首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 919 毫秒
1.
CD16+ monocytes, identified as a minor population of monocytes in human peripheral blood, have been implicated in several inflammatory diseases, including rheumatoid arthritis (RA). Fractalkine (FKN, CX3CL1), a member of the CX3 C subfamily, is induced by pro-inflammatory cytokines, while a receptor for FKN, CX3CR1, is capable of mediating both leukocyte migration and firm adhesion. Here, we investigated the role of FKN and CX3CR1 in activation of CD16+ monocytes and their recruitment into synovial tissues in RA patients. High levels of soluble FKN were detected in the synovial fluid and sera of RA patients. Circulating CD16+ monocytes showed a higher level of CX3CR1 expression than CD16- monocytes in both RA patients and healthy subjects. High level expression of CX3CR1 was also seen in CD16+ monocytes localized to the lining layer in RA synovial tissue. In the in vitro culture experiments, IL-10 induced CX3CR1 expression on the surface of monocytes, and TNFalpha induced membrane-bound FKN as well as soluble FKN expression in synovial fibroblasts. Moreover, soluble FKN was capable of inducing IL-1beta and IL-6 by activated monocytes. These results suggest that FKN might preferentially mediate migration and recruitment of CD16+ monocytes, and might contribute to synovial tissue inflammation.  相似文献   

2.
3.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) transmits anti-apoptotic signals in eosinophils and is involved in tissue eosinophilia at the site of allergic inflammation. We determined whether phosphatidylinositol 3-kinase (PI 3-kinase) and mitogen-activated protein kinase (MAP kinase) are involved in anti-apoptotic signals of GM-CSF in eosinophils. GM-CSF phosphorylated Akt, a downstream component of PI 3-kinase, and MAP kinases (ERK1 and ERK2) at 10 min after stimulation in eosinophils. GM-CSF prevented eosinophil apoptosis and sustained its survival during the 5-day culture. However, neither two PI-3 kinase inhibitors, wortmannin and LY294002, nor MEK inhibitor PD98059 inhibited GM-CSF-induced survival of eosinophils, although wortmannin and PD98059 inhibited GM-CSF-induced Akt phosphorylation and MAP kinase activation in eosinophils, respectively. In contrast, JAK2 inhibitor AG-490 inhibited both GM-CSF-induced JAK2 phosphorylation and cell survival in eosinophils. These results indicate that activation of JAK2, but not activation of PI 3-kinase/Akt and MAP kinase pathways, is critical for anti-apoptotic signals of GM-CSF in human eosinophils. Our findings suggest that manipulation of JAK2 activation would be useful for the treatment of allergic disorders.  相似文献   

4.
Enteropathogenic Escherichia coli (EPEC) infection of T84 cells induces a decrease in transepithelial resistance, the formation of attaching and effacing (A/E) lesions, and cytokine production. The purpose of this study was to investigate the ability of EPEC to activate mitogen-activated protein (MAP) kinases in T84 cells and to correlate these signaling pathways with EPEC-induced cell responses. T84 cells were infected with either the wild-type (WT) EPEC strain E2348/69 or two mutants, intimin deletion strain CVD206 (deltaeaeA) and type III secretion apparatus mutant strain CVD452 (deltaescN::aphA). Infection of T84 cells with WT but not mutant EPEC strains induced tyrosine phosphorylation of several proteins in T84 cells, including the p46 and p52 Shc isoforms. Kinetics studies revealed that ERK1/2, p38, and c-Jun N-terminal kinase (JNK) MAP kinases were activated in cells infected with strain E2348/69 but not with the mutant strains. Inhibition of MAP kinases with PD98059 or SB203580 did not affect the EPEC-induced decrease in transepithelial resistance or actin accumulation beneath the WT bacteria, but these two inhibitors significantly decreased interleukin-8 (IL-8) synthesis. We demonstrate that EPEC induces activation of ERK1/2, p38, and JNK cascades, which all depend on bacterial adhesion and expression of the bacterial type III secretion system. ERK1/2 and p38 MAP kinases were equally implicated in IL-8 expression but did not participate in A/E lesion formation or transepithelial resistance modification, indicating that the signaling pathways involved in these events are distinct.  相似文献   

5.
Sauchinone has been known to have anti-inflammatory and antioxidant effects. We determined whether sauchinone is beneficial in regional myocardial ischemia/reperfusion (I/R) injury. Rats were subjected to 20 min occlusion of the left anterior descending coronary artery, followed by 2 hr reperfusion. Sauchinone (10 mg/kg) was administered intraperitoneally 30 min before the onset of ischemia. The infarct size was measured 2 hr after resuming the perfusion. The expression of cell death kinases (p38 and JNK) and reperfusion injury salvage kinases (phosphatidylinositol-3-OH kinases-Akt, extra-cellular signal-regulated kinases [ERK1/2])/glycogen synthase kinase (GSK)-3β was determined 5 min after resuming the perfusion. Sauchinone significantly reduced the infarct size (29.0% ± 5.3% in the sauchinone group vs 44.4% ± 6.1% in the control, P < 0.05). Accordingly, the phosphorylation of JNK and p38 was significantly attenuated, while that of ERK1/2, Akt and GSK-3β was not affected. It is suggested that sauchinone protects against regional myocardial I/R injury through inhibition of phosphorylation of p38 and JNK death signaling pathways.  相似文献   

6.
7.
The activity of beta-secretase (BACE1), the endo-protease essential for the production of amyloid beta (Abeta) peptides, is increased in brain of late-onset sporadic Alzheimer's disease (AD), and oxidative stress is the potential cause of this event. Oxidative stress up-regulates the expression and the activity of BACE1 in cellular and animal models, through a mechanism that involves the increase of gamma-secretase cleavage on APP and the activation of c-jun N-terminal kinase/activator protein 1 (JNK/AP1) pathway. We further characterized the cellular pathways that control BACE1 expression under oxidative stress. We investigated the involvement of extracellular signal regulated MAP kinase (ERK1/2) pathway in the regulation of BACE1 expression, since it has been recently shown that ERK1/2 is an endogenous regulator of the gamma-secretase activity. We found that ERK1/2 pathway negatively modulates BACE1 expression and activity. Moreover, we observed that conditions that abrogate the gamma-secretase activity favor the activation of signalling pathways that promote cell survival, such as ERK1/2 and the serine/threonine kinase Akt/protein kinase B (Akt). These data suggest that the positive or negative cellular responses to oxidative stress parallel the activities of the beta- and the gamma-secretase. ERK1/2 and JNK pathways are involved in this bipartite response, which can lead to neurodegeneration or neuroprotection depending on the cellular and environmental conditions or cooperation with other signalling pathways such as Akt cascade.  相似文献   

8.
Phosphorylation of the mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase 1 (ERK1) and extracellular signal-regulated kinase 2 (ERK2), induced by resveratrol, a natural antioxidant present in grapes and wine, has been studied in vitro on undifferentiated and differentiated (induction by retinoic acid) SH-SY5Y human neuroblastoma cells. In undifferentiated cells resveratrol 1 microM induced phosphorylation of ERK1 and ERK2, which was already evident at 2 min, peaked at 10 min and persisted at 30 min. A wide range (from 1 pM to 10 microM) of resveratrol concentrations were able to induce phosphorylation of ERK1 and ERK2, while higher concentrations (50-100 microM) inhibited MAP kinases phosphorylation. In retinoic acid (RA) differentiated cells resveratrol (1 microM) induced an evident increase in ERK1 and ERK2 phosphorylation. This study demonstrates that resveratrol, even at very low concentrations, may have a biological effect on neuron-like cells.  相似文献   

9.
H4/ICOS is a costimulatory molecule related to CD28. Its effects on early TCR signals have been analyzed in mouse CD4(+) Th2 cells, expressing H4/ICOS at higher levels than Th1 clones. Anti-H4/ICOS antibodies strongly enhanced CD3-mediated tyrosine phosphorylation of ZAP-70, zeta, or Vav, as well as extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 MAP kinase activation in these cells. The association of phosphoinositide 3-kinase (PI-3K) to H4/ICOS was enhanced by H4/ICOS cross-linking, and PI-3K inhibitors inhibited ERK and JNK activation and IL-4/IL-10 secretion, but not p38 MAP kinase or ZAP-70 activation. H4/ICOS-mediated activation of JNK, but not ERK or p38, is partially dependent on the expression of CD4 by the cells, whereas H4/ICOS costimulation is partially independent on CD28 expression. Cytochalasin D, an inhibitor of actin polymerization, inhibited ZAP-70, MAP kinase activation, or IL-4/IL-10 secretion. Neither cyclosporin A nor inhibitors of PKC produced detectable inhibition of ZAP-70 phosphorylation or MAP kinase activation in these Th2 cells. Cyclosporin A strongly inhibited IL-4, but not IL-10 secretion. ERK or JNKinhibitors partially inhibited IL-4 and IL-10 secretion, while PKC or p38 inhibitors had no significant effects on IL-4 or IL-10 secretion. Taken together, our data show clear similarities of costimulation mechanisms between H4/ICOS and CD28 during the early steps of TCR activation.  相似文献   

10.
BACKGROUND: Myofibroblasts play a role in the airway remodeling response of bronchial asthma. IL-4 and IL-13 are possibly involved in the airway remodeling response by inducing extracellular matrix production by fibroblasts. However, the roles of these cytokines in inducing the phenotypic modulation of human lung fibroblasts (HLFs) to myofibroblasts and the intracellular signal have not been determined. OBJECTIVE: We examined the effect of IL-4 and IL-13 on inducing the phenotypic modulation of HLFs to myofibroblasts characterized by alpha-smooth muscle actin and examined the role of the mitogen-activated protein (MAP) kinase superfamily in inducing the myofibroblastic phenotype of the HLF to clarify these issues. METHODS: Phosphorylation and activities of c-Jun NH(2)-terminal kinase (JNK), p38 MAP kinase, and extracellular signal-regulated kinase (Erk) were examined by using Western blotting and in vitro kinase assay. Expression of alpha-smooth muscle actin in IL-4- and IL-13-stimulated HLFs was analyzed by means of Western blotting. RESULTS: The results showed that (1) IL-4 and IL-13 increased alpha-smooth muscle actin expression in a dose- and time-dependent manner; (2) IL-4 and IL-13 induced increases in JNK and Erk phosphorylation and activity but not p38 MAP kinase activity; (3) CEP-1347 and PD 98059 attenuated IL-4- and IL13-induced JNK and Erk activity, respectively; and (4) CEP-1347, but not PD 98059, attenuated IL-4- and IL-13-induced alpha-smooth muscle actin expression. CONCLUSION: These results indicate that IL-4 and IL-13 are capable of inducing the phenotypic modulation of HLFs to myofibroblasts, and JNK, but not p38 MAP kinase and Erk, regulates IL-4- and IL-13-induced phenotypic modulation of HLFs to myofibroblasts.  相似文献   

11.
S100A9 belongs to the S100 family of calcium‐binding proteins and plays a key role in many inflammatory conditions. Recent studies have found that S100A9 was elevated significantly in the bronchoalveolar lavage fluid of idiopathic pulmonary fibrosis patients, and might be a biomarker for fibrotic interstitial lung diseases. However, the exact function of S100A9 in pulmonary fibrosis needs further studies. We performed this study to investigate the effect of S100A9 on human embryo lung fibroblast (HLF) proliferation and production of cytokines and collagen, providing new insights into the possible mechanism. S100A9 promoted proliferation of fibroblasts and up‐regulated expression of both proinflammatory cytokines interleukin (IL)‐6, IL‐8, IL‐1β and collagen type III. S100A9 also induced HLF cells to produce α‐smooth muscle actin (α‐SMA) and receptor for advanced glycation end‐product (RAGE). In addition, S100A9 caused a significant increase in extracellular‐regulated kinase (ERK)1/2 mitogen‐activated protein kinase (MAPK) phosphorylation, while the status of p38 and c‐Jun N‐terminal kinase (JNK) phosphorylation remained unchanged. Treatment of cells with S100A9 also enhanced nuclear factor kappa B (NF‐κB) activation. RAGE blocking antibody pretreatment inhibited the S100A9‐induced cell proliferation, cytokine production and pathway phosphorylation. S100A9‐mediated cell activation was suppressed significantly by ERK1/2 MAPK inhibitor and NF‐κB inhibitor. In conclusion, S100A9 promoted HLF cell growth and induced cells to secret proinflammatory cytokines and collagen through RAGE signalling and activation of ERK1/2 MAPK and NF‐κB pathways.  相似文献   

12.
Leflunomide, an isoxazol derivative structurally unrelated to other immunomodulatory drugs, has proven to be efficacious in the treatment of rheumatoid arthritis (RA). This study was conducted to elucidate the mechanism by which leflunomide mediated antirheumatic effects. We investigated the effects of A77 1726, leflunomide's active metabolite, on mitogen-activated protein kinase (MAPK) activation in IL-1beta-stimulated rheumatoid synovial fibroblasts. The effects of A77 1726 on the secretion of matrix metalloproteinases (MMPs) from rheumatoid synovial fibroblasts were also examined. A77 1726 partially suppressed IL-1beta-induced ERK1/2 and p38 kinase activation. In contrast, A77 1726 efficiently suppressed IL-1beta-stimulated JNK1/2 kinase activation. Although no suppressive effect was demonstrated on MMP-2, A77 1726 markedly inhibited MMP-1, 3, and 13 secretions from IL-1beta-stimulated rheumatoid synovial fibroblasts. Tissue inhibitor of metalloproteinases-1 (TIMP-1) was constitutively produced from rheumatoid synovial fibroblasts and the suppressive effects of A77 1726 on TIMP-1 production were minimal. Our results suggest that the suppression of the MAPK signalling pathway and MMP synthesis in rheumatoid synovial fibroblasts is a possible mechanism for the inhibitory activity of leflunomide against rheumatoid arthritis.  相似文献   

13.
14.
Hyperoxia (fraction of inspired oxygen = 95%) induces death of lung epithelial cells. The duration of cell survival in the setting of hyperoxia depends on hyperoxia-induced activation of intracellular survival pathways. Two survival pathways with known effects on lung epithelial cells are the propidium iodide 3-kinase/Akt and extracellular signal-regulated kinase (ERK)/mitogen-activated protein (MAP) kinase pathways. We investigated the effect of hyperoxia on activity of both the Akt and ERK pathways in the A549 lung epithelial cell line. Hyperoxia-exposed cells show progressive loss of Akt activation and total Akt protein. Hyperoxia decreases Akt mRNA, consistent with the loss of total Akt. In addition, hyperoxia induces ERK activation. Inhibition of ERK with the MAP kinase kinase 1/2 inhibitor, U0126, shortens the survival time of cells in hyperoxia, suggesting that increased ERK activity partially compensates for the hyperoxia-induced Akt downregulation. Our findings show, for the first time, that hyperoxia has divergent effects on two survival pathways (Akt and ERK), and that ERK activity compensates for the loss of the Akt survival effects, delaying the death of hyperoxia-exposed lung epithelial cells.  相似文献   

15.
16.
Cathepsin B (CB), an important proteinase that participates in joint destruction in rheumatoid arthritis (RA), exhibits higher expression in fibroblast‐like synoviocyte (FLS) of abnormal proliferative synovial tissues. Whether and how it affects the biological behaviours of RA‐FLS, such as migration and invasion, are poorly understood. In the present study, CB expression in synovial tissues of patients with RA and ostearthritis (OA) were measured by quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC), respectively. Stable depletion of endogenous CB was achieved by small interfering RNA (siRNA) transfection, and decrease of CB activity was acquired by using its specific inhibitor (CA074Me). The effects of CA074Me and RNA interference (RNAi) treatments on proliferation, migration, invasion, matrix metalloproteinase (MMP)‐2/‐9 expression, focal adhesion kinase (FAK) activation, and mitogen‐activated protein kinases (MAPKs) phosphorylation of FLS were analysed. In RA synovial tissues, CB was expressed at elevated levels compared with OA synovial tissues. CA074Me could inhibit invasion of FLS obtained from RA patients in an ex‐vivo invasion model. CA074Me and siRNA treatments suppressed the migration and invasion of FLS, reduced the activity, expression and mRNA level of MMP‐2, restrained the activation of FAK and reduced the expression of F‐actin. Moreover, CA074Me decreased the phosphorylation of P38 MAPK and c‐Jun N‐terminal kinase (JNK) in FLS, while siCB treatment reduced the phosphorylation of P38 but not JNK. CB substantially contributes to the invasive phenotype of FLS that leads to joint destruction in RA. This proteinase may show promise as a therapeutic target in inflammatory arthritis.  相似文献   

17.
BACKGROUND: Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules which associate with cadherins to form adherens junctions (AJs) in epithelial cells and fibroblasts. Nectin-1 and -3 are members of the nectin family which most strongly trans-interact, causing cell-cell adhesion. The trans-interaction between nectin-1 and -3 induces the activation of both Cdc42 and Rac small G proteins in epithelial cells. We studied the roles of Cdc42 and Rac activated in this way in L fibroblasts stably expressing both nectin-1 and E-cadherin (nectin-1-EL cells). RESULTS: The trans-interaction between nectin-1 and -3 induced the activation of Cdc42 and Rac in nectin-1-EL cells. Cdc42, and presumably Rac, activated in this way, induced the activation of c-Jun N-terminal kinase (JNK), but not p38 mitogen-activated protein (MAP) kinase or extracellular signal-regulated kinase (ERK). Cdc42 or Rac was not essential for the association of nectin-1 and E-cadherin to form AJs. Reorganization of the actin cytoskeleton was not required for the association of nectin-1 and E-cadherin. CONCLUSION: These results indicate that Cdc42 and Rac activated by the trans-interaction of nectins selectively induce the activation of JNK, but are not essential for the association of nectins and cadherin to form AJs in fibroblasts.  相似文献   

18.
The effects of Leishmania mexicana metacyclic promastigotes upon MAP kinase signalling in mouse bone marrow macrophages and subsequent expression of the disease regulatory proteins iNOS and COX-2 were studied. At a ratio of 5:1, promastigotes caused a marked increase in phosphorylation of the three major MAP kinases, ERK, p38 and JNK. MAP kinase signalling was substantially reduced in TLR-4(-/-) but not TLR-2(-/-) deficient macrophages and completely abolished in double TLR-2/4(-/-) macrophages. A similar outcome was observed using cysteine peptidase B deficient amastigotes. Furthermore, whilst promastigotes had no independent effect on iNOS or COX-2 expression, they prolonged the induction of these proteins stimulated by LPS and enhanced PGE(2) and NO production. Induction of COX-2 and iNOS was also TLR-4 dependent. Blockade of either PGE(2) or NO production with indomethacin or l-NAME reversed promastigote inhibition of LPS induced IL-12 production. Promastigotes also increased macrophage arginase-1 expression and enhanced arginase activity, both of which were substantially reduced in TLR-4 but not TLR-2 deficient macrophages. Surprisingly, arginase inhibition by Nor-NOHA also caused a reversal of promastigote mediated inhibition of macrophage IL-12 production. These data demonstrate for the first time the role of TLR-4 in mediating the effects of L. mexicana promastigotes on MAP kinase activation, up-regulation of COX-2, iNOS as well as arginase-1 expression in macrophages and further shows that PGE(2), NO and arginase activity all contribute substantially to the inhibition of host cell IL-12 production.  相似文献   

19.
目的: 研究肥厚心脏心室重塑及逆重塑过程中Akt/GSK3β、MAPKs和NF-κB信号通路的变化。方法:以Lewis大鼠行腹主动脉缩窄术,建立压力超负荷性心肌肥厚模型。将肥厚心脏移植到同源Lewis大鼠腹部,建立压力卸负荷模型。对各组心肌取材进行病理学评价。Western blotting法检测心肌组织中相关信号通路蛋白的表达。结果:在心肌肥厚大鼠心脏中Akt/GSK3β、MAPKs和NF-κB磷酸化水平均显著升高,移植卸负荷后除p38 MAPK和JNK外,其它蛋白磷酸化水平均显著降低。结论:肥厚心脏经异位移植卸负荷后产生逆重塑现象,Akt/GSK3β、ERK1/2和NF-κB信号通路的改变参与其中,该结果为临床心室逆重塑的研究提供了实验依据。  相似文献   

20.
Extracellular nucleotides regulate macrophage function via P2X nucleotide receptors that form ligand-gated ion channels. In particular, P2X7 activation is characterized by pore formation, membrane blebbing, and cytokine release. P2X7 is also linked to mitogen-activated protein kinases (MAPK) and Rho-dependent pathways, which are known to affect cytoskeletal structure in other systems. As cytoskeletal function is critical for macrophage behavior, we have tested the importance of these pathways in actin filament reorganization during P2X7 stimulation in RAW 264.7 macrophages. We observed that the P2X7 agonists adenosine 5'-triphosphate (ATP) and 3'-O-(4-benzoylbenzoyl) ATP (BzATP) stimulated actin reorganization and concomitant membrane blebbing within 5 min. Disruption of actin filaments with cytochalasin D attenuated membrane blebbing but not P2X7-dependent pore formation or extracellular-regulated kinase (ERK)1/ERK2 and p38 activation, suggesting that these latter processes do not require intact actin filaments. However, we provide evidence that p38 MAPK and Rho activation but not ERK1/ERK2 activation is important for P2X7-mediated actin reorganization and membrane blebbing. First, activation of p38 and Rho was detected within 5 min of BzATP treatment, which is coincident with membrane blebbing. Second, the p38 inhibitors SB202190 and SB203580 reduced nucleotide-induced blebbing and actin reorganization, whereas the MAPK kinase-1/2 inhibitor U0126, which blocks ERK1/ERK2 activation, had no discernable effect. Third, the Rho-selective inhibitor C3 exoenzyme and the Rho effector kinase, Rho-associated coiled-coil kinase, inhibitor Y-27632, markedly attenuated BzATP-stimulated actin reorganization and membrane blebbing. These data support a model wherein p38- and Rho-dependent pathways are critical for P2X7-dependent actin reorganization and membrane blebbing, thereby facilitating P2X7 involvement in macrophage inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号