首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (*NO) and *NO-derived reactive species rapidly react with lipids during both autocatalytic and enzymatic oxidation reactions to yield nitrated derivatives that serve as cell signaling molecules. Herein we report the synthesis, purification, characterization, and bioactivity of nitrolinoleate (LNO2). Nitroselenylation of linoleic acid yielded LNO2 that was purified by solvent extraction, silicic acid chromatography, and reverse-phase HPLC. Structural characterization was performed by IR spectroscopy, 15N-NMR, LC-negative ion electrospray mass spectroscopy (MS), and chemiluminescent nitrogen analysis. Quantitative MS analysis of cell and vessel LNO2 metabolism, using L[15N]O2 as an internal standard, revealed that LNO2 is rapidly metabolized by rat aortic smooth muscle (RASM) monolayers and rat thoracic aorta, resulting in nitrite production and up to 3-fold increases in cGMP (ED50 = 30 microM for RASM, 50 microM for aorta). LNO2 induced endothelium-independent relaxation of preconstricted rat aortic rings, which was unaffected by L(G)-nitro-l-arginine methyl ester addition and inhibited by the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazole[4,3-a]quinoxalin-1-one and the *NO scavenger HbO2. These results reveal that synthetic LNO2, identical to lipid derivatives produced biologically by the reaction of *NO and *NO-derived species with oxidizing unsaturated fatty acids (e.g., linoleate), can transduce vascular signaling actions of *NO.  相似文献   

2.
3.
We evaluated the roles of nitric oxide (NO) derived from endothelial cells in neutrophil transendothelial migration (TEM). Pretreatment of human umbilical vein endothelial cells (HUVECs) with NG-nitro-L-arginine methyl ester hydrochloride (L-NAME) or NG-monomethyl L-arginine (L-NMMA), which are inhibitors of NO synthases, enhanced neutrophil TEM. Similar augmentation of TEM was observed in the presence of an NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy PTIO). Neutrophil TEM across L-NAME- or L-NMMA-treated HUVECs was inhibited by continuous NO supply by NO donors. These findings support the suggestion that continuous production of NO by endothelial cells suppresses neutrophil TEM. Flow cytometric analyses revealed that NO accumulates in neutrophils co-cultured with NO-producing HUVECs. A decreased amount of NO was detected in neutrophils co-cultured with L-NAME-treated HUVECs compared with neutrophils co-cultured with untreated HUVECs. Soluble guanylyl cyclase (sGC) is known as one of the most important targets of NO in neutrophils. 3-(53-Hydroxymethyl-23furyl)-1-benzyl indazole (YC-1), an activator of sGC, inhibited L-NAME-induced neutrophil TEM. It was interesting that inhibition of neutrophil sGC with 1-H[1,2,4-]oxadiazolo[4,3-a]quinoxalin-1-1 (ODQ) was sufficient to enhance TEM. These results suggest that NO derived from HUVECs acts on neutrophils to inhibit TEM, at least in part by activating sGC. Our findings imply the role of NO constitutively generated by HUVECs in protection against excessive neutrophil extravasation and unnecessary tissue damage under physiological conditions.  相似文献   

4.
T47D human breast cancer cells and BEN human lung cancer cells were preincubated with the tumor-promoting phorbol ester phorbol 12-myristate 13-acetate (PMA). In both cell lines there was a decrease in the binding of 125I-labeled salmon calcitonin ([125I]sCT) which was dependent on the dose and time of exposure to PMA. The effect on binding comprised at least two components: the apparent affinity for binding of [125I]sCT was decreased by PMA, and the rate of internalization of bound [125I]sCT was increased more than 2-fold in the presence of PMA. By using dinitrophenol to inhibit cellular metabolic energy and, therefore, receptor internalization, the PMA effects on receptor affinity were dissociated from those on endocytosis. The effects on binding were reflected in a decreased stimulation by sCT of adenylate cyclase activity. This was specific for the calcitonin receptor system, since PMA had no effect on prostaglandin-E2-stimulated adenylate cyclase in the T47D cell. Protein kinase-C (PKC) was implicated in the inhibitory effects of PMA on both binding and adenylate cyclase activation, since inhibition was reduced by simultaneous incubation with the PKC inhibitors H7 and H8. These results suggest that PKC is capable of mediating down-regulation of the CT receptor, and this is most likely by phosphorylation of the receptor itself or an associated protein.  相似文献   

5.
The L-arginine:nitric oxide (NO) pathway is believed to exert many of its physiological effects via stimulation of the soluble guanylyl cyclase (SGC); however, the lack of a selective inhibitor of this enzyme has prevented conclusive demonstration of this mechanism of action. We have found that the compound 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ) inhibits the elevation of cGMP induced by the NO donor S-nitroso-DL-penicillamine in human platelets and rat vascular smooth muscle (IC50 = 10-60 nM and <10 nM, respectively) and that this is accompanied by prevention of the platelet inhibitory and vasodilator actions of NO donors. ODQ also inhibited the antiaggregatory action of NO generated by the platelets but did not affect the action of prostacyclin or that of a cGMP mimetic. In addition, ODQ inhibited the vasodilator actions of endogenously released NO and of NO generated after induction of NO synthase in vascular preparations. It did not, however, affect the increase in vascular smooth muscle cGMP or the dilatation induced by atrial natriuretic factor. ODQ had no effect on NO synthase activity, nor did it react with NO. It did, however, potently (IC50 approximately 10 nM) inhibit the activity of the SGC in cytosol obtained from crude extract of rat aortic smooth muscle. Thus ODQ prevents the actions of NO on platelets and vascular smooth muscle through its potent inhibitory effect on the SGC.  相似文献   

6.
We reported previously that dietary isoflavones modulate arterial blood pressure in vivo and that the daidzein metabolite equol rapidly activates endothelial NO synthase (eNOS) via Akt and extracellular signal-regulated kinase 1/2-dependent signaling. In this study, we report the first evidence in human endothelial cells that acute stimulation of mitochondrial superoxide generation by equol (100 nmol/L) is required for eNOS activation. Scavengers of superoxide (superoxide dismutase and manganese [III] tetrakis[1-methyl-4-pyridyl]porphyrin) abrogated equol stimulated Akt and eNOS phosphorylation, and the mitochondrial complex I inhibitor rotenone inhibited Akt, extracellular signal-regulated kinase 1/2, and eNOS phosphorylation, as well as NO-mediated increases in intracellular cGMP. Equol also induced rapid alterations in F-actin fiber distribution, with depolymerization of F-actin with cytochalasin D abrogating equol-stimulated mitochondrial superoxide generation. Treatment of cells with pertussis toxin or inhibition of GPR30/epidermal growth factor receptor kinase transactivation prevented equol-induced activation of extracellular signal-regulated kinase 1/2 via c-Src, Akt, and eNOS. Moreover, inhibition of epidermal growth factor receptor kinase activation with AG-1478 abrogated equol-stimulated mitochondrial reactive oxygen species generation and subsequent kinase and eNOS activation. Our findings suggest that equol-stimulated mitochondrial reactive oxygen species modulate endothelial redox signaling and NO release involving transactivation of epidermal growth factor receptor kinase and reorganization of the F-actin cytoskeleton. Identification of these novel actions of equol may provide valuable insights for therapeutic strategies to restore endothelial function in cardiovascular disease.  相似文献   

7.
BACKGROUND: We have previously reported that endothelial cells cultured in the presence of high concentrations of glucose (27.8 and 55.5 mM) exhibited enhanced neutrophil adhesion through increased expression of endothelial adhesion molecules via the activation of a protein kinase C (PKC)-dependent pathway. We also found that the aldose reductase inhibitor, epalrestat, inhibited these events, but the mechanisms for this inhibition remained unclear. In this study, we further investigated the inhibitory mechanisms of epalrestat with reference to PKC activation and nitric oxide (NO) production. METHODS: Human umbilical vein endothelial cells (HUVECs) were cultured for 48 h in glucose-rich medium and neutrophils from healthy volunteers were then added and allowed to adhere for 30 min. Adhered neutrophils were quantified by measuring myeloperoxidase (MPO) activity and surface expression of endothelial adhesion molecules was determined by enzyme immunoassay. RESULTS: Culture in the presence of a high concentration of glucose (27.8 mM for 48 h) increased neutrophil-endothelial cell adhesion and surface expression of intercellular adhesion molecule-1 (ICAM-1), P-selectin, and E-selectin on endothelial cells. These phenomena were significantly inhibited by epalrestat (10 microM), while NO synthase (NOS) inhibitors reduced the inhibitory effects of this compound. In contrast, 10 nM phorbol 12-myristate 13-acetate (PMA), a PKC activator, showed similar effects as high glucose, and these effects were also inhibited by epalrestat. CONCLUSIONS: Our data suggested that epalrestat inhibited high glucose-mediated neutrophil-endothelial cell adhesion and expression of endothelial adhesion molecules not only through inhibition of a PKC-dependent pathway, but also through increased endothelial NO production.  相似文献   

8.
9.
BACKGROUND/AIMS: Pancreastatin, a chromogranin A-derived peptide, has a counter-regulatory effect on insulin action. We have previously characterized pancreastatin receptor and signalling in rat liver and HTC hepatoma cells. A G alpha(q/11)-PLC-beta pathway leads to an increase in [Ca2+]i, PKC and mitogen activated protein kinase (MAPK) activation. These data suggested that pancreastatin might have a role in growth and proliferation, similar to other calcium-mobilizing hormones. METHODS: DNA and protein synthesis were measured as [3H]-thymidine and [3H]-leucine incorporation. Nitric oxide (NO) was determined by the Griess method and cGMP production was quantified by enzyme-linked immunoassay. RESULTS: Contrary to the expected results, we have found that pancreastatin inhibits protein and DNA synthesis in HTC hepatoma cells. On the other hand, when the activity of NO synthase was inhibited by N-monomethyl-L-arginine (NMLA), the inhibitory effect of pancreastatin on DNA and protein synthesis was not only reverted, but a dose-dependent stimulatory effect was observed, probably due to MAPK activation, since it was prevented by PD98059. These data strongly suggested the role of NO in the inhibitory effect of pancreastatin on protein and DNA synthesis, which is overcoming the effect on MAPK activation. Moreover, pancreastatin dose-dependently increased NO production in parallel to cyclic guanosine monophosphate (cGMP). Both effects were prevented by NMLA. Finally, an indirect effect of pancreastatin through the induction of apoptosis was ruled out. CONCLUSIONS: Therefore, the NO and the cGMP produced by the NO-activated guanylate cyclase may mediate the dose-dependent inhibitory effect of pancreastatin on growth and proliferation in HTC hepatoma cells.  相似文献   

10.
Nitric oxide (*NO) and its reactive metabolites mediate the oxidation, nitration, and nitrosation of DNA bases, amino acids, and lipids. Here, we report the structural characterization and quantitation of two allylic nitro derivatives of linoleic acid (LNO(2)), present as both free and esterified species in human red cell membranes and plasma lipids. The LNO(2) isomers 10-nitro-9-cis, 12-cis-octadecadienoic acid and 12-nitro-9-cis, 12-cis-octadecadienoic acid were synthesized and compared with red cell and plasma LNO(2) species based on chromatographic elution and mass spectral properties. Collision-induced dissociation fragmentation patterns from synthetic LNO(2) isomers were identical to those of the two most prevalent LNO(2) positional isomers found in red cells and plasma. By using [(13)C]LNO(2) as an internal standard, red cell free and esterified LNO(2) content was 50 +/- 17 and 249 +/- 104 nM, respectively. The free and esterified LNO(2) content of plasma was 79 +/- 35 and 550 +/- 275 nM, respectively. Nitrated fatty acids, thus, represent the single largest pool of bioactive oxides of nitrogen in the vasculature, with a net LNO(2) concentration of 477 +/- 128 nM, excluding buffy coat cells. These observations affirm that basal oxidative and nitrating conditions occur in healthy humans to an extent that is sufficient to induce abundant membrane and lipoprotein-fatty acid nitration. Given that LNO(2) is capable of mediating cGMP and non-cGMP-dependent signaling reactions, fatty acid nitration products are species representing the convergence of ()NO and oxygenated lipid cell-signaling pathways.  相似文献   

11.
Evaluation of: Bauer EM, Qin Y, Miller TW et al.: Thrombospondin-1 supports blood pressure by limiting eNOS activation and endothelial dependent vasorelaxation. Cardiovasc. Res. 88, 471-481 (2010). Several lines of evidence, both in vivo and ex vivo, suggest that thrombospondin-1 (TSP-1) is important in maintaining systemic vascular tone. Recently published papers demonstrate that TSP-1 can inhibit vascular smooth muscle relaxation by interfering with the interaction between nitric oxide (NO) and soluble guanylyl cyclase, providing a possible mechanism of action to explain this observation. While these in vitro experiments in vascular smooth muscle cells were provocative, it is not clear how such a large protein circulating in the plasma could cross the intact endothelial basal membrane and regulate NO/cGMP signaling in smooth muscle in vivo. This raised the question of whether TSP-1 could modulate NO/cGMP signaling through another mechanism. Herein, we evaluate a recently published paper by Bauer and colleagues that examined whether TSP-1 could exert vasoactive effects without directly accessing the vascular smooth muscle. In their studies they found that TSP-1 could inhibit the NO/cGMP signaling pathway through an alternate mechanism: inhibiting the activation of endothelial NO synthase (eNOS), and therefore NO production in endothelial cells. These findings, combined with previous results from these investigators, suggest that TSP-1 can blunt NO/cGMP signaling through two different mechanisms: inhibiting NO production in endothelial cells by preventing the agonist-induced influx of Ca(2+) required to activate endothelial NO synthase and blunting the ability of endothelial-derived NO to activate soluble guanylyl cyclase in vascular smooth muscle cells. The importance of these two pathways in supporting systemic and pulmonary vascular tone in health and disease is unclear.  相似文献   

12.
G Ismail  M L Morganroth  R F Todd  L A Boxer 《Blood》1987,69(4):1167-1174
Neutrophil activation results in neutrophil adherence and may subsequently cause lung injury through the generation of oxidants, release of granule proteases, and generation of a variety of mediator substances. We hypothesized that inhibition of neutrophil adherence and subsequent lung sequestration would attenuate the lung injury caused by activated neutrophils. Using isolated perfused rat lungs, we determined if anti-Mo1 monoclonal antibody (binds to the alpha subunit of a neutrophil glycoprotein [gp 155.94] that facilitates adherence) would attenuate lung neutrophil sequestration and lung injury caused by human neutrophils stimulated by phorbol myristate acetate (PMA). PMA-stimulated neutrophils but not PMA or neutrophils alone caused lung injury as assessed by accumulation of 125I-bovine serum albumin into lung parenchyma and alveolar lavage fluid. Incubation of neutrophils with anti-Mo1 antibody prior to stimulation with PMA attenuated lung injury and neutrophil sequestration. Furthermore, a histological survey revealed that anti-Mo1 antibody inhibited neutrophils present in the lung from spreading following exposure to PMA. Anti-Mo1 antibody did not inhibit PMA-stimulated neutrophil release of granule constituents or toxic O2 metabolites as evidenced by lysozyme and lactoferrin release or the reduction of ferricytochrome c in the lung perfusate. The inhibition of lung injury caused by the anti-Mo1 antibody was not likely due to a nonspecific effect of the antibody, since another murine monoclonal antibody of the same class (anti-Mo5) did not inhibit lung neutrophil sequestration or lung injury. Thus, in this experimental model, interference with the close approximation of the neutrophil to its target site inhibited the ability of the activated human neutrophil to cause injury.  相似文献   

13.
Hakam AC  Hussain T 《Hypertension》2006,47(6):1117-1124
We have reported recently that the renal angiotensin II type 2 (AT2) receptors are upregulated and involved in promoting natriuresis/diuresis in obese but not in lean Zucker rats. In the present study, we tested the hypothesis that there is an enhanced AT2 receptor signaling via NO/cGMP pathway leading to greater inhibition of the Na(+), K(+)-ATPase (NKA) activity in the proximal tubules (PT) of obese rather than lean Zucker rats. The AT2 agonist CGP42112 (0.1 to 100 nmol/L) inhibited (33% at 100 nmol/L) the NKA activity in the PTs of obese but not in lean Zucker rats. The AT2 antagonist PD123319 (1 micromol/L), not the angiotensin II type 1 antagonist losartan (1 micromol/L), significantly diminished the CGP42112-induced inhibition of the NKA activity in obese rats. The AT2 agonist (10 nmol/L)-induced NKA inhibition was abolished by the soluble guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (10 micromol/L), the NO synthase inhibitor NG-nitro-L-arginine methyl ester (100 micromol/L), and the protein kinase G inhibitor K1388 (2 micromole/L). CGP42112 (10 nmol/L) caused an increase in serine phosphorylation of NKA alpha1-subunit in PT of obese rats. Measurement of cGMP and NO revealed that CGP42112 (0.1 to 100 nmol/L) increased cGMP and NO accumulation in the PTs of obese but not lean rats. The CGP42112-induced stimulation of NO and cGMP was blocked by PD123319 (1 micromol/L), NG-nitro-L-arginine methyl ester (100 micromol/L), and 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (10 micromol/L) but not by losartan (1 micromol/L). The data suggest that the AT2 receptor activation via stimulation of the NO/cGMP/protein kinase G pathway directly inhibits the tubular NKA activity that provides as a mechanism responsible for the AT2 receptor-mediated natriuresis in obese but not in lean Zucker rats.  相似文献   

14.
15.
Hydrogen sulfide (H(2)S) is a unique gasotransmitter, with regulatory roles in the cardiovascular, nervous, and immune systems. Some of the vascular actions of H(2)S (stimulation of angiogenesis, relaxation of vascular smooth muscle) resemble those of nitric oxide (NO). Although it was generally assumed that H(2)S and NO exert their effects via separate pathways, the results of the current study show that H(2)S and NO are mutually required to elicit angiogenesis and vasodilatation. Exposure of endothelial cells to H(2)S increases intracellular cyclic guanosine 5'-monophosphate (cGMP) in a NO-dependent manner, and activated protein kinase G (PKG) and its downstream effector, the vasodilator-stimulated phosphoprotein (VASP). Inhibition of endothelial isoform of NO synthase (eNOS) or PKG-I abolishes the H(2)S-stimulated angiogenic response, and attenuated H(2)S-stimulated vasorelaxation, demonstrating the requirement of NO in vascular H(2)S signaling. Conversely, silencing of the H(2)S-producing enzyme cystathionine-γ-lyase abolishes NO-stimulated cGMP accumulation and angiogenesis and attenuates the acetylcholine-induced vasorelaxation, indicating a partial requirement of H(2)S in the vascular activity of NO. The actions of H(2)S and NO converge at cGMP; though H(2)S does not directly activate soluble guanylyl cyclase, it maintains a tonic inhibitory effect on PDE5, thereby delaying the degradation of cGMP. H(2)S also activates PI3K/Akt, and increases eNOS phosphorylation at its activating site S1177. The cooperative action of the two gasotransmitters on increasing and maintaining intracellular cGMP is essential for PKG activation and angiogenesis and vasorelaxation. H(2)S-induced wound healing and microvessel growth in matrigel plugs is suppressed by pharmacological inhibition or genetic ablation of eNOS. Thus, NO and H(2)S are mutually required for the physiological control of vascular function.  相似文献   

16.
We have examined the action of a range of transition metal nitrosyl compounds in the inhibition of ADP-induced platelet aggregation. Inhibition results from the formation of the activated nitric oxide (NO) complex of guanylate cyclase, hence increasing platelet [cGMP]. Nitrosylation of guanylate cyclase may occur by release of NO from a nitrosyl complex, or, indirectly, by nitrosation of a thiol group followed by decomposition of the S-nitrosyl thiol to give NO. The latter process might be expected to be more efficient for compounds with a greater NO(+)character, and hence nitrosating ability, of the nitrosyl complex, but the results did not show a consistent relationship between NO character and the inhibitory potency on platelets. Inhibition of aggregation by Rousin's black salt, Na[Fe(4)S(3)(NO)(7)], was abolished by haemoglobin, and enhanced in the presence of M&B22948. These findings indicate that activation of guanylate cyclase is mediated by extracellular release of NO. For sodium nitroprusside, inhibition of platelet aggregation became progressively less sensitive to addition of haemoglobin, indicating that another process, such as release of cyanide, became significant as the incubation time was increased.  相似文献   

17.
Estrogen action, via both nuclear and extranuclear estrogen receptors (ERs), induces a variety of cellular signals that are prosurvival or proliferative, whereas nitric oxide (NO) can inhibit apoptosis via caspase S-nitrosylation and via activation of soluble guanylyl cyclase to produce cGMP. The action of 17β-estradiol (E(2)) at ER is known to elicit NO signaling via activation of NO synthase (NOS) in many tissues. The MCF-10A nontumorigenic, mammary epithelial cell line is genetically stable and insensitive to estrogenic proliferation. In this cell line, estrogens or NOS inhibitors alone had no significant effect, whereas in combination, apoptosis was induced rapidly in the absence of serum; the presence of inducible NOS was confirmed by proteomic analysis. The application of pharmacological agents determined that apoptosis was dependent upon NO/cGMP signaling via cyclic GMP (cGMP)-dependent protein kinase and could be replicated by inhibition of the phosphatidylinositol 3 kinase/serine-threonine kinase pathway prior to addition of E(2). Apoptosis was confirmed by nuclear staining and increased caspase-3 activity in E(2) + NOS inhibitor-treated cells. Apoptosis was partially inhibited by a pure ER antagonist and replicated by agonists selective for extranuclear ER. Cells were rescued from E(2)-induced apoptosis after NOS blockade, by NO-donors and cGMP pathway agonists; preincubation with NO donors was required. The NOS and ER status of breast cancer tissues is significant in etiology, prognosis, and therapy. In this study, apoptosis of preneoplastic mammary epithelial cells was triggered by estrogens via a rapid, extranuclear ER-mediated response, after removal of an antiapoptotic NO/cGMP/cGMP-dependent protein kinase signal.  相似文献   

18.
In rat pinealocytes, alpha 1-adrenergic receptor activation increases intracellular pH (pHi) through Ca2+/protein kinase-C-dependent activation of the Na+/H+ antiporter. Using a series of amiloride analogs, norepinephrine stimulation of cGMP accumulation is also found to be pHi dependent. In this study, we examined the postreceptor mechanisms involved in the amiloride effects on cyclic nucleotide accumulation using agents that simulate alpha 1-adrenoceptor activation. Four amiloride analogs, with a 500-fold difference in their inhibitory potency of the Na+/H+ antiporter, were used. 5-(N,N-Hexamethylene)amiloride (HA), the most active inhibitor of the Na+/H+ antiporter, had a stimulatory effect on isoproterenol (ISO)-stimulated cAMP, while its effect on cGMP was inhibitory. The other three amiloride derivatives had no effect on the ISO-stimulated cAMP or cGMP responses. All four amilorides (at 10 microM) had no effect on the phenylephrine potentiation of cAMP responses in beta-adrenergically stimulated cells, while they inhibited the potentiation of cGMP accumulation according to their inhibitory potency on the Na+/H+ antiporter. Using depolarizing concentrations of K+, it was found that HA was additive to the submaximal potentiation by K+ on ISO-stimulated cAMP, while its effect on cGMP was inhibitory. Amiloride hydrochloride dihydrate, the amiloride that is least potent in its inhibitory action on the Na+/H+ antiporter, had no effect on the K+ potentiation of either cAMP or cGMP. Using 4 beta-phorbol 12-myristate 13-acetate in cells treated with 10 mM K+ and ISO, it was found that HA was additive to phorbol 12-myristate 13-acetate and K+ potentiation of the cAMP response, while its effect on the cGMP response was inhibitory. Amiloride hydrochloride had no effect on either the cAMP or cGMP response. It can be concluded from these studies that 1) HA has a stimulatory effect on the beta-adrenoceptor-Gs-adenylate cyclase pathway that is independent of inhibition of the Na+/H+ antiporter; 2) postreceptor mechanisms are involved in HA's effects on cAMP and cGMP accumulation; and 3) the action of HA on cGMP is likely to be related to its effect on the Na+/H+ antiporter.  相似文献   

19.
We investigated the effects of nitric oxide (NO) on hepatocellular killing after simulated ischemia/reperfusion and characterized signaling factors triggering cytoprotection by NO. Cultured rat hepatocytes were incubated in anoxic Krebs-Ringer-HEPES buffer at pH 6.2 for 4 hours and reoxygenated at pH 7.4 for 2 hours. During reoxygenation, some hepatocytes were exposed to combinations of NO donors (S-nitroso-N-acetylpenicillamine [SNAP] and others), a cGMP analogue (8-bromoguanosine-3,5-cGMP [8-Br-cGMP]), and a cGMP-dependent protein kinase inhibitor (KT5823). Cell viability was determined by way of propidium iodide fluorometry. Inner membrane permeabilization and mitochondrial depolarization were monitored by confocal microscopy. SNAP, but not oxidized SNAP, increased cGMP during reperfusion and decreased cell killing. Other NO donors and 8-Br-cGMP also prevented cell killing. Both guanylyl cyclase and cGMP-dependent kinase inhibition blocked the cytoprotection of NO. However, 5-hydroxydecanoate and diazoxide- mitochondrial K(ATP) channel modulators-did not affect NO-dependent cytoprotection or reperfusion injury. During reoxygenation, confocal microscopy showed mitochondrial repolarization, followed by depolarization, inner membrane permeabilization, and cell death. In the presence of either SNAP or 8-Br-cGMP, mitochondrial repolarization was sustained after reperfusion preventing inner membrane permeabilization and cell death. In isolated rat liver mitochondria, a cGMP analogue in the presence of a cytosolic extract and adenosine triphosphate blocked the Ca(2+)-induced mitochondrial permeability transition (MPT), an effect that was reversed by KT5823. In conclusion, NO prevents MPT-dependent necrotic killing of ischemic hepatocytes after reperfusion through a guanylyl cyclase and cGMP-dependent kinase signaling pathway, events that may represent the target of NO cytoprotection in preconditioning.  相似文献   

20.
Nitric oxide as a signal in thyroid.   总被引:4,自引:0,他引:4  
It is now well established that agonist activation of the PIP2/calcium cascade in the thyroid results in the enhancement of cGMP accumulation presumably by activation of the soluble guanylate cyclase. In many tissues the physiological signal controlling soluble guanylate cyclase is nitric oxide (NO) and its synthesis from arginine is controlled by the intracellular Ca2+. In this report we show results that suggest that NO may be the intermediate of the cGMP response to the activation of the PIP2/calcium cascade. In dog thyroid slices, incubation with carbamylcholine or A23187 increases significantly free intracellular Ca2+ levels and the cGMP content of the slices. NG-Monomethyl-L-arginine (NMMA), a competitive inhibitor of arginine for nitric oxide synthase, inhibited these cGMP responses but not the action of sodium nitroprusside which activates soluble guanylate cyclase directly. The inhibition was relieved by arginine. Methylene blue, which blocks the activation of soluble guanylate cyclase by NO, also decreased the three stimulatory effects. NMMA and methylene blue also decreased the basal levels of cGMP. NO may therefore be an important autocrine and paracrine factor in thyroid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号