首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Long non-coding RNAs regulate brain microvascular endothelial cell death, the inflammatory response and angiogenesis during and after ischemia/reperfusion and oxygen-glucose deprivation/reoxygenation(OGD/R) insults. The long non-coding RNA, SNHG12, is upregulated after ischemia/reperfusion and OGD/R in microvascular endothelial cells of the mouse brain. However, its role in ischemic stroke has not been studied. We hypothesized that SNHG12 positively regulates ischemic stroke, and therefore we investigated its mechanism of action. We established an OGD/R mouse cell model to mimic ischemic stroke by exposing brain microvascular endothelial cells to OGD for 0, 2, 4, 8, 16 or 24 hours and reoxygenation for 4 hours. Quantitative real-time polymerase chain reaction showed that SNHG12 levels in brain microvascular endothelial cells increased with respect to OGD exposure time. Brain microvascular endothelial cells were transfected with pc DNA-control, pc DNA-SNHG12, si-control, or si-SNHG12. After exposure to OGD for 16 hours, these cells were then analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, trypan blue exclusion, western blot, and capillary-like tube formation assays. Overexpression of SNHG12 inhibited brain microvascular endothelial cell death and the inflammatory response but promoted angiogenesis after OGD/R, while SNHG12 knockdown had the opposite effects. miR-199a was identified as a target of SNHG12, and SNHG12 overexpression reversed the effect of miR-199a on brain microvascular endothelial cell death, the inflammatory response, and angiogenesis. These findings suggest that SNHG12 suppresses endothelial cell injury induced by OGD/R by targeting miR-199a.  相似文献   

3.
Chronic cerebral ischemia is a pathological process in many cerebrovascular diseases and it is induced by long-term hyperlipidemia,hypertension and diabetes mellitus.After being fed a high-fat diet for 4 weeks,rats were subjected to permanent occlusion of bilateral common carotid arteries to establish rat models of chronic cerebral ischemia with hyperlipidemia.Intercellular adhesion molecule-1 expression in rat hippocampal CA1 region was determined to better understand the mechanism underlying the effects of hyperlipidemia on chronic cerebral ischemia.Water maze test results showed that the cognitive function of rats with hyperlipidemia or chronic cerebral ischemia,particularly in rats with hyperlipidemia combined with chronic cerebral ischemia,gradually decreased between 1 and 4 months after occlusion of the bilateral common carotid arteries.This correlated with pathological changes in the hippocampal CA1 region as detected by hematoxylin-eosin staining.Immunohistochemical staining showed that intercellular adhesion molecule-1 expression in the hippocampal CA1 region was noticeably increased in rats with hyperlipidemia or chronic cerebral ischemia,in particular in rats with hyperlipidemia combined with chronic cerebral ischemia.These findings suggest that hyperlipidemia aggravates chronic cerebral ischemia-induced neurological damage and cognitive impairment in the rat hippocampal CA1 region,which may be mediated,at least in part,by up-regulated expression of intercellular adhesion molecule-1.  相似文献   

4.
Cerebral ischemia and inflammation   总被引:27,自引:0,他引:27  
Cerebral ischemia is accompanied by a marked inflammatory reaction that is initiated by ischemia-induced expression of cytokines, adhesion molecules, and other inflammatory mediators, including prostanoids and nitric oxide. Preclinical studies suggest that interventions that are aimed at attenuating such inflammation reduce the progression of brain damage that occurs during the late stages of cerebral ischemia. In particular, strategies that block the activity of inflammation-related enzymes, such as inducible nitric oxide synthase and cyclo-oxygenase-2, reduce ischemic damage with an extended therapeutic window. Although a clinical trial using murine antibodies against intercellular adhesion molecule-1 did not show benefit in patients with ischemic stroke, recent data indicate that immune activation induced by the heterologous protein may have played an important role in the failure of this trial. Therefore, there is a strong rationale for continuing to explore the efficacy of anti-inflammatory therapies in the treatment of the late stages of cerebral ischemia.  相似文献   

5.
The development of neuroprotective drugs against ischemic insults is hampered by the lack of pharmacological in vitro models. We developed an ischemic model using PC12 cell cultures exposed to oxygen-glucose-deprivation (OGD) followed by reoxygenation (18 hr) under regular atmospheric oxygen level. The toxicity induced in this model, that is partially caused by generation of reactive oxygen species (ROS), was measured morphologically as well as by the release of lactate dehydrogenase (LDH) and the prostaglandin PGE(2) from the cells. Carnosine and homocarnosine, histidine dipeptides antioxidants, found in high concentration in the brain, have been suggested to provide neuroprotection. Using the OGD model we found that 5 mM carnosine and 1 mM homocarnosine provided maximal neuroprotection of about 50% against OGD insult. This neuroprotective effect was similar to that of a known antioxidant, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (tempol), and was not observed in a serum-deprivation toxicity model of PC12 cells, indicating that carnosine and homocarnosine may act as antioxidant-neuroprotective agents in the brain. Our ischemic model may provide a useful tool for investigating the mechanisms involved in the neuroprotection afforded by histidine dipeptides.  相似文献   

6.
We recently reported that a phosphodiesterase-III inhibitor, cilostazol, prevented the hemorrhagic transformation induced by focal cerebral ischemia in mice treated with tissue plasminogen activator (tPA) and that it reversed tPA-induced cell damage by protecting the neurovascular unit, particularly endothelial cells. However, the mechanisms of cilostazol action are still not clearly defined. The adheren junction (AJ) protein, VE-cadherin, is a known mediator of endothelial barrier sealing and maintenance. Therefore, we tested whether cilostazol might promote expression of adhesion molecules in endothelial cells, thereby preventing deterioration of endothelial barrier functions. Human brain microvascular endothelial cells were exposed to 6-h oxygen-glucose deprivation (OGD). We compared cilostazol with aspirin treatments and examined 2 representative AJ proteins: VE-cadherin and platelet endothelial cell adhesion molecule-1 (PECAM-1). A protein kinase A (PKA) inhibitor, LY294002 (a PI3-K inhibitor), db-cAMP, and RP-cAMPS were used to assess the roles of cAMP, PKA, and PI3-K signaling, respectively, in cilostazol-induced responses. Cilostazol and db-cAMP prevented OGD-stress injury in endothelial cells by promoting VE-cadherin expression, but not PECAM-1. Aspirin did not prevent cell damage. P13-K inhibition by LY294002 had no influence on the effects of cilostazol, but inhibition of cAMP/PKA with PKA inhibitor and Rp-cAMPS suppressed cilostazol-induced inhibition of cell damage and promotion of VE-cadherin expression. In contrast, OGD stress had no detectable effects on VEGF, VEGF receptor, or angiopoietin-1 levels. Cilostazol promotes VE-cadherin expression through cAMP/PKA-dependent pathways in brain endothelial cells; thus, cilostazol effects on adhesion molecule signaling may provide protection against OGD stress in endothelial cells.  相似文献   

7.
Brain endothelial cells, a site of the blood-brain barrier in vivo, regulate a number of physiological and pathophysiological processes in the brain including transport of nutrients, export of critical toxins, transmigration of circulating leukocytes and formation of new blood vessels. In this report, we describe a simple and reproducible method to isolate pure (>99%), functionally active endothelial cells from small quantities of adult mouse brain tissue. In vitro, these cells express typical phenotypic markers of differentiated brain endothelium such as von Willebrand factor, multiple drug resistant protein and glucose transporter-1, demonstrate uptake of acetylated low-density lipoprotein, and possess morphological and ultrastructural characteristics of microvascular endothelium. They form tight junctions and capillary-like tubes when stimulated by growth factors in an in vitro angiogenesis assay. In response to tumor necrosis factor-alpha, isolated mouse brain endothelial cells (MBEC) express vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). The protocol described here provides an effective and reliable method to isolate pure cerebral endothelium from adult mouse brain that should offer a useful tool for studying the role of altered vascular biology in mice with genetically manipulated brain disorders.  相似文献   

8.
目的研究缺血性脑水肿病理过程中血脑屏障内皮细胞及其细胞间粘附分子-1(intercellularadhesionmolecule-1,ICAM-1)的表达与血脑屏障通透性的关系.方法用电镜技术和免疫组织化学方法观察脑缺血过程中大鼠血脑屏障内皮细胞超微结构及其ICAM-1的表达和对镧离子的通透性改变.结果脑缺血后1h,缺血区脑组织血脑屏障内皮细胞未见ICAM-1表达,但电镜下可见内皮细胞轻度肿胀.3h,ICAM-1开始表达,缺血区脑组织轻度水肿,内皮细胞肿胀.至12h,ICAM-1表达达到高峰,脑组织严重水肿,内皮细胞、神经细胞及胶质细胞明显肿胀;内皮细胞胞饮小泡包含有被吞噬的镧离子,有些镧离子进入紧密连接间隙.72h,ICAM-1表达已明显减少,脑组织水肿仍较重,内皮细胞严重破坏,大量镧离子漏出血管外,进入脑实质.结论脑缺血后血脑屏障的破坏与ICAM-1的表达密切相关,提示ICAM-1参与血脑屏障内皮细胞的破坏过程,而且这些改变在缺血性脑水肿的病理过程中起重要作用.  相似文献   

9.
We recently improved an in vitro ischemic model, using PC12 neuronal cultures exposed to oxygen-glucose deprivation (OGD) for 3 hr in a special device, followed by 18 hr of reoxygenation. The cell death induced in this ischemic model was evaluated by a series of markers: lactate dehydrogenase (LDH) release, caspase-3 activation, presence of cyclin D1, cytochrome c leakage from the mitochondria, BAX cellular redistribution, cleavage of poly (ADP-ribose) polymerase (PARP) to an 85-kDa apoptotic fragment, and DNA fragmentation. The OGD insult, in the absence of reoxygenation, caused a strong activation of the mitogen-activated protein kinase (MAPK) isoforms extracellular regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and stress-activated protein kinase (SAPK), also known as p-38. The detection of apoptotic markers and activation of MAPKs during the ischemic insult strongly suggest that apoptosis plays an important role in the PC12 cell death. Homocarnosine, a neuroprotective histidine dipeptide, present in high concentrations in the brain, was found to provide neuroprotection, as expressed by a 40% reduction in LDH release and caspase-3 activity at 1 mM. Homocarnosine reduced OGD activation of ERK 1, ERK 2, JNK 1, and JNK 2 by 40%, 46%, 55%, and 30%, respectively. These results suggest that apoptosis is an important characteristic of OGD-induced neuronal death and that antioxidants, such as homocarnosine, may prevent OGD-induced neuronal death by inhibiting the apoptotic process and/or in relation to the differential attenuation of activity of MAPKs.  相似文献   

10.
Oxidative stress and glucose affect the expression of various genes that contribute to both reactive oxygen species generation and antioxidant systems. However, systemic alteration of oxidative stress-related gene expression in normal brains and in brains with a high-glucose status after ischemic-reperfusion has not been explored. Using a polymerase chain reaction array system, we demonstrate that thioredoxin-interacting protein (Txnip) is induced by both oxidative stress and glucose. We found that Txnip mRNA is induced by ischemic-reperfusion injury and that Txnip is located in the cytoplasm of neurons. Moreover, in vitro oxygen-glucose deprivation (OGD) and subsequent reoxygenation without glucose and in vivo administration of 3-nitropropionic acid also promoted an increase in Txnip in a time-dependent manner, indicating that oxidative stress without glucose can induce Txnip expression in the brain. However, calcium channel blockers inhibit induction of Txnip after OGD and reoxygenation. Using the polymerase chain reaction array with ischemic and hyperglycemic-ischemic samples, we confirmed that enhanced expression of Txnip was observed in hyperglycemic-ischemic brains after middle cerebral artery occlusion. Finally, transfection of Txnip small interfering RNA into primary neurons reduced lactate dehydrogenase release after OGD and reoxygenation. This is the first report showing that Txnip expression is induced in neurons after oxidative or glucose stress under either ischemic or hyperglycemic-ischemic conditions, and that Txnip is proapoptotic under these conditions.  相似文献   

11.
Early release of HMGB-1 from neurons after the onset of brain ischemia.   总被引:2,自引:0,他引:2  
The nuclear protein high-mobility group box 1 (HMGB-1) promotes inflammation in sepsis, but little is known about its role in brain ischemia-induced inflammation. We report that HMGB-1 and its receptors, receptor for advanced glycation end products (RAGE), Toll-like receptor 2 (TLR2), and TLR4, were expressed in normal brain and in cultured neurons, endothelia, and glial cells. During middle cerebral artery occlusion (MCAO), in mice, HMGB-1 immunostaining rapidly disappeared from all cells within the striatal ischemic core from 1 h after onset of occlusion. High-mobility group box 1 translocation from nucleus to cytoplasm was observed within the cortical periinfarct regions 2 h after ischemic reperfusion (2 h MCAO). High-mobility group box 1 predominantly translocated to the cytoplasm or disappeared in cells that colabeled with the neuronal marker NeuN. Furthermore, RAGE was robustly expressed in the periinfarct region after MCAO. Cellular release of HMGB-1 was detected by immunoblotting of cerebrospinal fluid as early as 2 h after ischemic reperfusion (2 h MCAO). High-mobility group box 1 released from neurons, in vitro, after glutamate excitotoxicity, maintained biologic activity and induced glial expression of tumor necrosis factor alpha (TNFalpha). Anti-HMGB-1 antibody suppressed TNFalpha upregulation in astrocytes exposed to conditioned media from glutamate-treated neurons. Moreover, TNFalpha and the cytokine intercellular adhesion molecule-1 increased in cultured glia and endothelial cells, respectively, after adding recombinant HMGB-1. In conclusion, HMGB-1 is released early after ischemic injury from neurons and may contribute to the initial stages of the inflammatory response.  相似文献   

12.
BACKGROUND: Previous studies have confirmed the neuroprotective effect of mild hypothermia on ischemic brain injury. OBJECTIVE: To investigate the effects of mild hypothermia on intercellular adhesion molecule-1 expression and serum interleukin-6 levels in ischemic brain tissues of focal brain ischemia rats, and to explore the neuroprotective effects of mild hypothermia on ischemic brain injury. DESIGN, TIME AND SETTING: A randomized, controlled, neurobiological experiment was performed at the Central Laboratory, First Affiliated Hospital, Xinxiang Medical College, China from February to July 2006. MATERIALS: Thirty healthy, adult, Sprague Dawley rats were used to establish middle cerebral artery occlusion models using the suture method, The immunohistochemistry (streptavidin-biotin-peroxidase complex method) kit was purchased from Boster, China. Interleukin-6 radioimmunoassay was supplied by Institute of Radioimmunity, Technology Development Center, General Hospital of Chinese PLA. METHODS: The rats were equally and randomly assigned into mild hypothermia and control groups, and middle cerebral artery occlusion models were established. The rectal temperature was maintained at (37 ±0.5)℃ in the control group. In the mild hypothermia group, the rectal temperature was maintained at (33±1)℃. MAIN OUTCOME MEASURES: At 12 hours after model establishment, the ischemic brain hemispheres were coronally sliced at the level of the optic chiasm. The number of intercellular adhesion molecule-1-positive vessels per high-power field was observed with an optical microscope. Serum interleukin-6 levels were measured by radioimmunoassay. RESULTS: Compared with the control group, intercellular adhesion molecule-1 and serum interleukin-6 expressions were significantly decreased in ischemic brain tissues of the mild hypothermia group (P 〈 0.01). CONCLUSION: Mild hypothermia exhibits a neuroprotective effect by reducing serum interleukin-6 and intercellular adhesion molecule-1 expression followi  相似文献   

13.
小鼠局灶性脑缺血模型中细胞间粘附分子-1表达升高   总被引:2,自引:1,他引:1  
目的 白细胞可以导致缺血细胞损伤,内皮细胞上表达的细胞间粘附分子-1(ICAM-1)有利于白细胞迁移至组织。本研究目的是对小鼠大脑中动脉栓塞(MCAO)后脑内ICAM-1 蛋白在组织中表达和含量进行检测。方法 通过对成年雄性CD-1 小鼠使用血管腔内尼龙线栓塞术,造成0、3、6、12、24、48 和72 h 的持续性大脑中动脉栓塞。缺血程度由激光多普勒流量仪确定,缺血脑组织ICAM-1 的阳性表达由免疫组化技术检测,并用免疫沉淀和Western 印迹来定量。结果 在大脑中动脉栓塞后,小鼠缺血脑半球的表面脑血流量减少到基准值的9% ~15% 。各组间大脑中动脉栓塞过程中的脑血流量无显著差异。免疫组化技术显示,缺血中心区和末影区都见ICAM-1 阳性的微血管内皮细胞,从缺血中心到缺血边缘区微血管内皮细胞表达ICAM-1 出现增高的趋势。免疫沉淀和Western 印迹分析结果表明,缺血区ICAM-1的表达在大脑中动脉栓塞后3 h 增高,6~12 h 达到高峰,并持续到72 h。结论 研究表明,在持续性大脑中动脉栓塞的小鼠中检测到ICAM-1 表达明显升高,因为在持续局灶性大脑中动脉缺血后ICAM-1 可介导白细胞和内皮细胞粘附,加速  相似文献   

14.
In the middle cerebral artery occlusion model of ischemic injury, inflammation primarily occurs in the infarct and peripheral zones. In the ischemic zone, neurons undergo necrosis and apoptosis, and a large number of reactive microglia are present. In the present study, we investigated the pathological changes in a rat model of middle cerebral artery occlusion. Neuronal necrosis appeared 12 hours after middle cerebral artery occlusion, and the peak of neuronal apoptosis ap- peared 4 to 6 days after middle cerebral artery occlusion. Inflammatory cytokines and microglia play a role in damage and repair after middle cerebral artery occlusion. Serum intercellular cell adhesion molecule-1 levels were positively correlated with the permeability of the blood-brain barrier. These findings indicate that intercellular cell adhesion molecule-1 may be involved in blood-brain barrier injury, microglial activation, and neuronal apoptosis. Inhibiting blood-brain barrier leakage may alleviate neuronal injury following ischemia,  相似文献   

15.
Brain microvascular endothelial cells play an essential role in maintaining blood–brain barrier (BBB) integrity, and disruption of the BBB aggravates the ischemic injury. CaMKK (α and β) is a major kinase activated by elevated intracellular calcium. Previously, we demonstrated that inhibition of CaMKK exacerbated outcomes, conversely, overexpression reduced brain injury after stroke in mice. Interestingly, CaMKK has been shown to activate a key endothelial protector, sirtuin 1 (SIRT1). We hypothesized that CaMKK protects brain endothelial cells via SIRT1 activation after stroke. In this study, Oxygen‐Glucose Deprivation (OGD) was performed in human brain microvascular endothelial cells. Stroke was induced by middle cerebral artery occlusion (MCAO) in male mice. Knockdown of CaMKK β using siRNA increased cell death following OGD. Inhibition of CaMKK β by STO‐609 significantly and selectively down‐regulated levels of phosphorylated SIRT1 after OGD. Changes in the downstream targets of SIRT1 were observed following STO‐609 treatment. The effect of STO‐609 on cell viability after OGD was absent, when SIRT1 was concurrently inhibited. We also demonstrated that STO‐609 increased endothelial expression of the pro‐inflammatory proteins ICAM‐1 and VCAM‐1 and inhibition of CaMKK exacerbated OGD‐induced leukocyte‐endothelial adhesion. Finally, intracerebroventricular injection of STO‐609 exacerbated endothelial apoptosis and reduced BBB integrity after 24‐hr reperfusion following MCAO in vivo. Collectively, these results demonstrated that CaMKK inhibition reduced endothelial cell viability, exacerbated inflammatory responses and aggravated BBB impairment after ischemia. CaMKK activation may attenuate ischemic brain injury via protection of the microvascular system and a reduction in the infiltration of pro‐inflammatory factors.  相似文献   

16.
目的:观察大鼠脑缺血再灌注后缺血区ICAM-1mRNA和蛋白的表达及白细胞和血管内皮细胞间粘附性的变化。方法:40只Wistar大鼠分为正常组、假手术组和缺血2h再灌注2、4、12、24、48、96h组,原位杂交和兔疫组化法检测ICAM、1 mRNA和蛋白表达,超高速摄录像系统观察缺血区微血管内白细胞与内皮细胞间的粘附性变化。结果:缺血再灌注后局部脑组织ICAM-1mRNA和蛋白的表达以及微动脉内白细胞与内皮细胞间粘附性均明显增高。结论:脑缺血再灌注后ICAM-1表达增高,介导了白细胞与血管内皮细胞间的粘附增强,参与了缺血再灌注损伤。  相似文献   

17.
Exposure of endothelia to hypoxia followed by reperfusion, results in increased leukocyte activation and extravasation. These leukocytes potentiate ischemic neuronal damage. Extravasation of leukocytes is guided by adhesion molecule interactions on inflammatory and endothelial cells. Circulating adhesion molecules rapidly appear in peripheral blood. Commercially available ELISA kits were used to determine serum levels of E-selectin and intercellular adhesion molecule-1 (ICAM-1) in 36 patients at 1, 3, and 14 days after acute ischemic stroke. E-selectin levels were nonsignificantly increased at day 1, and decreased thereafter, reaching significantly lower values at day 14 in the stroke patients. ICAM-1 levels were similar in stroke patients at each sampling period, and did not differ from those of controls. Our data on ICAM-1 are in line with those of a recently published study. The decreasing circulating E-selectin may stem from endothelial cell damage, alterations in cytokine interactions, or unknown factors.  相似文献   

18.
Several studies have shown that high corticosteroid hormone levels increase neuronal vulnerability. Here we evaluate the consequences of in vivo acute or repeated restraint stress on cellular viability in rat hippocampal slices suffering an in vitro model of ischemia. Cellular injury was quantified by measuring lactate dehydrogenase (LDH) and neuron-specific enolase released into the medium. Acute stress did not affect cellular death when oxygen and glucose deprivation (OGD) was applied both immediately or 24h after restraint. The exposure to OGD, followed by reoxygenation, resulted in increased LDH in the medium. Repeated stress potentiated the effect of OGD both, on LDH and neuron-specific enolase released to the medium. There was no effect of repeated stress on the release of S100B, an astrocytic protein. Additionally, no effect of repeated stress was observed on glutamate uptake by the tissue. These results suggest that repeated stress increases the vulnerability of hippocampal cells to an in vitro model of ischemia, potentiating cellular damage, and that the cells damaged by the exposure to repeated stress+OGD are mostly neurons. The uptake of glutamate was not observed to participate in the mechanisms responsible for rendering the neurons more susceptible to ischemic damage after repeated stress.  相似文献   

19.
The passage of immunocompetent cells across the blood-brain barrier (BBB) is regulated at the level of the cerebral capillaries which have specific morphological and biochemical properties. We have developed and characterized an in vitro model of the BBB using immortalized human endothelial cells (ECV 304) induced by rat astrocytes. In this model, endothelial cells are attached together by continuous intercellular junctions with numerous tight junctions, develop a permeability barrier having a significant transcellular electrical resistance, possess high activities of gamma-glutamyl transpeptidase (gamma-GTP) and express the brain-type glucose transporter 1 (GLUT-1). These parameters are also characteristic of brain capillary endothelial cells. Under the culture conditions used, the ECV 304 cells express the intercellular adhesion molecule-1 (ICAM-1) on the external plasma membrane at concentrations which could permit lymphocyte adhesion to be studied.  相似文献   

20.
目的探讨抗细胞间粘附分子-1(ICAM-1)抗体保护神经元缺血性损伤的作用机制。方法分离培养鼠脑毛细血管内皮细胞(CCEC)和多形核白细胞(PMN),利用微管吸吮技术,观察PMN与CCEC间粘附力学特性的变化。结果脑缺血-再灌注后各时间点,PMN与CCEC的粘附力和粘附应力均明显高于正常对照组和伪手术组(P<0.01);加抗ICAM-1抗体后,细胞粘附力和粘附应力均明显下降(P<0.05或P<0.01)。结论脑缺血-再灌注损伤后抗ICAM-1抗体使PMN与CCEC粘附力减小,粘附应力下降;抗粘附分子抗体将可能成为治疗缺血性脑血管疾病的一条新的有效途径  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号