首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The expression of the integrin αE (CD103), may enhance the retention of regulatory T cells to peripheral inflammatory sites and possibly contribute to their suppressive potential. The aim of this study was to define the regulatory role of IL‐2 and TGF‐β1 on the CD103 expression and the optimal in vitro conditions for the induction/expansion of human CD4+ and CD8+ Tregs. Cord blood mononuclear cells (CBMC) were stimulated under various culture conditions, including anti‐CD3, anti‐CD28, IL‐2 and TGF‐β1. TGF‐β1 and IL‐2 were both required for optimal expression of CD103. In addition, TGF‐β1 and IL‐2 synergistically induced CD103 expression on CD8+ T cells, whereas, only additive induced expression was noted on CD4+ T cells. Surprisingly, CD103 expression was not dependent upon CD28 costimulation. IL‐2 also played a central role in CD103 expression by CD25hi Foxp3+ Tregs. IL‐2, TGF‐β1 and anti‐CD3 defined the optimal stimulatory conditions favouring the induction/expansion of both CD4+ and CD8+ human Tregs from naive CBMC. Thus, this study provides new insights into the regulatory role of IL‐2 upon CD103 expression by human cord blood CD4+ and CD8+ T cells. Furthermore, it identifies the in vitro culture conditions driving the differentiation of the novel phenotype CD4+ and CD8+ CD103+ CD25hi Foxp3+ Tregs from human CBMC.  相似文献   

2.
The role of mast cells (MCs) in the generation of adaptive immune responses especially in the transplant immune responses is far from being resolved. It is reported that mast cells are essential intermediaries in regulatory T cell (Treg) transplant tolerance, but the mechanism has not been clarified. To investigate whether bone marrow‐derived mast cells (BMMCs) can induce Tregs by expressing transforming growth factor beta 1 (TGF‐β1) in vitro, bone marrow cells obtained from C57BL/6 (H‐2b) mice were cultured with interleukin (IL)‐3 (10 ng/ml) and stem cell factor (SCF) (10 ng/ml) for 4 weeks. The purity of BMMCs was measured by flow cytometry. The BMMCs were then co‐cultured with C57BL/6 T cells at ratios of 1:2, 1:1 and 2:1. Anti‐CD3, anti‐CD28 and IL‐2 were administered into the co‐culture system with (experiment groups) or without (control groups) TGF‐β1 neutralizing antibody. The percentages of CD4+CD25+forkhead box P3 (FoxP3)+ Tregs in the co‐cultured system were analysed by flow cytometry on day 5. The Treg percentages were significantly higher in all the experiment groups compared to the control groups. These changes were deduced by applying TGF‐β1 neutralizing antibody into the co‐culture system. Our results indicated that the CD4+ T cells can be induced into CD4+CD25+FoxP3+ T cells by BMMCs via TGF‐β1.  相似文献   

3.
The transfer of alloreactive regulatory T (aTreg) cells into transplant recipients represents an attractive treatment option to improve long‐term graft acceptance. We recently described a protocol for the generation of aTreg cells in mice using a nondepleting anti‐CD4 antibody (aCD4). Here, we investigated whether adding TGF‐β and retinoic acid (RA) or rapamycin (Rapa) can further improve aTreg‐cell generation and function. Murine CD4+ T cells were cultured with allogeneic B cells in the presence of aCD4 alone, aCD4+TGF‐β+RA or aCD4+Rapa. Addition of TGF‐β+RA or Rapa resulted in an increase of CD25+Foxp3+‐expressing T cells. Expression of CD40L and production of IFN‐γ and IL‐17 was abolished in aCD4+TGF‐β+RA aTreg cells. Additionally, aCD4+TGF‐β+RA aTreg cells showed the highest level of Helios and Neuropilin‐1 co‐expression. Although CD25+Foxp3+ cells from all culture conditions displayed complete demethylation of the Treg‐specific demethylated region, aCD4+TGF‐β+RA Treg cells showed the most stable Foxp3 expression upon restimulation. Consequently, aCD4+TGF‐β+RA aTreg cells suppressed effector T‐cell differentiation more effectively in comparison to aTreg cells harvested from all other cultures, and furthermore inhibited acute graft versus host disease and especially skin transplant rejection. Thus, addition of TGF‐β+RA seems to be superior over Rapa in stabilising the phenotype and functional capacity of aTreg cells.  相似文献   

4.
HCV is remarkable at disrupting human immunity to establish chronic infection. The accumulation of Treg cells at the site of infection and upregulation of inhibitory signaling pathways (such as T‐cell Ig and mucin domain protein‐3 (Tim‐3) and galectin‐9 (Gal‐9)) play pivotal roles in suppressing antiviral effector T (Teff) cells that are essential for viral clearance. While Tim‐3/Gal‐9 interactions have been shown to negatively regulate Teff cells, their role in regulating Treg cells is poorly understood. To explore how Tim‐3/Gal‐9 interactions regulate HCV‐mediated Treg‐cell development, here we provide pilot data showing that HCV‐infected human hepatocytes express higher levels of Gal‐9 and TGF‐β, and upregulate Tim‐3 expression and regulatory cytokines TGF‐β/IL‐10 in co‐cultured human CD4+ T cells, driving conventional CD4+ T cells into CD25+Foxp3+ Treg cells. Additionally, recombinant Gal‐9 protein can transform TCR‐activated CD4+ T cells into Foxp3+ Treg cells in a dose‐dependent manner. Importantly, blocking Tim‐3/Gal‐9 ligations abrogates HCV‐mediated Treg‐cell induction by HCV‐infected hepatocytes, suggesting that Tim‐3/Gal‐9 interactions may regulate human Foxp3+ Treg‐cell development and function during HCV infection.  相似文献   

5.
Staphylococcal enterotoxin B (SEB) activates T cells via non‐canonical signalling through the T cell receptor and is an established model for T cell unresponsiveness in vivo. In this study, we sought to characterize the suppressive qualities of SEB‐exposed CD4+ T cells and correlate this with genetic signatures of anergy and suppression. SEB‐exposed CD25+ and CD25Vβ8+CD4+ T cells expressed forkhead box P3 (FoxP3) at levels comparable to naive CD25+ T regulatory cells and were enriched after exposure in vivo. Gene related to anergy in lymphocytes (GRAIL), an anergy‐related E3 ubiquitin ligase, was up‐regulated in the SEB‐exposed CD25+ and CD25FoxP3+Vβ8+CD4+ T cells and FoxP3CD25Vβ8+CD4+ T cells, suggesting that GRAIL may be important for dominant and recessive tolerance. The SEB‐exposed FoxP3+GRAIL+ T cells were highly suppressive and non‐proliferative independent of CD25 expression level and via a glucocorticoid‐induced tumour necrosis factor R‐related protein‐independent mechanism, whereas naive T regulatory cells were non‐suppressive and partially proliferative with SEB activation in vitro. Lastly, adoptive transfer of conventional T cells revealed that induction of FoxP3+ regulatory cells is not operational in this model system. These data provide a novel paradigm for chronic non‐canonical T cell receptor engagement leading to highly suppressive FoxP3+GRAIL+CD4+ T cells.  相似文献   

6.
In the ectopic lymphoid‐like structures present in chronic inflammatory conditions such as rheumatoid arthritis, a subset of human effector memory CD4+ T cells that lacks features of follicular helper T (Tfh) cells produces CXCL13. Here, we report that TGF‐β induces the differentiation of human CXCL13‐producing CD4+ T cells from naïve CD4+ T cells. The TGF‐β‐induced CXCL13‐producing CD4+ T cells do not express CXCR5, B‐cell lymphoma 6 (BCL6), and other Tfh‐cell markers. Furthermore, expression levels of CD25 (IL‐2Rα) in CXCL13‐producing CD4+ T cells are significantly lower than those in FoxP3+ in vitro induced Treg cells. Consistent with this, neutralization of IL‐2 and knockdown of STAT5 clearly upregulate CXCL13 production by CD4+ T cells, while downregulating the expression of FoxP3. Furthermore, overexpression of FoxP3 in naïve CD4+ T cells downregulates CXCL13 production, and knockdown of FoxP3 fails to inhibit the differentiation of CXCL13‐producing CD4+ T cells. As reported in rheumatoid arthritis, proinflammatory cytokines enhance secondary CXCL13 production from reactivated CXCL13‐producing CD4+ T cells. Our findings demonstrate that CXCL13‐producing CD4+ T cells lacking Tfh‐cell features differentiate via TGF‐β signaling but not via FoxP3, and exert their function in IL‐2‐limited but TGF‐β‐rich and proinflammatory cytokine‐rich inflammatory conditions.  相似文献   

7.
Pneumoconiosis is caused by the accumulation of airborne dust in the lung, which stimulates a progressive inflammatory response that ultimately results in lung fibrosis and respiratory failure. It is possible that regulatory cells in the immune system could function to suppress inflammation and possibly slow or reverse disease progression. However, results in this study suggest that in pneumoconiosis patients, the regulatory T cells (Tregs) and B cells are functionally impaired. First, we found that pneumoconiosis patients presented an upregulation of CD4+CD25+ T cells compared to controls, whereas the CD4+CD25+ and CD4+CD25hi T cells were enriched with Th1‐ and Th17‐like cells but not Foxp3‐expressing Treg cells and evidenced by significantly higher T‐bet, interferon (IFN)‐γ, and interleukin (IL)‐17 expression but lower Foxp3 and transforming growth factor (TGF)‐β expression. Regarding the CD4+CD25hi T‐cell subset, the frequency of this cell type in pneumoconiosis patients was significantly reduced compared to controls, together with a reduction in Foxp3 and TGF‐β and an enrichment in T‐bet, RORγt, IFN‐γ, and IL‐17. This skewing toward Th1 and Th17 types of inflammation could be driven by monocytes and B cells, since after depleting CD14+ monocytes and CD19+ B cells, the levels of IFN‐γ and IL‐17 were significantly decreased. Whole peripheral blood mononuclear cells and isolated monocytes and B cells in pneumoconiosis patients also presented reduced capacity of TGF‐β secretion. Furthermore, monocytes and B cells from pneumoconiosis patients presented reduced capacity in inducing Foxp3 upregulation, a function that could be rescued by exogenous TGF‐β. Together, these data indicated a potential pathway for the progression of pneumoconiosis through a loss of Foxp3+ Treg cells associated with impaired TGF‐β secretion.  相似文献   

8.
9.
Intravenous (i.v.) injection of a soluble myelin antigen can induce tolerance, which effectively ameliorates experimental autoimmune encephalomyelitis (EAE). We have previously shown that i.v. myelin oligodendrocyte glycoprotein (MOG) induces tolerance in EAE and expands a subpopulation of tolerogenic CD11c+CD11b+ dendritic cells (DCs) with an immature phenotype having low expression of IA and co‐stimulatory molecules CD40, CD86, and CD80. Here, we further investigate the role of tolerogenic DCs in i.v. tolerance by injecting clodronate‐loaded liposomes, which selectively deplete CD11c+CD11b+ and immature DCs, but not CD11c+CD8+ DCs and mature DCs. I.v. MOG‐induced suppression of EAE was partially, yet significantly, blocked by CD11c+CD11b+ DC depletion. While i.v. MOG inhibited IA, CD40, CD80, CD86 expression and induced TGF‐β, IL‐27, IL‐10 production in CD11c+CD11b+ DCs, these effects were abrogated after injection of clodronate‐loaded liposomes. Depletion of CD11c+CD11b+ DCs also precluded i.v. autoantigen‐induced T‐cell tolerance, such as decreased production of IL‐2, IFN‐γ, IL‐17 and numbers of IL‐2+, IFN‐γ+, and IL‐17+ CD4+ T cells, as well as an increased proportion of CD4+CD25+Foxp3+ regulatory T cells and CD4+IL‐10+Foxp3? Tr1 cells. CD11c+CD11b+ DCs, through low expression of IA and costimulatory molecules as well as high expression of TGF‐β, IL‐27, and IL‐10, play an important role in i.v. tolerance‐induced EAE suppression.  相似文献   

10.
11.
Due to their immunomodulatory properties, mesenchymal stem cells (MSC) are interesting candidates for cellular therapy for autoimmune disorders, graft‐versus‐host disease and allograft rejection. MSC inhibit the proliferation of effector T cells and induce T cells with a regulatory phenotype. So far it is unknown whether human MSC‐induced CD4+CD25+CD127forkhead box P3 (FoxP3)+ T cells are functional and whether they originate from effector T cells or represent expanded natural regulatory T cells (nTreg). Perirenal adipose‐tissue derived MSC (ASC) obtained from kidney donors induced a 2·1‐fold increase in the percentage of CD25+CD127FoxP3+ cells within the CD4+ T cell population from allostimulated CD25–/dim cells. Interleukin (IL)‐2 receptor blocking prevented this induction. The ASC‐induced T cells (iTreg) inhibited effector cell proliferation as effectively as nTreg. The vast majority of cells within the iTreg fraction had a methylated FOXP3 gene Treg‐specific demethylated region (TSDR) indicating that they were not of nTreg origin. In conclusion, ASC induce Treg from effector T cells. These iTreg have immunosuppressive capacities comparable to those of nTreg. Their induction is IL‐2 pathway‐dependent. The dual effect of MSC of inhibiting immune cell proliferation while generating de‐novo immunosuppressive cells emphasizes their potential as cellular immunotherapeutic agent.  相似文献   

12.
13.
14.
Bone marrow mesenchymal stem cells (BMSCs) inhibit immune cell responsiveness, and especially of T lymphocytes. We showed that BMSCs markedly inhibited the proliferation and cytokine production by CD8+ T cells by a cell‐to‐cell contact phenomenon and secretion of soluble factors. BMSCs down‐regulate the expression of natural killer group 2, member D protein (NKG2D) receptors on CD8+ T cells when co‐cultured with them. Moreover, CD8+ T cells that express low levels of NKG2D had impaired proliferation after triggering by a mitogen. The major histocompatibility complex (MHC) class I chain‐related (MIC) A/B molecule, which is a typical ligand for NKG2D, was expressed on BMSCs, and caused dampening of cell proliferation. Monoclonal antibody blocking experiments targeted to MIC A/B impaired CD8+ T cell function, as evaluated by proliferation and cytokine production. In addition, the production of prostaglandin E2 (PGE2), indoleamine 2, 3‐dioxygenase (IDO) and transforming growth factor (TGF)‐β1 were increased when BMSCs were co‐cultured with CD8+ T cells. The addition of specific inhibitors against PGE2, IDO and TGF‐β partially restored the proliferation of CD8+ T cells. Our results suggest that BMSCs suppress CD8+ T cell‐mediated activation by suppressing NKG2D expression and secretion of PGE2, IDO and TGF‐β. Our observations further confirm the feasibility of BMSCs as a potential adoptive cellular therapy in immune‐mediated diseases such as graft‐versus‐host disease (GVHD).  相似文献   

15.
Although CD4+/CD25+ T regulatory cells (Tregs) are a potentially powerful tool in bone marrow transplantation, a prerequisite for clinical use is a cell‐separation strategy complying with good manufacturing practice guidelines. We isolated Tregs from standard leukapheresis products using double‐negative selection (anti‐CD8 and anti‐CD19 monoclonal antibodies) followed by positive selection (anti‐CD25 monoclonal antibody). The final cell fraction (CD4+/CD25+) showed a mean purity of 93·6% ± 1·1. Recovery efficiency was 81·52% ± 7·4. The CD4+/CD25+bright cells were 28·4% ± 6·8. The CD4+/CD25+ fraction contained a mean of 51·9% ± 15·1 FoxP3 cells and a mean of 18·9% ± 11·5 CD127 cells. Increased FoxP3 and depleted CD127 mRNAs in CD4+CD25+FoxP3+ cells were in line with flow cytometric results. In Vβ spectratyping the complexity scores of CD4+/CD25+ cells and CD4+/CD25 cells were not significantly different, indicating that Tregs had a broad T cell receptor repertoire. The inhibition assay showed that CD4+/CD25+ cells inhibited CD4+/CD25 cells in a dose‐dependent manner (mean inhibition percentages: 72·4 ± 8·9 [ratio of T responder (Tresp) to Tregs, 1:2]; 60·8% ± 20·5 (ratio of Tresp to Tregs, 1:1); 25·6 ± 19·6 (ratio of Tresp to Tregs, 1:0·1)). Our study shows that negative/positive Treg selection, performed using the CliniMACS device and reagents, enriches significantly CD4+CD25+FoxP3+ cells endowed with immunosuppressive capacities. The CD4+CD25+FoxP3+ population is a source of natural Treg cells that are depleted of CD8+ and CD4+/CD25 reacting clones which are potentially responsible for triggering graft‐versus‐host disease (GvHD). Cells isolated by means of this approach might be used in allogeneic haematopoietic cell transplantation to facilitate engraftment and reduce the incidence and severity of GvHD without abrogating the potential graft‐versus‐tumour effect.  相似文献   

16.
17.
18.
In order to elucidate the mechanisms by which tumour‐specific CD4+ T‐cell responses are impaired during tumour development, an attempt was made to identify factors which impair CD4+ T‐cell responses at a late tumour‐bearing stage. Plasma from mice bearing B16 melanoma for 30 days (plasma d30) showed a more profound immunosuppressive effect on the in vitro proliferation of unrelated antigen‐specific CD4+ T cells in the presence of both antigen and antigen‐presenting cells (APC) than plasma from naïve mice. The level of plasma transforming growth factor (TGF)‐β was elevated in mice bearing B16 melanoma for 30 days compared with naïve mice, and the suppressive effect of plasma d30 was partially diminished by the neutralization of TGF‐β. Interestingly, immunoglobulin (IgG)‐bound TGF‐β, but not IgG‐unbound TGF‐β, in plasma d30 was suggested to be responsible for the immunosuppressive activity. In addition, no suppressive effect of plasma d30 was observed when antigen was added as a class II peptide, thus suggesting that the impaired proliferation of CD4+ T cells in the presence of plasma d30 was due to a dysfunction of antigen uptake/processing by APC. Furthermore, dissociation between IgG and TGF‐β resulted in a loss of the suppressive activity of plasma d30. Taken together, these results suggest that circulating IgG‐bound TGF‐β is, at least in part, responsible for the impaired responses of CD4+ T cells at the late tumour‐bearing stage by suppressing antigen uptake/ processing by APC.  相似文献   

19.
The inhibitory receptor killer cell lectin‐like receptor G1 (KLRG1) and the integrin αE (CD103) are expressed by CD8+ T cells and both are specific for E‐cadherin. However, KLRG1 ligation by E‐cadherin inhibits effector T‐cell function, whereas binding of CD103 to E‐cadherin enhances cell–cell interaction and promotes target cell lysis. Here, we demonstrate that KLRG1 and CD103 expression in CD8+ T cells from untreated and virus‐infected mice are mutually exclusive. Inverse correlation of KLRG1 and CD103 expression was also found in human CD8+ T cells‐infiltrating hepatocellular carcinomas. As TGF‐β is known to induce CD103 expression in CD8+ T cells, we examined whether this cytokine also regulates KLRG1 expression. Indeed, our data further reveal that TGF‐β signaling in mouse as well as in human CD8+ T cells downregulates KLRG1 expression. This finding provides a rationale for the reciprocal expression of KLRG1 and CD103 in different CD8+ T‐cell subsets. In addition, it points to the limitation of KLRG1 as a marker for terminally differentiated CD8+ T cells if lymphocytes from tissues expressing high levels of TGF‐β are analyzed.  相似文献   

20.
CD4+CD25+ regulatory T cells (Tregs) are critical for the peripheral immune tolerance. Understanding the signals for the generation of Tregs is important for the clinical immunotherapy, but only limited progress has been made on obtaining enough peripheral Tregs. The aim of this study was to evaluate the role of trichosanthin (Tk) extracted from Chinese medicinal herb Trichosanthes kirilowi on the function of Tregs in vitro and in vivo. We reported here that Tk is needed for the expansion of freshly isolated CD4+CD25+Tregs (nTregs) into Tk‐expanded CD4+CD25+Tregs (Tk‐Tregs) through up‐regulating CD25 and Foxp3 expression. The dose–response analyses indicated that 100 ng/ml Tk was the most appropriate dose. The result of real‐time PCR showed that Tk‐Tregs expressed 1.5‐fold higher levels of Foxp3 than those observed in nTregs. Tk ‐ Tregs markedly suppressed activation of effector T cells at a suppressor/responder ratio of 1:1, 1:2, 1:4, 1:8 or 1:16, and their effect was dose dependent. Moreover, Tk‐Tregs secreted more immunosuppressive cytokines interleukin (IL)‐10 and transforming growth factor (TGF)‐β1 after stimulating with antigen and antigen‐presenting cells (APC). Transwell experiments showed that not only cell‐to‐cell contact but also soluble cytokines were involved in suppressive mechanism of Tk‐Tregs. And Tk‐Tregs were more efficient in suppressing CD25?T cell response to specific antigen than to irrelative antigen. Most importantly, it was revealed for the first time that Tk‐Tregs could prolong the survival duration of mice with acute graft‐versus‐host disease (aGVHD). In conclusion, the study suggests a possible therapeutic potential of Tk‐Tregs for clinical treatment on aGVHD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号