首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several classes of agents are known to bind at central 5-HT1A serotonin sites In order to challenge the hypothesis that these agents bind in a relatively similar manner (i.e., share common aryl and terminal amine sites), we prepared N-(phthalimidobutyl) derivatives of examples of several such agents. With regard to arylpiperazines, we had previously shown that introduction of this functionality at the terminal amine is tolerated by the receptor and normally results in a significant (greater than 10-fold) enhancement in affinity. The results of the present study show that this bulky functionality is also tolerated by the receptor when incorporated into examples of all other major classes of 5-HT1A agents (e.g., 2-aminotetralin, phenylalklamine, indolylalkylamine, and (aryloxy)alkylamine derivatives). The length of the alkyl chain that separates the terminal amine from the phthalimido group is of major importance, and a four-carbon chain appears optimal. Alteration of the length of this chain can have a significant influence on affinity; decreasing the chain length from four to three carbon atoms can reduce affinity by an order of magnitude, and further shortening can have an even more pronounced effect.  相似文献   

2.
3.
The abused substance N-methyl-1-(3, 4-methylenedioxyphenyl)-2-aminopropane, or MDMA, serves as a training drug in animals. Because the 5-HT(1A) receptor antagonist NAN-190 has been shown to partially antagonize the MDMA stimulus, and because NAN-190 binds at several different types of receptors, in the present study we examined other agents (e.g., adrenergic, dopaminergic, sigma) in tests of stimulus generalization and stimulus antagonism to determine their influence on the MDMA stimulus. Each of these agents (i.e., clenbuterol, S(-)propranolol, R(+)SCH-23390, amantadine, NANM) was without effect on MDMA-appropriate responding. The finding that NAN-190 behaves as a 5-HT(1A) partial agonist in some studies prompted examination of the 5-HT(1A) receptor agonist 8-OH DPAT and its optical isomers. MDMA-stimulus generalization occurred to racemic 8-OH DPAT (ED(50) = 0.3 mg/kg), R(+)8-OH DPAT (ED(50) = 0.2 mg/kg), and to the 5-HT(1A) receptor partial agonist S(-)8-OH DPAT (ED(50) = 0.4 mg/kg). The results suggest that the MDMA stimulus might possess a 5-HT(1A) component of action. Furthermore, because 8-OH DPAT is known to enhance the stimulus effects of hallucinogens as discriminative stimuli, and because MDMA reportedly enhances the effects of hallucinogenic agents in humans ("flipping," "candy flipping"), this latter MDMA-induced phenomenon might involve a 5-HT(1A) mechanism.  相似文献   

4.
8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) is a serotonergic agonist with high affinity and selectivity for a particular population of central serotonin (5-HT) binding sites (i.e., 5-HT1A sites). Because the selectivity of 8-OH-DPAT may be due to the terminal amine substituents, the di-n-propyl analogue of 5-HT (i.e., 4) and of 5-methoxytryptamine (i.e., 5) were prepared and compared with 8-OH-DPAT with respect to their binding profile. Unlike 8-OH-DPAT, neither compound 4 nor 5 displays selectivity for 5-HT1A vs 5-HT2 sites. Consistent with these results, stimulus generalization occurs with 5 both in rats trained to discriminate 8-OH-DPAT from saline and in rats trained to discriminate the 5-HT2 agonist DOM from saline. The results of this study suggest that it is not the N,N-dipropyl groups that account for selectivity, but, rather, it is some feature associated with the pyrrole portion of the indolylalkanamines that is important.  相似文献   

5.
6.
7.
We studied [3H]serotonin [( 3H]5-HT) binding on cultured arterial smooth muscle cells from rat aorta. We found a high and low affinity binding site. Binding to the higher affinity site could be displaced by drugs in an order corresponding most closely with the 5-HT1B subtype, and high affinity [125I]iodo-cyanopindolol binding was also found. We found evidence for a 5-HT2 subtype using [3H]ketanserin binding, with similar results whether specific binding was determined using unlabelled ketanserin, methysergide or mianserin.  相似文献   

8.
The ability of sumatriptan (GR 43175; 3-[2-dimethylamino]ethyl-N-methyl-1H-indole-5 methane sulphonamide) to interact with 13 neurotransmitter receptor sites was determined using radioligand binding techniques. Sumatriptan displayed the highest affinity for 5-HT1D (Ki = 17 nM) and 5-HT1B (Ki = 27 nM) binding sites and was slightly less potent at 5-HT1A binding sites (Ki = 100 nM). By contrast, sumatriptan was essentially inactive (Ki greater than 10,000 nM) at each of the 10 other binding sites analyzed. These data indicate that sumatriptan interacts selectively with 5-HT1B and 5-HT1D sites and suggest that these interactions may be the basis of its apparent efficacy in the acute treatment of migraine.  相似文献   

9.
Flibanserin has been reported to be an agonist at 5-HT1A-receptors and an antagonist at 5-HT2A receptors, with higher affinity for 5-HT1A receptors. Despite the fact that less receptor occupation is required by full agonists than by antagonists to exert their effects, flibanserin was shown to exert 5-HT2A antagonism at doses (4-5 mg kg-1) that are lower or equal to those required to stimulate 5-HT1A receptors. In order to understand this phenomenon, the interaction of flibanserin with 5-HT1A and 5-HT2A receptors was evaluated in ex vivo binding studies. This interaction was evaluated in the prefrontal cortex, hippocampus and midbrain by using [3H]8-OH-DPAT and [3H]ketanserin to label 5-HT1A and 5-HT2A receptors, respectively. Flibanserin was given at 1, 10 and 30 mg kg-1 intraperitoneally. The dose of 1 mg kg-1 displaced both radioligands preferentially in the frontal cortex. The doses of 10 and 30 mg kg-1 reduced the binding of both radioligands in all the three brain regions non-selectively by about 50% and 70%, respectively. The displacement was maximal after 0.5 h and was reduced or not evident after 3 h. We conclude that 5-HT2 antagonism brought about by low doses of flibanserin may reflect functional mechanisms more than receptor-mediated effects.  相似文献   

10.
1-(2,5-Dimethoxy-4-bromophenyl)-2-aminopropane (DOB; 1a) is a purported serotonin (5-HT) agonist that binds selectively to central 5-HT2 binding sites. Systematic removal of any or all of the aromatic substituents had relatively little effect on 5-HT1 binding but reduced 5-HT2 binding by approximately 2 or more orders of magnitude. Demethylation of the 2-methoxy group of 1a, or introduction of an N-n-propyl group, doubled 5-HT1-site affinity but decreased 5-HT2-site affinity by 3- and 30-fold, respectively. In tests of stimulus generalization, using rats trained to discriminate DOM from saline, the 2-demethyl and N-propyl derivatives were found to produce stimulus effects similar to those of DOB. In addition, the S-(+) isomer of the iodo analogue of 1a was found to possess one-third the affinity of its R-(-) enantiomer at 5-HT2 sites and also resulted in DOM-stimulus generalization. Of the DOB analogues examined, DOB (1a) possesses optimal selectivity for 5-HT2 binding.  相似文献   

11.
Arylpiperazine derivatives as high-affinity 5-HT1A serotonin ligands   总被引:2,自引:0,他引:2  
Although simple arylpiperazines are commonly considered to be moderately selective for 5-HT1B serotonin binding sites, N4-substitution of such compounds can enhance their affinity for 5-HT1A sites and/or decrease their affinity for 5-HT1B sites. A small series of 4-substituted 1-arylpiperazines was prepared in an attempt to develop agents with high affinity for 5-HT1A sites. Derivatives where the aryl portion is phenyl, 2-methoxyphenyl, or 1-naphthyl, and the 4-substituent is either a phthalimido or benzamido group at a distance of four methylene units away from the piperazine 4-position, display high affinity for these sites. One of these compounds, 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl]piperazine (18), possesses a higher affinity than 5-HT and represents the highest affinity (Ki = 0.6 nM) agent yet reported for 5-HT1A sites.  相似文献   

12.
Interactions between central 5-HT1A receptors and the enantiomers of LY-41, a 2-aminotetralin derivative related to 8-OH-DPAT (8-hydroxy-2-(dipropylamino)tetralin), were studied. Both enantiomers of LY-41 behaved as potent 5-HT1A receptor agonists in rats, inducing the 5-HT behavioural syndrome, decreasing body temperature and inhibiting the cage-leaving response. The behavioural syndrome and the hypothermia were antagonized by the 5-HT1A receptor antagonist, (S)-UH-301. The LY-41 enantiomers also reduced brain 5-HTP accumulation in rats treated with a decarboxylase inhibitor. The pharmacology of the enantiomers of LY-41 appeared similar to that of 8-OH-DPAT. However, it is noteworthy that the stereoselective interaction of 5-HT1A receptors with LY-41 was opposite to that of 8-OH-DPAT. Thus, (R)-8-OH-DPAT was more potent than (S)-8-OH-DPAT, whereas (S)-LY-41 appeared to be more potent than (R)-LY-41.  相似文献   

13.
To investigate central serotonergic (5-HT) and dopaminergic (DA) actions of lisuride, the discriminative properties of lisuride (0.05mg/kg, i.p.) in rats were investigated, in addition to the radioligand binding of the compound to 5-HT and DA receptor subtypes. Lisuride was found to possess high affinities for 5-HT(1A) receptor sites (Ki=0.5nM) and D(2) receptor sites (Ki=2.0nM). The autoradiographic binding pattern of 4nM [(3)H]lisuride in rat brain showed high densities of sites displaceable by the 5-HT(1A) agonist 8-OH-DPAT in hippocampus, lateral septal nucleus and amygdala, as well as those displaceable by the D(2) antagonist sulpiride in striatum, nucleus accumbens and olfactory tubercle. In drug discrimination tests, the mixed, D(1)/D(2) agonist apomorphine, the partial D(2) receptor agonists (-)-3-PPP and terguride and the 5-HT(1A) agonist 8-OH-DPAT substituted for lisuride. The D(1) agonist SKF38393, the D(1) antagonist SCH23390, the D(2) antagonist sulpiride, the 5HT(1B) agonist m-CPP and the 5-HT(2) agonist DOI were not generalized to the lisuride cue. In antagonism tests, the D(2) antagonist haloperidol and the 5-HT antagonist methysergide both induced partial but significant antagonism to the lisuride cue, but the D(1) antagonist SCH23390 did not. These results indicate that discriminative stimulus properties of lisuride are mediated by the dual activation of 5-HT(1A) and D(2) receptor sites in brain.  相似文献   

14.
Using a two-lever operant procedure, eleven rats were trained to discriminate 0.2 mg/kg of the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH DPAT) from saline using a variable-interval 15 sec schedule of reinforcement. Once trained, these animals were used in a series of stimulus generalization and stimulus antagonism studies. The 8-OH DPAT-stimulus did not generalize to the 5-HT1B agonist 1-(3-trifluoromethylphenyl) piperazine (TFMPP) or the 5-HT2 agonist 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM), nor could it be attenuated by pre-treatment of the animals with the 5-HT2 antagonist ketanserin. Low doses of spiperone and propranolol were without effect on 8-OH DPAT-appropriate responding, whereas higher doses of these agents resulted in disruption of behavior. Some preliminary structure-activity data were also obtained using several related tetralin analogs. The results of this study demonstrate that the serotonin agonist 8-OH DPAT serves as a discriminative stimulus in rats and that it produces stimulus effects that are probably not 5-HT1B or 5-HT2-mediated.  相似文献   

15.
With [3H]ketanserin as the radioligand, structure-affinity relationships (SAFIRs) for binding at central 5-HT2 serotonin receptors (rat frontal cortex) were examined for a series of 27 4-substituted 1-(2,5-dimethoxyphenyl)-2-aminopropane derivatives (2,5-DMAs). The affinity (Ki values) ranged over a span of several orders of magnitude. It appears that the lipophilic character of the 4-position substituent plays a major role in determining the affinity of these agents for 5-HT2 receptors, 2,5-DMAs with polar 4-substituents (e.g. OH, NH2, COOH) display a very low affinity (Ki greater than 25,000 nM) for these receptors, whereas those with lipophilic functions display a significantly higher affinity. The results of these studies prompted us to synthesize and evaluate examples of newer lipophilic derivatives and several of these (e.g. n-hexyl, n-octyl) bind with very high (Ki values = 2.5 and 3 nM, respectively) affinities at central 5-HT2 sites. Although, 2,5-DMAs are generally considered to be 5-HT2 agonists, preliminary studies with isolated rat thoracic aorta suggest that some of the more lipophilic derivatives (e.g. the n-hexyl and n-octyl derivatives) are 5-HT2 antagonists.  相似文献   

16.
Ketanserin is the prototypic 5-HT2 serotonin antagonist; although it has been an important tool for the study of serotonin pharmacology, it has had relatively little impact on drug design because remarkably little is known about its structure-affinity relationships. Furthermore, ketanserin also binds at 5-HT1C receptors and even less is known about the influence of its structural features on 5-HT1C receptor affinity. The present study reveals that the fluoro and carbonyl groups of the 4-fluorobenzoyl portion of ketanserin make small contributions to 5-HT2 binding and that the intact benzoylpiperidine moiety is an important feature. Ring-opening of the piperidine ring reduces affinity. Although the quinazoline-2,4-dione moiety also contributes to binding, it appears to play a smaller role and can be structurally simplified with retention of 5-HT2 affinity. N-(4-Phenylbutyl)-4-(4-fluorobenzoyl)piperidine (39), for example, binds with nearly the same affinity (Ki = 5.3 nM) as ketanserin (Ki = 3.5 nM). All of the compounds examined bind at 5-HT1C sites with lower affinity than ketanserin, and some of the simplified analogues bind with nearly 10 times the 5-HT2 versus 5-HT1C selectivity of ketanserin; however, none displays > 120-fold selectivity. Several of the compounds, such as the amide 32 and the urea 33 represent examples of new structural classes of 5-HT2 ligands.  相似文献   

17.
18.
Certain phenylethylamines, such as 1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane (DOB; 1a), are high-affinity 5-HT(2) agonists. Previous structure-affinity studies have concluded that both the 2,5-dimethoxy substitution pattern and the nature of substituents at the 4-position are important determinants of high affinity. We recently demonstrated that replacement of the bromo group of DOB with a 3-(phenyl)propyl substituent results in retention of affinity and that, counter to established structure-affinity relationships, the 2,5-dimethoxy substitution pattern is no longer a requirement for the binding. The present investigation extends these findings by examining a series of analogues, 3, lacking a 5-methoxy group. It was additionally found that shifting the phenylalkyl substituent from the 4- to the 5-position (e.g., 4i) also results in retention of affinity. For example, 1-(2-methoxy-5-(3-phenylpropyl)-2-aminopropane (6; the alpha-methyl derivative of 4i) binds at 5-HT(2A) receptors with high affinity (K(i) = 13 nM) and possesses 5-HT(2A) antagonist character. Thus, not only is the 2,5-dimethoxy substitution pattern not a requirement for the binding of certain phenylethylamines at 5-HT(2A) receptors, the presence of a 4-position substituent (previously thought to serve as a modulator of affinity of DOB-like agents) is also not required. Striking differences in the 5-HT(2A) binding requirements of the present compounds as compared to DOB-like agents suggest multiple substituent-dependent modes of binding.  相似文献   

19.
Activation of 5-HT(2A) serotonin receptors represents a novel approach to lowering intraocular pressure. Because 5-HT(2A) serotonin receptor agonists might also produce undesirable central effects should sufficient quantities enter the brain, attempts were made to identify 5-HT(2) serotonin receptor agonists with reduced propensity to penetrate the blood-brain barrier. 1-(4-Bromo-2,5-dimethoxyphenyl)-2-aminopropan-1-ol (6), an analogue of the 5-HT(2) serotonin receptor agonist 1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane (DOB; 1a) bearing a benzylic hydroxyl group, was identified as a candidate structure. Of the four optical isomers of 6, the 1R,2R-isomer (6d; K(i) = 0.5 nM) was found to bind at 5-HT(2A) receptors with an affinity similar to that of R(-)DOB (K(i) = 0.2 nM). Like R(-)DOB, 6d behaved as a partial agonist (efficacy ca. 50%) in a 5-HT(2)-mediated calcium mobilization assay. However, in an in vivo test of central action (i.e., stimulus generalization with rats as subjects), 6d was >15 times less potent than R(-)DOB. O-Methylation of 6d (i.e., 7d; 5-HT(2A) K(i) = 0.3 nM) resulted in an agent that behaved as a full (93% efficacy) agonist. Intraocular administration of 300 microg of 6d and 7d to ocular hypertensive monkeys was shown to reduce intraocular pressure by 20-27%. Given the route of administration (i.e., topical), and concentrations necessary to reduce intraocular pressure, compounds such as 6d should demonstrate minimal central effects at potentially useful therapeutic doses and offer useful leads for further development.  相似文献   

20.
Prompted by previous findings that a p-dimethoxy substitution pattern on an aromatic ring permits retention of dopaminergic agonist effects in certain ring systems, catechol derivatives of which are potent dopaminergic agonists, an 8,11-dimethoxy substitution pattern was introduced into the aporphine ring in place of the 10,11-dihydroxy moiety in apomorphine. Acid-catalyzed rearrangement of an appropriate morphine derivative provided the aporphine ring system with retention of the stereochemical integrity of the 6a asymmetric center. The hydroxyl group at position 10 was removed by catalytic hydrogenolysis of its phenyltetrazoyl ether. The methyl ether of the resulting 11-hydroxyaporphine was iodinated in high yield at position 8 with trifluoroacetyl hypiodite. This is the first account of synthesis of an iodinated aporphine derivative. The 8-iodo substituent was replaced with methoxyl by reaction with sodium methoxide and cuprous iodide. Neither the N-methyl target compound 7 nor the N-n-propyl derivative 8 demonstrated dopaminergic nor serotonergic agonism. However, 7 exhibited receptor-binding characteristics and other pharmacological properties suggesting that it may be a 5-HT1A receptor antagonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号