首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: The purpose of our study was to evaluate the image quality and diagnostic performance of two-dimensional (D) turbo spin echo (TSE) and 3D T2-weighted TSE MR imaging in local staging of rectal cancer at 3T. MATERIALS AND METHODS: 3T phased-array MR imaging was performed in 36 consecutive patients with biopsy-proven rectal cancer. High-resolution 2D TSE images in three planes and 3D TSE images of the rectum were obtained. Two independent observers performed an image quality assessment using eight image quality characteristics. All 2D and 3D datasets were evaluated separately. MR images were prospectively evaluated by two experienced radiologists in consensus with regard to local disease. Total mesorectal excision was used as the standard of reference. The sensitivity, specificity, positive and negative predictive value, and overall accuracy were calculated. Areas under the receiver operating characteristic (ROC) curve (AUC) were determined. RESULTS: Twenty-two patients who underwent a total mesorectal excision were enrolled in this study. Significantly more motion artifacts were present with 3D TSE imaging (P=0.04). The overall sensitivity, specificity, and accuracy of muscularis propria invasion in rectal cancer using 2D T2-weighted images were 100%, 66%, and 95%, respectively. There was a statistical significant greater AUC using 2D T2-weighted images compared to 3D T2-weighted MR images (P=0.04). The ROC curves describing the results of the interpretation of 2D and 3D T2-weighted datasets regarding perirectal tissue invasion showed no statistical significant difference (P=0.41). CONCLUSIONS: In this study, high local staging accuracies with 3T 2D T2-weighted MR imaging were demonstrated. 3D T2-weighted MR imaging cannot replace 2D MR imaging for local staging of rectal cancer. However, 3D MR imaging can be used for visualization of the complex pelvic anatomy for treatment planning purposes.  相似文献   

2.
AIMS: To implement a multislice two-dimensional (2D) T2-weighted sequence suitable for subvoxel image registration and to assess its usefulness in detecting change in high-grade intracranial gliomas. MATERIALS AND METHODS: Twenty patients with high-grade gliomas were studied on two or more occasions. T2-weighted multislice pulse sequences with a Gaussian slice profile, 50% overlapping slices and nearly isotropic voxels were acquired. The images were registered and subtraction images were produced. The images were compared with three-dimensional (3D) T1-weighted registered images and conventional unregistered T2-weighted images. All images were scored for changes in the lesions and ventricular system. RESULTS: The 2D and 3D registered subtraction images were the most sensitive for detecting changes in both the lesions and other regions in the brain. The mean rank scores were significantly higher for the lesions (chi2=86.742; df=5, n=38, P<0.0001) and for the ventricles (chi2=63.837; df=5, n=35, P<0.0001) compared with the unregistered and registered anatomical images. The subtraction images were also most sensitive for detecting signal intensity changes irrespective of the direction of change. CONCLUSION: Rigid body subvoxel registration can be successfully performed with both multislice 2D and 3D imaging. In principle, virtually all forms of clinical MR images of the brain can be accurately registered and subtracted.  相似文献   

3.
PURPOSE: Our aim was to investigate the usefulness of multisection dynamic MR imaging using a 3D FLASH technique during breath holding in assessing myometrial invasion by endometrial carcinoma. MATERIALS AND METHODS: Twenty-eight endometrial carcinomas were evaluated with pathologic correlation. Dynamic MR imaging was performed using the 3D FLASH technique during breath holding. We compared accuracy in the assessment of myometrial invasion by endometrial carcinoma between T2-weighted images, contrast-enhanced T1-weighted images, and dynamic MR images. RESULTS: The accuracy rates in estimating myometrial invasion with T2-weighted images, contrast-enhanced T1-weighted images, and dynamic MR images were 64.3%, 67.8%, and 85.7%, respectively. Statistically significant differences were seen between dynamic MR images and both T2-weighted images and contrast-enhanced T1-weighted images. CONCLUSION: Multisection dynamic MR imaging using the 3D FLASH technique during breath holding is useful for the evaluation of myometrial invasion by endometrial carcinoma with polypoid growth or an unclear junctional zone on T2-weighted images.  相似文献   

4.
PURPOSE: To demonstrate the value of multi detector computed tomography (MDCT) and magnetic resonance imaging (MRI) in the preoperative work up of temporal bone tumors and to present, especially, CT and MR image fusion for surgical planning and performance in computer assisted navigated neurosurgery of temporal bone tumors. MATERIALS AND METHODS: Fifteen patients with temporal bone tumors underwent MDCT and MRI. MDCT was performed in high-resolution bone window level setting in axial plane. The reconstructed MDCT slice thickness was 0.8 mm. MRI was performed in axial and coronal plane with T2-weighted fast spin-echo (FSE) sequences, un-enhanced and contrast-enhanced T1-weighted spin-echo (SE) sequences, and coronal T1-weighted SE sequences with fat suppression and with 3D T1-weighted gradient-echo (GE) contrast-enhanced sequences in axial plane. The 3D T1-weighted GE sequence had a slice thickness of 1mm. Image data sets of CT and 3D T1-weighted GE sequences were merged utilizing a workstation to create CT-MR fusion images. MDCT and MR images were separately used to depict and characterize lesions. The fusion images were utilized for interventional planning and intraoperative image guidance. The intraoperative accuracy of the navigation unit was measured, defined as the deviation between the same landmark in the navigation image and the patient. RESULTS: Tumorous lesions of bone and soft tissue were well delineated and characterized by CT and MR images. The images played a crucial role in the differentiation of benign and malignant pathologies, which consisted of 13 benign and 2 malignant tumors. The CT-MR fusion images supported the surgeon in preoperative planning and improved surgical performance. The mean intraoperative accuracy of the navigation system was 1.25 mm. CONCLUSION: CT and MRI are essential in the preoperative work up of temporal bone tumors. CT-MR image data fusion presents an accurate tool for planning the correct surgical procedure and is a benefit for the operational results in computer assisted navigated neurosurgery of temporal bone tumors.  相似文献   

5.
BACKGROUND AND PURPOSE: MR imaging techniques have proved their efficacy in imaging the head and neck region. In this study, we compared T1-weighted, dual T2-weighted, and fat-suppressed MR imaging and unenhanced and contrast-enhanced 3D time-of-flight MR angiography sequences for detection of head and neck paragangliomas. METHODS: Thirty-one patients with 70 paragangliomas were examined. Four combinations of MR images were reviewed by two neuroradiologists: T1-weighted and dual T2-weighted fast spin-echo images, T1- and T2-weighted fat-suppressed fast spin-echo images, T1-weighted and contrast-enhanced T1-weighted fat-suppressed spin-echo images, and unenhanced and contrast-enhanced 3D time-of-flight MR angiograms. The randomized examinations were independently evaluated for image quality, presence of tumor, tumor size, and intratumoral flow signal intensity. The standard of reference for presence of tumor was digital subtraction angiography. Data were analyzed by using the logistic regression method. RESULTS: Mean sensitivity, specificity, and negative predictive values, respectively, were assessed by the two observers to be as follows: for dual T2-weighted fast spin-echo, 74%/99%/86%; for T2-weighted fat-suppressed fast spin-echo, 70%/100%/85%; for contrast-enhanced T1-weighted fat-suppressed spin-echo, 73%/100%/86%; and for unenhanced and contrast-enhanced 3D time-of-flight MR angiography, 89%/99%/93%. Sensitivity was significantly better for unenhanced and contrast-enhanced 3D time-of-flight MR angiography (P =.000028). More intratumoral flow signal intensity was depicted with unenhanced and contrast-enhanced 3D time-of-flight MR angiography. CONCLUSION: A combination of unenhanced and contrast-enhanced 3D time-of-flight MR angiography is superior for detecting paragangliomas and should be added to a standard imaging protocol, especially for patients with familial paragangliomas because they are more susceptible to multicentric disease.  相似文献   

6.
The purpose of this study was to prospectively compare high-spatial-resolution accelerated three-dimensional (3D) T2*-weighted gradient-recalled-echo (GRE) magnetic resonance (MR) images with conventional two-dimensional (2D) T2*-weighted GRE MR images for the depiction of cerebral microbleeds. After obtaining institutional review board approval and informed consent, 200 elderly participants (age range, 69.7-96.7 years; 108 [54%] women) were imaged at 1.5 T by using both sequences. Presence, number, and location of microbleeds were recorded for both sequences, and differences were tested by using McNemar and signed rank tests. Cerebral microbleeds were detected in significantly more participants on 3D T2*-weighted GRE images (35.5%) than on 2D T2*-weighted GRE images (21.0%; P < .001). Furthermore, in persons with microbleeds visualized on both image sets, significantly more microbleeds (P < .001) were seen on 3D images than on 2D images. For both sequences, the proportion of participants with a microbleed in a lobar (cortical gray and subcortical white matter), deep, or infratentorial location was similar. In conclusion, accelerated 3D T2*-weighted GRE images depict more microbleeds than do conventional 2D T2*-weighted GRE images.  相似文献   

7.
We accurately measured white matter (WM) and gray matter (GM) from three-dimensional (3D) volume studies, using a fuzzy classification technique. The new segmentation method is a modification of a recently published method developed for T1 parametric images. 3D MR images were transformed into pseudo forms of T1 parametric images and segmented into WM and GM voxel fraction images with a set of standardized fuzzy classifiers. This segmentation method was validated with synthesized 3D MR images as phantoms. These phantoms were developed from cryosectioned human brain images located in the superior, middle, and inferior regions of the cerebrum. Phantom volume measurements revealed that, generally, the difference between measured and actual volumes was less than 3% for 1.5-mm simulated brain slices. The average cerebral GM/WM ratio calculated from 3D MR studies in four subjects was 1.77, which compared favorably with the estimate of 1.67 derived from anatomical data. Results indicate that this is an accurate and rapid method for quantifying WM and GM from T1-weighted 3D volume studies.  相似文献   

8.
PURPOSE: To retrospectively compare accuracy of diffusion-weighted (DW) single-shot echo-planar imaging with sensitivity encoding (SENSE) with that of superparamagnetic iron oxide (SPIO)-enhanced magnetic resonance (MR) imaging in the evaluation of hepatic metastases due to extrahepatic malignancies. MATERIALS AND METHODS: Patients provided informed consent; ethics committee approval was not required. The data of 24 patients (16 men, eight women; age range, 41-68 years; mean age, 61.9 years) with 40 resected hepatic metastases were retrospectively reviewed. Before SPIO administration, DW SENSE imaging and T2-weighted fast spin-echo (SE) and T1-weighted dual-echo fast field-echo (FFE) MR imaging were performed. After SPIO administration, T2-weighted fast SE, T1-weighted dual-echo, and T2*-weighted FFE MR examinations were performed. Images were divided into two sets: The SPIO-enhanced MR image set consisted of pre- and postcontrast T2-weighted fast SE and dual-echo T1-weighted FFE images and postcontrast T2*-weighted FFE images. The DW SENSE image set included DW SENSE images and precontrast T2-weighted fast SE and dual-echo T1-weighted FFE images. Three radiologists individually interpreted these images and sorted the confidence levels for presence of hepatic metastasis in each section into five grades. Area under the receiver operating characteristic (ROC) curve (A(z)) was calculated for each image set. RESULTS: Hepatic metastases showed higher signal intensity on DW SENSE images than on T2-weighted fast SE images. Conversely, signals from vessels and cysts were suppressed with DW SENSE imaging. ROC analysis showed higher A(z) values when the DW SENSE image set was interpreted (0.90) than when the SPIO-enhanced MR image set was interpreted (0.81). The sensitivity and specificity, respectively, of total cases were 0.66 and 0.90, for the SPIO-enhanced MR image set and 0.82 and 0.94 for the DW SENSE image set. During SPIO-enhanced MR image interpretation, lesions 1 cm in diameter or smaller showed significantly lower sensitivity than lesions larger than 1 cm in diameter. During both interpretation sessions, left lobe lesions showed significantly lower sensitivity than right lobe lesions. CONCLUSION: Combined reading of DW SENSE images and T2-weighted fast SE and dual-echo T1-weighted FFE MR images showed higher accuracy in the detection of hepatic metastases than did reading of SPIO-enhanced MR images.  相似文献   

9.
With postprocessing, the authors produced a single hybrid image that combines the complementary information in conventional T1- and T2-weighted magnetic resonance (MR) images. A 1-T MR imager was used to produce T1- and T2-weighted images (repetition time, msec/echo time, msec: 500/30, 1,500/120) of patients with various primary bone tumors. Various weighted sums and differences of these images were then formed. Weighted subtraction allowed formation of hybrid images with high contrast between tumor and all adjacent normal tissues (muscle, fat, bone marrow), unlike the original T1- and T2-weighted images. Certain weighted sums of the acquired images simultaneously display the high signal-to-noise and clear anatomic detail of the T1-weighted technique along with the high contrast between extraosseous tumor and muscle of the T2-weighted image. A single hybrid MR image can contain useful characteristics both of T1- and T2-weighted images, making it easier for one to detect the extent of an abnormality.  相似文献   

10.
OBJECTIVE: The great potential of MRI for assessing gastrointestinal abnormalities in fetuses has been described. T1-weighted images may add additional information to T2-weighted images in diagnosing fetal gastrointestinal abnormalities. The objective of this study was to assess the performance of a 3D volumetric interpolated breath-hold sequence (VIBE) in evaluating the normal and abnormal fetal gastrointestinal tract. CONCLUSION: VIBE provides high-quality T1-weighted and 3D MR colonography images for the evaluation of the normal and abnormal gastrointestinal tract in fetuses, and 3D MR colonography provides excellent delineation of the meconium.  相似文献   

11.

Objective:

To prospectively compare the diagnostic performance of superparamagnetic iron oxide (SPIO)-enhanced magnetic resonance (MR) imaging at 3.0 T and 1.5 T for detection of hepatic metastases.

Methods:

A total of 28 patients (18 men, 10 women; mean age, 61 years) with 80 hepatic metastases were prospectively examined by SPIO-enhanced MR imaging at 3.0 T and 1.5 T. T1-weighted gradient-recalled-echo (GRE) images, T2*-weighted GRE images and T2-weighted fast spin-echo (SE) images were acquired. The tumour-to-liver contrast-to-noise ratio (CNR) of the lesions was calculated. Three observers independently reviewed each image. Image artefacts and overall image quality were analysed, sensitivity and positive predictive value for the detection of hepatic metastases were calculated, and diagnostic accuracy using the receiver-operating characteristics (ROC) method was evaluated.

Results:

The tumour-to-liver CNRs were significantly higher at 3.0 T. Chemical shift and motion artefact were more severe, and overall image quality was worse on T2-weighted fast SE images at 3.0 T. Overall image quality of the two systems was similar on T1-weighted GRE images and T2*-weighted GRE images. Sensitivity and area under the ROC curve for the 3.0-T image sets were significantly higher.

Conclusion:

SPIO-enhanced MR imaging at 3.0 T provided better diagnostic performance for detection of hepatic metastases than 1.5 T.  相似文献   

12.
We performed three-dimensional, high-resolution magnetic resonance imaging (MRI) of fixed mouse brains to determine whether MRI can detect amyloid plaques in transgenic mouse models of Alzheimer's disease. Plaque-like structures in the cortex and hippocampus could be clearly identified in T2-weighted images with an image resolution of 46 microm x 72 microm x 72 microm. The locations of plaques were confirmed in coregistration studies comparing MR images with Congo red-stained histological results. This technique is quantitative, less labor-intensive compared to histology, and is free from artifacts related to sectioning process (deformation and missing tissues). It enabled us to study the distribution of plaques in the entire brain in 3D. The results of this study suggest that this method may be useful for assessing treatment efficacy in mouse models of Alzheimer's disease (AD).  相似文献   

13.
The aim of this study was to introduce the true fast imaging with steady-state precession (FISP) sequence for MR enteroclysis and compare it with the already used T1-weighted fast low-angle shot (FLASH) sequence. Twenty-one patients underwent both MR and conventional enteroclysis. The MR enteroclysis examination was performed after administration of an iso-osmotic water solution through a nasojejunal catheter and the following sequences were included: (a) true FISP; and (b) 3D FLASH with fat saturation after intravenous injection of 20 mg Buscopan or 1 mg glucagon and 0.1 mmol/kg gadolinium chelates. The true FISP sequence provided images with significantly fewer motion artifacts, whereas 3D FLASH was less sensitive to susceptibility and chemical shift artifacts. The homogeneity of endoluminal opacification, wall conspicuity, and distention of the small bowel were very good to excellent and the two sequences presented no statistically significant differences here. True FISP provided significantly better overall image quality than did 3D FLASH. The true FISP sequence can provide good anatomic demonstration of the small bowel on T2-like images and could be combined with T1-weighted FLASH images for an integrated protocol of MR enteroclysis.  相似文献   

14.
Dynamic magnetic resonance (MR) imaging for pituitary microadenomas is usually performed in 2-dimensional (2D) multi-slice method which used coronal T(1)-weighted imaging with turbo spin echo (SE) method. However, on MR images using 2D multi-slice method, the detectability of small lesions between slices may decrease. Therefore, the aim of our study is to investigate the influence that imaging parameters give to T(1)-weighted image with 3-dimensional (3D) turbo SE method, and to examine the use of 3D turbo SE method as the detection of pituitary microadenomas. We can plan the shortening of imaging time by shortening repetition time (TR), because the contrast to noise ratio (CNR) in the 3D turbo SE method was superior enough than that of the 2D turbo SE method. In addition, low refocusing flip angle induced the decrease of CNR, but it has the effect which decreases flow-induced artifacts. Dynamic MR imaging which used coronal T(1)-weighted imaging with 3D turbo SE method is feasible by utilizing the reduction of TR and low refocusing flip angle, as well as the combination of parallel imaging and radial sampling.  相似文献   

15.
The purpose of this study was to correlate the abnormal signal area on various magnetic resonance (MR) images to the infarct area on pathologic examination and to assess the myocardial viability on the basis of MR images. T2-weighted, first-pass perfusion, and delayed gadolinium-enhanced T1-weighted images were used as "one-stop examinations" in a pig model of reperfused myocardial infarction. The results of each MR image were compared with those of 2,3, 5-triphenyltetrazolium chloride (TTC) staining. The abnormal signal areas on T2-weighted and Gd-enhanced T1-weighted images were larger than the infarct areas on TTC staining (34.7% and 32.3% vs. 28.3%; P< 0.05), whereas the nonperfused areas on perfusion images were correlated (25.6% vs, 28.3%; P = 0.139). Electron microscopic examination showed severely distorted ultrastructures in the infarct areas and mildly damaged ultrastructures in the peri-infarct areas. Perfusion images probably reflected the infarct areas, whereas T2-weighted and Gd-enhanced T1-weighted images seemed to include peri-infarct as well as infarct areas.  相似文献   

16.
We evaluated the temporal and anatomic relationships between changes in diffusion-weighted MR image signal intensity, induced by unilateral occlusion of the middle cerebral artery in cats, and tissue perfusion deficits observed in the same animals on T2-weighted MR images after administration of a nonionic intravascular T2 shortening agent. Diffusion-weighted images obtained with strong diffusion-sensitizing gradient strengths (5.6 gauss/cm, corresponding to gradient attenuation factor, b, values of 1413 sec/mm2) displayed increased signal intensity in the ischemic middle cerebral artery territory less than 1 hr after occlusion, whereas T2-weighted images without contrast usually failed to detect injury for 2-3 hr after stroke. After contrast administration (0.5-1.0 mmol/kg by Dy-DTPA-BMA, IV), however, T2-weighted images revealed perfusion deficits (relative hyperintensity) within 1 hr after middle cerebral artery occlusion that corresponded closely to the anatomic regions of ischemic injury shown on diffusion-weighted MR images. Close correlations were also found between early increases in diffusion-weighted MR image signal intensity and disrupted phosphorus-31 and proton metabolite levels evaluated with surface coil MR spectroscopy, as well as with postmortem histopathology. These data indicate that diffusion-weighted MR images more accurately reflect early-onset pathophysiologic changes induced by acute cerebral ischemia than do T2-weighted spin-echo images.  相似文献   

17.
The purpose of this paper was to develop and evaluate a fast inversion recovery (FIR) technique for T1-weighted MR imaging of contrast-enhancing brain pathology. The FIR technique was developed, capable of imaging 24 sections in approximately 7 minutes using two echoes per repetition and an alternating echo phase encoding assignment. Resulting images were compared with conventional T1-weighted spin echo (T1SE) images in 18 consecutive patients. Compared with corresponding T1SE images, FIR images were quantitatively comparable or superior for lesion-to-background contrast and contrast-to-noise ratio (CNR). Gray-to-white matter and cerebrospinal fluid (CSF)-to-white matter contrast and CNR were statistically superior in FIR images. Qualitatively, the FIR technique provided comparable lesion detection, improved lesion conspicuity, and superior image contrast compared with T1SE images. Although FIR images had greater amounts of image artifacts, there was not a statistically increased amount of interpretation-interfering image artifact. FIR provides T1-weighted images that are superior to T1SE images for a number of image quality criteria.  相似文献   

18.
Fast magnetic resonance imaging of liver.   总被引:13,自引:0,他引:13  
Recent magnetic resonance (MR) units with a stronger gradient system have allowed various fast MR imaging techniques to develop. These fast scan techniques have easily realized breath-holding acquisition in the liver and the image quality has been greatly improved without sacrificing spatial resolution. The majority of the fast imaging techniques have been devoted to T2-weighted imaging to obtain useful T2-weighted images in the shortest possible time. Among the fast sequences, fast spin-echo (FSE) sequence is the most promising technique and allows high-quality T2-weighted images with reduced motion artifacts. However, FSE sequences using multiple refocused pulses may essentially realize only poor soft-tissue contrast due to magnetization transfer and T2-filtering effects, and therefore, echo-planar (EP) imaging is expected to provide high image contrast. In addition, single-shot EP imaging allows even diffusion-weighted (DW) and perfusion-weighted (PW) imaging in the liver due to its short scanning time. Recent development of fast gadolinium-enhanced 3D MR angiography has also impacted liver imaging. Combined with such gadolinium-enhanced 3D-MRA sequences and zerofilling image interpolation technique, biphasic gadolinium-enhanced 3D-MRA (whole-liver dynamic MR imaging in the arterial phase and MR portography in the portal phase) can be obtained.  相似文献   

19.
The pseudocapsule of renal cell carcinoma (RCC) appears as a low-intensity band or rim on magnetic resonance (MR) images. The frequency of its appearance differed on T1- and T2-weighted images. In our group of 19 RCC (in 18 patients), it appeared on 26.3% of T1-weighted images and on 57% of T2-weighted images. The pathology of the pseudocapsule on MR is its thickness and composition. On T1-weighted images, the appearance of the pseudocapsule is mainly related to the fibrous element, and on T2-weighted images to the fibrous element and compressed renal parenchyma.  相似文献   

20.

Objective

To investigate the feasibility of 7T MR imaging of the kidneys utilising a custom-built 8-channel transmit/receive radiofrequency body coil.

Methods

In vivo unenhanced MR was performed in 8 healthy volunteers on a 7T whole-body MR system. After B0 shimming the following sequences were obtained: 1) 2D and 3D spoiled gradient-echo sequences (FLASH, VIBE), 2) T1-weighted 2D in and opposed phase 3) True-FISP imaging and 4) a T2-weighted turbo spin echo (TSE) sequence. Visual evaluation of the overall image quality was performed by two radiologists.

Results

Renal MRI at 7T was feasible in all eight subjects. Best image quality was found using T1-weighted gradient echo MRI, providing high anatomical details and excellent conspicuity of the non-enhanced vasculature. With successful shimming, B1 signal voids could be effectively reduced and/or shifted out of the region of interest in most sequence types. However, T2-weighted TSE imaging remained challenging and strongly impaired because of signal heterogeneities in three volunteers.

Conclusion

The results demonstrate the feasibility and diagnostic potential of dedicated 7T renal imaging. Further optimisation of imaging sequences and dedicated RF coil concepts are expected to improve the acquisition quality and ultimately provide high clinical diagnostic value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号