of ACV was characterized by enhanced cyclic AMP accumulation following Galpha(s) or forskolin stimulation. Furthermore, agonist pretreatment enhanced the basal levels of cyclic AMP accumulation in ACV/D(2L) cells, an effect that was not observed with the other adenylate cyclase isoforms. ACIX, which has no known activators other than Galpha(s), showed robust agonist-induced sensitization of isoproterenol-stimulated cyclic AMP accumulation. In summary, heterologous sensitization appeared to be related to the ability of each adenylate cyclase isoform to be modulated by Galpha(s).  相似文献   

9.
D(2)-like dopamine receptors mediate functional changes via activation of inhibitory G proteins, including those that affect adenylate cyclase activity, and potassium and calcium channels. Although it is assumed that the binding of a drug to a single isoform of a D(2)-like receptor will cause similar changes in all receptor-mediated functions, it has been demonstrated in brain that the dopamine agonists dihydrexidine (DHX) and N-n-propyl-DHX are "functionally selective". The current study explores the underlying mechanism using transfected MN9D cells and D(2)-producing anterior pituitary lactotrophs. Both dopamine and DHX inhibited adenylate cyclase activity in a concentration-dependent manner in both systems, effects blocked by D(2), but not D(1), antagonists. In the MN9D cells, quinpirole and R-(-)-N-propylnorapomorphine (NPA) also inhibited the K(+)-stimulated release of [(3)H]dopamine in a concentration-responsive, antagonist-reversible manner. Conversely, neither DHX, nor its analogs, inhibited K(+)-stimulated [(3)H]dopamine release, although they antagonized the effects of quinpirole. S-(+)-NPA actually had the reverse functional selectivity profile from DHX (i.e., it was a full agonist at D(2L) receptors coupled to inhibition of dopamine release, but a weak partial agonist at D(2L) receptor-mediated inhibition of adenylate cyclase). In lactotrophs, DHX had little intrinsic activity at D(2) receptors coupled to G protein-coupled inwardly rectifying potassium channels, and actually antagonized the effects of dopamine at these D(2) receptors. Together, these findings provide compelling evidence for agonist-induced functional selectivity with the D(2L) receptor. Although the underlying molecular mechanism is controversial (e.g., "conformational induction" versus "drug-active state selection"), such data are irreconcilable with the widely held view that drugs have "intrinsic efficacy".  相似文献   

10.
Human dopamine D(2) and D(3) receptors were expressed in Chinese hamster ovary (CHO) and Escherichia coli cells to compare their ligand binding properties in the presence or absence of G-proteins and to analyze their ability to interact with G(i/o)-proteins. Binding affinities of agonists (dopamine, 7-OH-DPAT, PD128907, lisuride) and antagonists/inverse agonists (haloperidol, risperidone, domperidone, spiperone, raclopride, nemonapride), measured using [(125)I]iodosulpride and [(3)H]7-OH-DPAT, were similar for hD(3) receptors in E. coli and CHO cell membranes. Both agonists and antagonists showed 2- to 25-fold lower binding affinities at hD(2) receptors in E. coli versus CHO cell membranes (measured with [(3)H]spiperone), but the rank order of potencies remained similar. Purported inverse agonists did not display higher affinities for G-protein-free receptors. In CHO membranes, GppNHp decreased high affinity agonist ([(3)H]7-OH-DPAT) binding at hD(2) receptors but not at hD(3) receptors. Also, [(3)H]7-OH-DPAT (nanomolar concentration range) binding was undetectable at hD(2) but clearly measurable at hD(3) receptors in E. coli membranes. Addition of a G(i/o)-protein mix to E. coli membranes increased high affinity [(3)H]7-OH-DPAT binding in a concentration-dependent manner at hD(2) and hD(3) receptors; this effect was reversed by addition of GppNHp. The potency of the G(i/o)-protein mix to reconstitute high affinity binding was similar for hD(2) and hD(3) receptors. Thus, agonist binding to D(3) receptors is only slightly affected by G-protein uncoupling, pointing to a rigid receptor structure. Furthermore, we propose that the generally reported lower signaling capacity of D(3) receptors (versus D(2) receptors) is not due to its lower affinity for G-proteins but attributed to its lower capacity to activate these G-proteins.  相似文献   

11.
N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), an irreversible and nonselective protein-modifying reagent, has been used extensively in studies involving inactivation of receptors. Here, we present N-(p-isothiocyanatophenethyl)spiperone (NIPS), a novel and highly selective irreversible inactivator of D2 but not D1 receptors. In in vitro studies, NIPS exhibited an apparent Ki of 10 nM for [3H]methylspiperone binding to D2 receptors in rat striatum. Preincubation of the striatal membranes with NIPS followed by extensive washing resulted in up to an 80% reduction of the D2 receptor maximum binding (Bmax). Coincubation with the D2 receptor antagonist domperidone could protect against this reduction. NIPS was additionally shown to irreversibly inactivate D2 receptor binding activity in cultured cells expressing the D2 receptor protein. In in vivo administration studies, using [3H]SCH 23390 and [3H]spiperone to assay D1 and D2 receptors in vitro, 24 hr after injection (s.c.) with 5 to 40 mg/kg of NIPS D2 receptor, Bmax was decreased by 58 to 76%, without a change in D2 receptor affinity. In contrast, there was no effect on D1 receptor Bmax or affinity. There was also a small (24%) reduction in frontal cortex 5-hydroxytryptamine2 receptors by 20 mg/kg of NIPS. However, there was no effect on alpha-1 or alpha-2 adrenergic receptors in the frontal cortex, or on muscarinic cholinergic or 5-hydroxytryptamine1A receptors in the hippocampus. After single doses of either 20 mg/kg of NIPS or 10 mg/kg of EEDQ, the D2 receptor recovery rate was much slower after NIPS (half-time of receptor recovery = 170 hr) than after EEDQ (half-time of receptor recovery = 76.7 hr).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Human dopamine D(2) (hD(2)) and D(3) (hD(3)) receptors were expressed at similar, high expression levels in Chinese hamster ovary (CHO) cells, and their coupling to G proteins and further signal transduction pathways were compared. In competition radioligand-binding experiments, guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) treatment of hD(2S)- or hD(3)-CHO cell membranes induced a rightward shift and steeping of the dopamine inhibition curve. This effect was pronounced for hD(2) receptors and small for hD(3) receptors. Activation of G proteins was investigated in [(35)S]GTPgammaS-binding assays. Dopamine stimulated [(35)S]GTPgammaS binding 330 and 70% over basal levels on hD(2)-CHO and hD(3)-CHO cell membranes, respectively. (+)-7-(Dipropylamino)-5, 6,7,8-tetrahydro-2-naphthalenol and PD128907 were partial agonists for both receptors. Haloperidol, risperidone, raclopride, and nemonapride inhibited dopamine-stimulated [(35)S]GTPgammaS binding with potencies comparable to their binding affinities for hD(2) and hD(3) receptors in CHO cell membranes; inverse agonism could not be detected with this assay. Receptor stimulation by dopamine inhibited forskolin-induced cyclic AMP formation in hD(2)-CHO and hD(3)-CHO cells by 70%. Furthermore, the extracellular acidification rate increased when hD(2)-CHO and hD(3)-CHO cells were stimulated by dopamine; this effect was abolished by pertussis toxin pretreatment. In this study, we could demonstrate clear functional effects at different levels of the signaling cascade of hD(2) and hD(3) receptors in CHO cells when expressed at high levels. High-affinity agonist binding to hD(2) and hD(3) receptors was still present, but effects of receptor-G protein uncoupling at hD(3) receptors were small, indicating that hD(3) receptors maintain relatively high-affinity agonist binding in the absence of G proteins.  相似文献   

13.
14.
6,7-Dihydroxy-2-dimethylaminotetralin (TL-99), N-n-propyl-3-(3-hydroxyphenylpiperidine [(+/-)-3-PPP], N-n-propylnorapomorphine and pergolide were evaluated for activity on a number of biochemical parameters that are presumed to indicate an agonist effect at dopamine (DA) autoreceptors (antagonism of the gamma-hydroxybutyrate-induced increase in dopa formation), at postsynaptic DA receptors (elevation of acetylcholine levels) or at both types of DA receptors (diminution of DA synthesis and homovanillic acid levels) in rat striatum. All four agents decreased striatal dopa accumulation (in the presence and in the absence of gamma-hydroxybutyrate). N-propylnorapomorphine, pergolide and TL-99 also reduced homovanillic acid levels and increased acetylcholine concentrations in striatum whereas (+/-)-3-PPP was inactive. The compounds were all more potent in diminishing dopa accumulation caused by gamma-hydroxybutyrate treatment than in increasing acetylcholine levels [(+/-)-3-PPP showing the highest dissociation] indicating a preferential agonist activity at DA autoreceptors. The relative selectivity of the compounds for DA autoreceptors and postsynaptic DA receptors was evaluated further by studying the antagonism by these drugs of the activation of striatal dopa formation (index of both DA autoreceptor and postsynaptic DA receptor stimulation) and tyrosine hydroxylase (index of postsynaptic DA receptor stimulation only) induced by haloperidol or reserpine. The DA agonists were all more potent in antagonizing the neuroleptic-induced increase in DA synthesis than in counteracting the drug-induced activation of tyrosine hydroxylase, with (+/-)-3PPP exhibiting the highest dissociation. The present results indicate that the DA agonists studied possess some selectivity for striatal DA autoreceptors, (+/-)-3-PPP being the most selective in this respect.  相似文献   

15.
Molecular and functional imaging techniques reveal evidence for lateralization of human cerebral function. Based on animal data, we hypothesized that asymmetry in dopamine neurotransmission declines during normal aging. In order to test this hypothesis, we measured dopamine D2/3 receptor availability with [18F]desmethoxyfallypride-PET (DMFP) in putamen and caudate nucleus (NC) of 21 healthy, right-handed males (24-60 years; 35+/-10). For volumetric analysis, high-resolution T1-weighted MR-images were obtained in 18 of the PET-subjects in order to assess possible age-related decreases in NC and putamen volume. The calculated DMFP binding potentials (BP) showed a right-ward asymmetry in NC of young subjects that decreased with age (r = 0.577, p = 0.006; Pearson correlation; two-tailed). An age-independent analysis showed a right-ward asymmetry in NC of the whole subject group (left: 1.49+/-0.35; right: 1.65+/-0.43 [mean+/-S.D.]; p = 0.020). No such side lateralization or age-effects could be found in the putamen. Volumes tended to be asymmetric in the putamen (right: 4.85+/-0.56 cm3; left: 4.64+/-0.86 cm3 [mean+/-S.D.]; p = 0.063), but not in NC. The decline of putamen volume during aging was significant in the right putamen (r = -0.613; p = 0.007; Pearson correlation; two-tailed). There were no other significant correlations between striatal volumes and age or BP. Because ventral striatal dopamine neurotransmission is involved in cognitive processes, this loss of physiological asymmetry in NC dopamine transmission during aging might be involved in age-related declines of cognitive performance.  相似文献   

16.
Although the discriminative stimulus effects of the clinically useful ergot derivative lisuride have previously been related to dopamine (DA) neuronal systems, the involvement of DA D1 and D2 receptor subtypes in the lisuride cue has been characterized for the first time in the present experiment. In rats trained to discriminate lisuride (0.04 mg/kg) from saline, appropriate doses of the putative D2 agonist LY 171555 (0.008-0.063 mg/kg) substituted completely whereas the D1 agonist SKF 38393 (2.0-16.0 mg/kg) evoked primarily saline-lever responding. When given in combination with lisuride (0.04 mg/kg), the D2 antagonist (-)-sulpiride (5-30 mg/kg), but not the D1 antagonist SCH 23390 (0.125-0.5 mg/kg), blocked the lisuride cue. Combination tests also suggested that bromuride and pirenperone have DA antagonist properties. Although the specificity of these agents is not fully known, these results support the conclusion that D2 but not D1 receptors play an important role in the stimulus effects of lisuride. Although a role for serotonin in the similar stimulus properties of lisuride and SCH 23390 cannot be ruled out, partial substitution of SCH 23390 (0.0625-0.35 mg/kg; administered alone) for lisuride complements previous observations which suggest that the two DA subtypes may be functionally linked in vivo.  相似文献   

17.
Release of [3H]dopamine ([3H]DA) from striatal synaptosomes is evoked most commonly by elevating potassium levels in the presence of calcium. However, it has been difficult to show that DA agonists or antagonists can modify K+-evoked release of [3H]DA. DA. In this study [3H]DA release evoked by exposure of synaptosomes (isolated and superfused previously with 0.0 mM Ca++ and 0.1 mM ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid) to 1.25 mM Ca++ can be modulated by the DA (D2) agonists apomorphine, pergolide and quinpirole and antagonists l-sulpiride and domperidone. The release was evoked under low potassium (6 mM or less) concentrations and the potassium concentration in the superfusion medium was not elevated before or during Ca++ exposure. Analysis of the superfusates obtained during Ca++ exposure revealed that approximately 80% of the tritium released was [3H]DA. The ability of DA (D2) agonists to inhibit the Ca++-evoked release from synaptosomes superfused with 9 mM K+ was greatly reduced. Therefore, prolonged depolarization may block DA (D2) regulation of [3H]DA release from synaptosomes. The Ca++-evoked release of [3H]DA was reduced greatly when 1 microM tetrodotoxin was present indicating sodium channels play a role in triggering the processes involved in Ca++-evoked [3H]DA release.  相似文献   

18.
The distribution of dopamine D2 receptors in the rat brain was determined by quantitative autoradiography of the binding of [125I]epidepride and the effects of chronic drug administration on regulation of receptors in striatal and extrastriatal brain regions were characterized. [125I]Epidepride (2200 Ci/mmol) bound with high affinity to coronal tissue sections from the rat brain (Kd = 78 pM), and specific binding was detected in a number of discrete layers, nuclei or regions of the hippocampus, thalamus, cerebellum and other extrastriatal sites. Pharmacological analysis of radioligand binding to hippocampal and cerebellar membranes indicated binding to dopamine D2 receptors, and approximately 10% of the binding appeared to represent low affinity idazoxan-displaceable binding to alpha-2 adrenoceptors. The binding to extrastriatal regions resembled previously reported radioligand binding to dopamine D2 receptors in striatal and cortical membranes. Chronic (14 day) administration of two dopamine D2 receptor antagonists, either the typical neuroleptic haloperidol (1.5 mg/kg i.p.) or the atypical neuroleptic clozapine (30 mg/kg i.p.), caused a significant increase in the density of [125I]epidepride binding sites in the medial prefrontal cortex and parietal cortex. Only haloperidol caused a significant increase in the density of [3H]spiperone and [125I]epidepride binding sites in the striatum and a slight increase in [125I]epidepride binding sites in the hippocampus. Similar administration of amphetamine (5 mg/kg i.p.) had no significant effect on the density of dopamine D2 receptors in any brain region examined. In addition, no drug-induced changes in the characteristics of dopamine D2 receptors in discrete areas of the cerebellum were observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Methylphenidate (MPD) administration alters the subcellular distribution of vesicular monoamine transporter-2 (VMAT-2)-containing vesicles in rat striatum. This report reveals previously undescribed pharmacological features of MPD by elucidating its receptor-mediated effects on VMAT-2-containing vesicles that cofractionate with synaptosomal membranes after osmotic lysis (referred to herein as membrane-associated vesicles) and on striatal dopamine (DA) release. MPD administration increased DA transport into, and decreased the VMAT-2 immunoreactivity of, the membrane-associated vesicle subcellular fraction. These effects were mimicked by the D2 receptor agonist quinpirole and blocked by the D2 receptor antagonist eticlopride. Both MPD and quinpirole increased vesicular DA content. However, MPD increased, whereas quinpirole decreased, K(+)-stimulated DA release from striatal suspensions. Like MPD, the muscarinic receptor agonist, oxotremorine, increased K(+)-stimulated DA release. Both eticlopride and the muscarinic receptor antagonist scopolamine blocked MPD-induced increases in K(+)-stimulated DA release, whereas the N-methyl-d-aspartate receptor antagonist (-)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) was without effect. This suggests that D2 receptors mediate both the MPD-induced redistribution of vesicles away from synaptosomal membranes and the MPD-induced up-regulation of vesicles remaining at the membrane. This results in a redistribution of DA within the striatum from the cytoplasm into vesicles, leading to increased DA release. However, D2 receptor activation alone is not sufficient to mediate the MPD-induced increases in striatal DA release because muscarinic receptor activation is also required. These novel findings provide insight into the mechanism of action of MPD, regulation of DA sequestration/release, and treatment of disorders affecting DA disposition, including attention-deficit hyperactivity disorder, substance abuse, and Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号