首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: Thrombin induces leukocyte adherence to endothelial cells via increased expression of intercellular adhesion molecule-1 (ICAM-1). Although ICAM-1 expression is regulated by NF-kappaB, recent studies have suggested that additional signaling mechanisms may also be involved. The goal of this study was to determine whether mitogen-activated protein (MAP) kinases, including extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 MAP kinase (p38), mediate thrombin-induced ICAM-1 expression in endothelial cells. METHODS: Western blot analysis using anti-ICAM-1 antibody and luciferase assays were performed in cultured endothelial cells after addition of signal transduction inhibitors or transfection of various gene constructs. JNK kinase activity was determined by a kinase assay using c-Jun as a substrate or by Western blot analysis with anti-phospho-JNK antibody. RESULTS: Treatment of endothelial cells with the JNK-specific inhibitors, SP600125 or JNK inhibitory peptide 1 (JNKI1), resulted in a significant decrease in thrombin-induced ICAM-1 expression as demonstrated by Western blot analysis (67 +/- 3% and 72 +/- 7%, respectively). In contrast, inhibitors of MEK and p38 had only minimal effect. The combination of SP600125 and the NF-kappaB inhibitor, BAY11-7082, resulted in complete inhibition of thrombin-induced ICAM-1 expression. The Galpha(q) inhibitor, YM-254890, inhibited thrombin-induced JNK activation and ICAM-1 expression. Dominant-negative Ras and Rac1, but not Rho, inhibited thrombin-induced JNK activation and ICAM-1 promoter activity. Finally, thrombin-induced JNK activation and ICAM-1 promoter activity were inhibited by betaARK1ct (a Gbetagamma subunit scavenger) and Csk. CONCLUSIONS: These data suggest that, in concert with NF-kappaB, JNK regulates thrombin-induced ICAM-1 expression by a mechanism that is dependent on Galpha(q), Gbetagamma, Ras, Rac1 and the Src kinase family.  相似文献   

2.
Activation of Galpha(i)-coupled receptors often causes enhancement of the inositol phosphate signal triggered by Galpha(q)-coupled receptors. To investigate the mechanism of this synergistic receptor crosstalk, we studied the Galpha(i)-coupled adenosine A(1) and alpha(2C) adrenergic receptors and the Galpha(q)-coupled bradykinin B(2) and a UTP-preferring P2Y receptor. Stimulation of either Galpha(i)-coupled receptor expressed in COS cells increased the potency and the efficacy of inositol phosphate production by bradykinin or UTP. Likewise, overexpression of Gbeta(1)gamma(2) resulted in a similar increase in potency and efficacy of bradykinin or UTP. In contrast, these stimuli did not affect the potency of direct activators of Galpha(q); a truncated Gbeta(3) mutant had no effect on the receptor-generated signals whereas signals generated at the G-protein level were still enhanced. This suggests that the Gbetagamma-mediated signal enhancement occurs at the receptor level. Almost all possible combinations of Gbeta(1-3) with Ggamma(2-7) were equally effective in enhancing the signals of the B(2) and a UTP-preferring P2Y receptor, indicating a very broad specificity of this synergism. The enhancement of the bradykinin signal by (i) Galpha(i)-activating receptor ligands or (ii) cotransfection of Gbetagamma was suppressed when the B(2) receptor was replaced by a B(2)Gbeta(2) fusion protein. Gbetagamma enhanced the B(2) receptor-stimulated activation of G-proteins as determined by GTPgammaS-induced decrease in high affinity agonist binding and by B(2) receptor-enhanced [(35)S]GTPgammaS binding. These findings support the concept that Gbetagamma exchange between Galpha(i)- and Galpha(q)-coupled receptors mediates this type of receptor crosstalk.  相似文献   

3.
Tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) by the insulin receptor permits this docking protein to interact with signaling proteins that promote insulin action. Serine phosphorylation uncouples IRS-1 from the insulin receptor, thereby inhibiting its tyrosine phosphorylation and insulin signaling. For this reason, there is great interest in identifying serine/threonine kinases for which IRS-1 is a substrate. Tumor necrosis factor (TNF) inhibited insulin-promoted tyrosine phosphorylation of IRS-1 and activated the Akt/protein kinase B serine-threonine kinase, a downstream target for phosphatidylinositol 3-kinase (PI 3-kinase). The effect of TNF on insulin-promoted tyrosine phosphorylation of IRS-1 was blocked by inhibition of PI 3-kinase and the PTEN tumor suppressor, which dephosphorylates the lipids that mediate PI 3-kinase functions, whereas constitutively active Akt impaired insulin-promoted IRS-1 tyrosine phosphorylation. Conversely, TNF inhibition of IRS-1 tyrosine phosphorylation was blocked by kinase dead Akt. Inhibition of IRS-1 tyrosine phosphorylation by TNF was blocked by rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), a downstream target of Akt. mTOR induced the serine phosphorylation of IRS-1 (Ser-636/639), and such phosphorylation was inhibited by rapamycin. These results suggest that TNF impairs insulin signaling through IRS-1 by activation of a PI 3-kinase/Akt/mTOR pathway, which is antagonized by PTEN.  相似文献   

4.
OBJECTIVE: At sites of inflammation, T cells exert pathologic effects through direct contact with monocyte/macrophages, inducing massive up-regulation of interleukin-1 (IL-1) and tumor necrosis factor alpha (TNFalpha). We examined the regulatory effects of IL-18 on monocyte activation by direct contact with T lymphocytes in rheumatoid arthritis (RA). METHODS: Activated T cells were isolated from RA synovial fluid. Resting T cells and monocytes were isolated from peripheral blood mononuclear cells. RA synovial T cells or phytohemagglutinin (PHA)-stimulated T cells were fixed by paraformaldehyde and then cocultured with monocytes at a ratio of 4:1. Levels of TNFalpha, IL-1beta, IL-10, and IL-18 were measured by enzyme-linked immunosorbent assay. Expression of adhesion molecules, IL-18 receptor, and TNF receptors was analyzed by flow cytometry. Expression of NF-kappaB p65, phosphorylated IkappaBalpha, and phosphatidylinositol 3-kinase (PI 3-kinase) p110 was analyzed by Western blotting. RESULTS: IL-18 dose-dependently enhanced the production of IL-1beta and TNFalpha, but not IL-10, by monocytes following contact with RA synovial T cells or PHA-prestimulated T cells. NF-kappaB inhibitors N-acetyl-L-cysteine and Bay 11-7085 and PI 3-kinase inhibitor LY294002 inhibited the enhancing effects of IL-18, but MAPK p38 inhibitor SB203580, ERK inhibitor PD98059, and JNK inhibitor SP600125 did not. Increased levels of NF-kappaB in the nucleus, phosphorylated IkappaB, and PI 3-kinase were confirmed in monocytes cocultured with PHA-prestimulated T cells, and the levels were further increased by stimulation with IL-18. Neutralizing antibody to IL-18 inhibited monocyte activation induced by direct contact with PHA-prestimulated T cells. Via cell-cell contact, PHA-prestimulated T cells increased autocrine production of IL-18 by monocytes, which was mediated by activation of the NF-kappaB and PI 3-kinase pathways, and up-regulated the expression of the IL-18 receptor in monocytes. IL-18 up-regulated the expression of the TNF receptors vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) on monocytes. Blocking the binding of the TNF receptors VCAM-1 or ICAM-1 on monocytes to their ligands on stimulated T cells suppressed the IL-18-enhanced production of TNFalpha and IL-1beta in monocytes induced by contact with PHA-prestimulated T cells. CONCLUSION: IL-18 augments monocyte activation induced by contact with activated T cells in RA synovitis, which is dependent on activation of the NF-kappaB and PI 3-kinase pathways. IL-18 up-regulates the expression of the TNF receptors VCAM-1 and ICAM-1 on monocytes, which mediate the enhancing effects of IL-18 on T cell-monocyte contact.  相似文献   

5.
Heterotrimeric G proteins mediate physiological processes ranging from phototransduction to cell migration. In the accepted model of G protein signaling, Galphabetagamma heterotrimers physically dissociate after activation, liberating free Galpha subunits and Gbetagamma dimers. This model is supported by evidence obtained in vitro with purified proteins, but its relevance in vivo has been questioned. Here, we show that at least some heterotrimeric G protein isoforms physically dissociate after activation in living cells. Galpha subunits extended with a transmembrane (TM) domain and cyan fluorescent protein (CFP) were immobilized in the plasma membrane by biotinylation and cross-linking with avidin. Immobile CFP-TM-Galpha greatly decreased the lateral mobility of intracellular Gbeta1gamma2-YFP, indicating the formation of stable heterotrimers. A GTPase-deficient (constitutively active) mutant of CFP-TM-GalphaoA lost the ability to restrict Gbeta1gamma2-YFP mobility, whereas GTPase-deficient mutants of CFP-TM-Galphai3 and CFP-TM-Galphas retained this ability. Activation of cognate G protein-coupled receptors partially relieved the constraint on Gbeta1gamma2-YFP mobility induced by immobile CFP-TM-GalphaoA and CFP-TM-Galphai3 but had no effect on the constraint induced by CFP-TM-Galphas. These results demonstrate the physical dissociation of heterotrimers containing GalphaoA and Galphai3 subunits in living cells, supporting the subunit dissociation model of G protein signaling for these subunits. However, these results are also consistent with the suggestion that G protein heterotrimers (e.g., Galphas) may signal without physically dissociating.  相似文献   

6.
In neonatal cardiomyocytes, activation of the G(q)-coupled alpha(1)-adrenergic receptor (alpha(1)AR) induces hypertrophy by activating mitogen-activated protein kinases, including c-Jun NH(2)-terminal kinase (JNK). Here, we show that JNK activation is essential for alpha(1)AR-induced hypertrophy, in that alpha(1)AR-induced hypertrophic responses, such as reorganization of the actin cytoskeleton and increased protein synthesis, could be blocked by expressing the JNK-binding domain of JNK-interacting protein-1, a specific inhibitor of JNK. We also identified the classes and subunits of G proteins that mediate alpha(1)AR-induced JNK activation and hypertrophic responses by generating several recombinant adenoviruses that express polypeptides capable of inhibiting the function of specific G-protein subunits. alpha(1)AR-induced JNK activation was inhibited by the expression of carboxyl terminal regions of Galpha(q), Galpha(12), and Galpha(13). JNK activation was also inhibited by the Galpha(q/11)- or Galpha(12/13)-specific regulator of G-protein signaling (RGS) domains and by C3 toxin but was not affected by treatment with pertussis toxin or by expression of the carboxyl terminal region of G protein-coupled receptor kinase 2, a polypeptide that sequesters Gbetagamma. alpha(1)AR-induced hypertrophic responses were inhibited by Galpha(q/11)- and Galpha(12/13)-specific RGS domains, C3 toxin, and the carboxyl terminal region of G protein-coupled receptor kinase 2 but not by pertussis toxin. Activation of Rho was inhibited by carboxyl terminal regions of Galpha(12) and Galpha(13) but not by Galpha(q). Our findings suggest that alpha(1)AR-induced hypertrophic responses are mediated in part by a Galpha(12/13)-Rho-JNK pathway, in part by a G(q/11)-JNK pathway that is Rho independent, and in part by a Gbetagamma pathway that is JNK independent.  相似文献   

7.
8.
9.
Dependence of murine pro-B Ba/F3 cells on interleukin-3 can be substituted by GH when cells are stably transfected with the GH receptor (GHR) complementary DNA. Recently, we demonstrated that Ba/F3 cells produce GH, which is responsible for the survival of cells expressing the GHR. This GH effect involves the activation of nuclear factor-kappaB (NF-kappaB). Here, we examined the signaling pathways mediating proliferation of growth factor-deprived Ba/F3 GHR cells. Exogenous GH stimulation of Ba/F3 GHR cells induced cyclins E and A and the cyclin-dependent kinase inhibitor p21(waf1/cip1) and repressed cyclin-dependent kinase inhibitor p27(kip1). The presence of the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor Ly 294002 abolished proliferation induced by GH, arresting Ba/F3 GHR cells at the G(1)/S boundary, but did not promote apoptosis. Thus, the proliferative effect of GH is closely related to PI 3-kinase activation, whereas PI 3-kinase is not essential for GH-induced cell survival. Addition of Ly 294002 resulted in a moderate decrease in NF-kappaB activation by GH, suggesting a possible link between PI 3-kinase and NF-kappaB signaling by GH. Expression of c-myc was also induced by GH in Ba/F3 GHR cells, and inactivation of either PI 3-kinase or NF-kappaB reduced this induction. Overexpression of the dominant negative repressor mutant c-Myc-RX resulted in an inhibition of the GH proliferative effect, suggesting the involvement of c-myc in GH-induced proliferation. Taken together, these results suggest that the effects of GH on cell survival and proliferation are mediated through two different signaling pathways, NF-kappaB and PI 3-kinase, respectively; although cross-talk between them has not been excluded. NF-kappaB, which has been shown to be responsible for the antiapoptotic effect of GH, could also participate in GH-induced proliferation, as c-myc expression is promoted by PI 3-kinase, in an NF-kappaB-dependent and -independent manner.  相似文献   

10.
Regulation of Akt-dependent cell survival by Syk and Rac   总被引:14,自引:0,他引:14       下载免费PDF全文
Jiang K  Zhong B  Ritchey C  Gilvary DL  Hong-Geller E  Wei S  Djeu JY 《Blood》2003,101(1):236-244
Interleukin-2 (IL-2) prevents cell apoptosis and promotes survival, but the involved mechanisms have not been completely defined. Although phosphatidylinositide 3-kinase (PI 3-kinase) has been implicated in IL-2-mediated survival mechanisms, none of the 3 chains of the IL-2 receptor (IL-2R) expresses a binding site for PI 3-kinase. However, IL-2Rbeta does express a Syk-binding motif. By using an IL-2-dependent natural killer (NK) cell line, followed by validation of the results in fresh human NK cells, we identified Syk as a critical effector essential for IL-2-mediated prosurvival signaling in NK cells. Down-regulation of Syk by piceatannol treatment impaired NK cellular viability and induced prominent apoptosis as effectively as suppression of PI 3-kinase function by LY294002. Expression of kinase-deficient Syk or pretreatment with piceatannol markedly suppressed IL-2-stimulated activation of PI 3-kinase and Akt, demonstrating that Syk is upstream of PI 3-kinase and Akt. However, constitutively active PI 3-kinase reversed this loss of Akt function caused by kinase-deficient Syk or piceatannol. Thus, Syk appears to regulate PI 3-kinase, which controls Akt activity during IL-2 stimulation. More important, we observed Rac1 activation by IL-2 and found that it mediated PI 3-kinase activation of Akt. This conclusion came from experiments in which dominant-negative Rac1 significantly decreased IL-2-induced Akt activation, whereas constitutively active Rac1 reelevated Akt activity not only in Syk-impaired but also in PI 3-kinase-impaired NK cells. These results constitute the first report of a Syk --> PI3K --> Rac1 --> Akt signal cascade controlled by IL-2 that mediates NK cell survival.  相似文献   

11.
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is important for the regulation of a number of cellular responses. Serine/threonine kinase Akt (protein kinase B; PKB) is downstream of PI3K and activated by growth factors. This study found that erythropoietin (EPO) induced tyrosine phosphorylation of Akt in a time- and dose-dependent manner in EPO-dependent human leukemia cell line UT-7/EPO. In vitro kinase assay using histone H2B and glucose synthase kinase as substrates demonstrated that Akt was actually activated by EPO. EPO-induced phosphorylation of Akt was completely blocked by a PI3K-specific inhibitor, LY294002, at 10 micromol/L, indicating that activation of Akt by EPO is dependent on PI3K activity. In addition, overexpression of the constitutively active form of Akt on UT-7/EPO cells partially blocked apoptosis induced by withdrawal of EPO from the culture medium. This finding suggested that the PI3K-Akt activation pathway plays some role in the antiapoptotic effect of EPO. EPO induced phosphorylation of a member of the trancription factor Forkhead family, FKHRL1, at threonine 32 and serine 253 in a dose- and time-dependent manner in UT-7/EPO cells. Moreover, results showed that Akt kinase activated by EPO directly phosphorylated FKHRL1 protein and that FKHRL1 phosphorylation was completely dependent on PI3K activity as is the case for Akt. In conjunction with the evidence that FKHRL1 is expressed in normal human erythroid progenitor cells and erythroblasts, the results suggest that FKHRL1 plays an important role in erythropoiesis as one of the downstream target molecules of PI3K-Akt.  相似文献   

12.
OBJECTIVE: To determine whether angiopoietin 1 (Ang-1) potentiates overgrowth of the synovium and joint degradation in rheumatoid arthritis (RA), and to clarify the cell-signaling mechanisms of Ang-1 in the rheumatoid joint. METHODS: Expression of Ang-1, TIE-2 (a receptor for Ang-1), and matrix metalloproteinase 3 (MMP-3) was studied by immunohistochemistry. Activation of the ERK/MAPK and phosphatidylinositol (PI) 3-kinase/Akt pathways and of NF-kappaB was determined by Western blotting and an NF-kappaB p65 DNA binding activity assay, respectively. Induction of apoptosis was evaluated by nuclear staining, cell viability assay, and Western blotting of caspases. Synovial cell migration was evaluated by actin polymerization, Western blotting of Rho family proteins, and affinity purification with Rhotekin-Rho and p21-activated kinase 1. Matrix degradation was examined by induction of proMMP-3 secretion from synovial cells followed by in vitro cartilaginous matrix degradation assay. RESULTS: Ang-1 stimulated the ERK/MAPK and PI 3-kinase/Akt pathways in a cooperative but independent manner, which enhanced rheumatoid synovium overgrowth and joint destruction. In addition, Ang-1 activated NF-kappaB via Akt to promote cell growth, but also inhibited cell apoptosis via ERK and Akt. Ang-1 directly potentiated the extension of synovial cells in an ERK- and Akt-dependent manner by up-regulating Rho family proteins, which attenuated Rac signaling and led to membrane ruffling. Ang-1 induced proMMP-3 secretion from synovial cells, which resulted in direct degradation of the cartilaginous matrix. CONCLUSION: Ang-1 stimulates the ERK/MAPK and PI 3-kinase/Akt pathways cooperatively, but in a manner independent of each other, to directly potentiate synovium overgrowth and joint destruction in RA. In addition to inflammatory cytokines, Ang-1/TIE-2 signaling appears to be an independent factor that contributes to the destruction of the rheumatoid joint.  相似文献   

13.
Hepatocyte growth factor (HGF) is a ligand of the receptor tyrosine kinase encoded by the c-Met protooncogene. HGF/Met signaling has multifunctional effects on various cell types. We sought to determine the role of HGF/Met in apoptosis and identify signal transducers involved in this process. In experiments with human SK-LMS-1 leiomyosarcoma cells, we show that the Akt kinase is activated by HGF in a time- and dose-dependent manner by phosphatidylinositol 3-kinase (PI3-kinase). Akt is also activated by active tumorigenic forms of Met, i.e., ligand-independent Tpr-Met, a truncated and constitutively dimerized form of Met, and a mutationally activated version of Met corresponding to that found in human hereditary papillary renal carcinoma. In NIH 3T3 cells transfected with wild-type Met, HGF inhibits apoptosis induced by serum starvation and UV irradiation. HGF-induced survival correlates with Akt activity and is inhibited by the specific PI3-kinase inhibitor LY294002, indicating that HGF inhibits cell death through the PI3-kinase/Akt signal transduction pathway. Furthermore, transiently transfected Tpr-Met activates Akt (both Akt1 and Akt2) and protects cells from apoptosis. Mitogen-activated protein kinase (MAPK) also is activated by HGF and rescues cells from apoptosis, although the cytoprotective effect is less marked than for PI3-kinase/Akt. Blocking MAPK with the specific MAPK kinase inhibitor PD098059 impairs the ability of HGF to promote cell survival. Similar results were obtained with NIH 3T3 cells expressing the fusion protein Trk-Met and stimulated with nerve growth factor, the Trk ligand. These results demonstrate that HGF/Met is capable of protecting cells from apoptosis by using both PI3-kinase/Akt and, to a lesser extent, MAPK pathways.  相似文献   

14.
The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was recently shown to negatively regulate LPS-induced acute inflammatory responses. We previously observed that the metabolic thiol antioxidant alpha-lipoic acid (LA) inhibits LPS-induced expression of cellular adhesion molecules and adherence of monocytes to human aortic endothelial cells. Here we investigated the mechanism by which LA attenuates LPS-induced monocyte activation in vitro and acute inflammatory responses in vivo. Incubation of human monocytic THP-1 cells with LA induced phosphorylation of Akt in a time- and dose-dependent manner. In cells pretreated with LA followed by LPS, Akt phosphorylation was elevated initially and further increased during incubation with LPS. This LA-dependent increase in Akt phosphorylation was accompanied by inhibition of LPS-induced NF-kappaB DNA binding activity and up-regulation of TNFalpha and monocyte chemoattractant protein 1. Lipoic acid-dependent Akt phosphorylation and inhibition of NF-kappaB activity were abolished by the PI3K inhibitors LY294002 and wortmannin. Furthermore, LA treatment of LPS-exposed C57BL/6N mice strongly enhanced phosphorylation of Akt and glycogen synthase kinase 3beta in blood cells; inhibited the LPS-induced increase in serum concentrations and/or tissue expression of adhesion molecules, monocyte chemoattractant protein 1, and TNFalpha; and attenuated NF-kappaB activation in lung, heart, and aorta. Lipoic acid also improved survival of endotoxemic mice. All of these antiinflammatory effects of LA were abolished by treatment of the animals with wortmannin. We conclude that LA inhibits LPS-induced monocyte activation and acute inflammatory responses in vitro and in vivo by activating the PI3K/Akt pathway. Lipoic acid may be useful in the prevention of sepsis and inflammatory vascular diseases.  相似文献   

15.
Vascular cell adhesion molecule-1 (VCAM-1) and reactive oxygen species play critical roles in early atherogenesis, and nitric oxide (NO) is an important regulator of the cardiovascular system. Although celiprolol, a specific beta1-antagonist with weak beta2-agonistic action, stimulates endothelial nitric oxide synthase (eNOS) production, the mechanisms remain to be determined. Because it was recently reported that phosphatidylinositol 3-kinase (PI3K) and its downstream effector Akt are implicated in the activation of eNOS and that regulation of VCAM-1 expression is mediated via nuclear factor-kappaB (NF-kappaB), we hypothesized that celiprolol activates phosphorylation of eNOS through the PI3K-Akt signaling pathway; that celiprolol modulates VCAM-1 expression, which is associated with inhibiting NF-kappaB phosphorylation; and that celiprolol suppresses NAD(P)H oxidase p22phox, p47phox, gp91phox, and nox1 expression in the left ventricle of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. eNOS and Akt phosphorylation upregulated by celiprolol alone were suppressed by treatment with celiprolol plus wortmannin. Increased expression of VCAM-1, p22phox, p47phox, gp91phox, nox1, activated p65 NF-kappaB, c-Src, p44/p42 extracellular signal-regulated kinases, and their downstream effector p90 ribosomal S6 kinase phosphorylation in DOCA rats was inhibited by celiprolol. Celiprolol administration resulted in a significant improvement in cardiovascular remodeling and suppression of transforming growth factor-beta1 gene expression. In conclusion, celiprolol suppresses VCAM-1 expression because of inhibition of oxidative stress, NF-kappaB, and signal transduction, while increasing eNOS via stimulation of the PI3K-Akt signaling pathway and improving cardiovascular remodeling.  相似文献   

16.
Interleukin 3 (IL-3)-dependent survival of hematopoietic cells is known to rely on the activity of multiple signaling pathways, including a pathway leading to activation of phosphoinositide 3-kinase (PI 3-kinase), and protein kinase Akt is a direct target of PI 3-kinase. We find that Akt kinase activity is rapidly induced by the cytokine IL-3, suggesting a role for Akt in PI 3-kinase-dependent signaling in hematopoetic cells. Dominant-negative mutants of Akt specifically block Akt activation by IL-3 and interfere with IL-3-dependent proliferation. Overexpression of Akt or oncogenic v-akt protects 32D cells from apoptosis induced by IL-3 withdrawal. Apoptosis after IL-3 withdrawal is accelerated by expression of dominant-negative mutants of Akt, indicating that a functional Akt signaling pathway is necessary for cell survival mediated by the cytokine IL-3. Thus Akt appears to be an important mediator of anti-apoptotic signaling in this system.  相似文献   

17.
18.
19.
We have found that neuregulin-1beta (NRG-1beta) is expressed in the cardiac microvascular endothelium, and promotes the growth and survival of cardiac myocytes in culture through the activation of erbB2 and erbB4 receptor tyrosine kinases. In this study, we examined the role of NRG-1/erbB signaling in protection of cardiac myocytes from anthracycline-induced apoptosis in vitro to determine the coupling between erbB receptor subtypes and cytoprotective signaling. Treatment of neonatal rat ventricular myocytes with NRG-1beta inhibited daunorubicin-induced apoptosis as shown by terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling staining for DNA fragmentation as well as flow cytometric quantification of apoptotic myocytes. Daunorubicin-induced activation of caspase-3 in cardiomyocytes was similarly inhibited by NRG-1beta. The phosphoinositol-3-kinase (PI3-kinase) inhibitor wortmannin prevented the effects of NRG-1beta on daunorubicin-induced apoptosis and activation of caspase-3. NRG-1beta treatment induced rapid activation of Akt/PKB that was inhibited by wortmannin, and adenoviral-mediated overexpression of a dominant-negative Akt prevented the protective effect of NRG-1beta. Akt activation by NRG-1beta was prevented by the tyrphostin AG1478, which we show inhibits erbB4 activation by NRG-1beta. In contrast, the erbB2-specific tyrphostin AG879 had no effect on NRG-1beta activation of Akt. Myocyte treatment with an activating antibody to erbB2 caused phosphorylation of erbB2, and led to activation of Erk but not Akt. Treatment with the erbB2 antibody had no effect on anthracycline-induced apoptosis. Thus, NRG-1beta protects against anthracycline-induced apoptosis via erbB4-dependent activation of the PI3-kinase/Akt pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号