首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is known that overlapping HIV‐1 peptides of different lengths can be presented by a given HLA class I molecule. However, the role of those peptides in CD8+ T cells recognition of HIV‐1‐infected cells remains unclear. Here we investigated the recognition of overlapping 8‐mer to 11‐mer peptides of Pol 155–165 by HLA‐B*54:01‐restricted CD8+ T cells. The analysis of ex vivo T cells using ELISPOT and tetramer binding assays showed that there were different patterns of CD8+ T‐cell responses to these peptides among chronically HIV‐1‐infected HLA‐B*54:01+ individuals, though the response to the 9‐mer peptide was the strongest among them. CD8+ T‐cell clones with TCRs specific for the 9‐mer, 10‐mer, and/or 11‐mer peptides effectively killed HIV‐1‐infected cells. Together, these results suggest that the 9‐mer and 10‐mer peptides could be predominantly presented by HLA‐B*54:01, though it remains possible that the 11‐mer peptide was also presented by this HLA allele. The present study demonstrates effective CD8+ T‐cell recognition of HIV‐1‐infected cells via presentation of multiple overlapping HIV‐1 peptides and cross‐recognition by the CD8+ T cells.  相似文献   

2.
While Burkitt lymphoma (BL) has a well‐known defect in HLA class I‐mediated antigen presentation, the exact role of BL‐associated HLA class II in generating a poor CD4+ T‐cell response remains unresolved. Here, we found that BL cells are deficient in their ability to optimally stimulate CD4+ T cells via the HLA class II pathway. This defect in CD4+ T‐cell recognition was not associated with low levels of co‐stimulatory molecules on BL cells, as addition of external co‐stimulation failed to elicit CD4+ T‐cell activation by BL. Further, the defect was not caused by faulty antigen/class II interaction, because antigenic peptides bound with measurable affinity to BL‐associated class II molecules. Interestingly, functional class II–peptide complexes were formed at acidic pH 5·5, which restored immune recognition. Acidic buffer (pH 5·5) eluate from BL cells contained molecules that impaired class II‐mediated antigen presentation and CD4+ T‐cell recognition. Biochemical analysis showed that these molecules were greater than 30 000 molecular weight in size, and proteinaceous in nature. In addition, BL was found to have decreased expression of a 47 000 molecular weight enolase‐like molecule that enhances class II‐mediated antigen presentation in B cells, macrophages and dendritic cells, but not in BL cells. These findings demonstrate that BL likely has multiple defects in HLA class II‐mediated antigen presentation and immune recognition, which may be exploited for future immunotherapies.  相似文献   

3.
In 40% of cases of classical Hodgkin lymphoma (cHL), Epstein–Barr virus (EBV) latency‐II antigens [EBV nuclear antigen 1 (EBNA1)/latent membrane protein (LMP)1/LMP2A] are present (EBV+cHL) in the malignant cells and antigen presentation is intact. Previous studies have shown consistently that HLA‐A*02 is protective in EBV+cHL, yet its role in disease pathogenesis is unknown. To explore the basis for this observation, gene expression was assessed in 33 cHL nodes. Interestingly, CD8 and LMP2A expression were correlated strongly and, for a given LMP2A level, CD8 was elevated markedly in HLA‐A*02 versus HLA‐A*02+ EBV+cHL patients, suggesting that LMP2A‐specific CD8+ T cell anti‐tumoral immunity may be relatively ineffective in HLA‐A*02 EBV+cHL. To ascertain the impact of HLA class I on EBV latency antigen‐specific immunodominance, we used a stepwise functional T cell approach. In newly diagnosed EBV+cHL, the magnitude of ex‐vivo LMP1/2A‐specific CD8+ T cell responses was elevated in HLA‐A*02+ patients. Furthermore, in a controlled in‐vitro assay, LMP2A‐specific CD8+ T cells from healthy HLA‐A*02 heterozygotes expanded to a greater extent with HLA‐A*02‐restricted compared to non‐HLA‐A*02‐restricted cell lines. In an extensive analysis of HLA class I‐restricted immunity, immunodominant EBNA3A/3B/3C‐specific CD8+ T cell responses were stimulated by numerous HLA class I molecules, whereas the subdominant LMP1/2A‐specific responses were confined largely to HLA‐A*02. Our results demonstrate that HLA‐A*02 mediates a modest, but none the less stronger, EBV‐specific CD8+ T cell response than non‐HLA‐A*02 alleles, an effect confined to EBV latency‐II antigens. Thus, the protective effect of HLA‐A*02 against EBV+cHL is not a surrogate association, but reflects the impact of HLA class I on EBV latency‐II antigen‐specific CD8+ T cell hierarchies.  相似文献   

4.
Major histocompatibility complex (MHC) class I restricted cytotoxic T lymphocytes (CTL) are known to play an important role in the control of Mycobacterium tuberculosis infection so identification of CTL epitopes from M. tuberculosis is of importance for the development of effective peptide-based vaccines. In the present work, bioinformatics technology was employed to predict binding motifs of 9mer peptides derived from M. tuberculosis for the 12 HLA-I supertypes. Subsequently, the predicted peptides were synthesized and assayed for binding to HLA-I molecules in a biochemically based system. The antigenicity of a total of 157 peptides with measured affinity for HLA-I molecules of K(D) ≤ 500 nM were evaluated using peripheral blood T cells from strongly purified protein derivative reactive healthy donors. Of the 157 peptides, eight peptides (5%) were found to induce T-cell responses. As judged from blocking with HLA class I and II subtype antibodies in the ELISPOT assay culture, none of the eight antigenic peptides induced HLA class I restricted CD8(+) T-cell responses. Instead all responses were blocked by pan-HLA class II and anti-HLA-DR antibodies. In addition, CD4(+) T-cell depletion before the 10 days of expansion, resulted in total loss of reactivity in the ELISPOT culture for most peptide specificities. FACS analyses with intracellular interferon-γ staining of T cells expanded in the presence of M. tuberculosis peptides confirmed that the responsive cells were indeed CD4(+). In conclusion, T-cell immunity against HLA-I binding 9mer M. tuberculosis-derived peptides might in many cases turn out to be mediated by CD4(+) T cells and restricted by HLA-II molecules. The use of 9mer peptides recognized by both CD8(+) and CD4(+) T cells might be of importance for the development of future M. tuberculosis peptide-based vaccines.  相似文献   

5.
While CD4+ T lymphocytes usually recognize antigens in the context of major histocompatibility (MHC) class II alleles, occurrence of MHC class‐I restricted CD4+ T cells has been reported sporadically. Taking advantage of a highly sensitive MHC tetramer‐based enrichment approach allowing detection and isolation of scarce Ag‐specific T cells, we performed a systematic comparative analysis of HLA‐A*0201‐restricted CD4+ and CD8+ T‐cell lines directed against several immunodominant viral or tumoral antigens. CD4+ T cells directed against every peptide‐MHC class I complexes tested were detected in all donors. These cells yielded strong cytotoxic and T helper 1 cytokine responses when incubated with HLA‐A2+ target cells carrying the relevant epitopes. HLA‐A2‐restricted CD4+ T cells were seldom expanded in immune HLA‐A2+ donors, suggesting that they are not usually engaged in in vivo immune responses against the corresponding peptide‐MHC class I complexes. However, these T cells expressed TCR of very high affinity and were expanded following ex vivo stimulation by relevant tumor cells. Therefore, we describe a versatile and efficient strategy for generation of MHC class‐I restricted T helper cells and high affinity TCR that could be used for adoptive T‐cell transfer‐ or TCR gene transfer‐based immunotherapies.  相似文献   

6.
As a mechanism of self‐protection, signal peptides cleaved from human leukocyte antigen (HLA) class I products bind to HLA‐E before the complex interacts with the natural killer (NK) cell receptor CD94/NKG2A to inhibit NK‐mediated cell lysis. Two types of the signal peptides differ in their position 2 (P2) anchor residue, with P2‐methionine (P2‐M) having higher HLA‐E binding affinity than P2‐threonine (P2‐T). All HLA‐A and HLA‐C molecules carry P2‐M, whereas HLA‐B products have either P2‐M or P2‐T. Epidemiological evidence suggests that P2‐M is unfavourable in the context of HIV‐1 infection, being associated with accelerated acquisition of HIV‐1 infection in two African cohorts. To begin elucidating the functional mechanism, we studied NK‐mediated killing of CD4+ T cells and monocyte‐derived macrophages infected with two laboratory‐adapted HIV‐1 strains and two transmitted/founder (T/F) viruses. In the presence of target cells derived from individuals with the three HLA‐B P2 genotypes (M/M, M/T and T/T), NK‐mediated cytolysis was elevated consistently for P2‐T in a dose‐dependent manner for all cell and virus combinations tested (P = 0·008–0·03). Treatment of target cells with an anti‐HLA‐E monoclonal antibody restored NK‐mediated cytolysis of cells expressing P2‐M. Observations on cell lysis were also substantiated by measurements of HIV‐1 p24 antigen in the culture supernatants. Overall, our experiments indicate that the anti‐HIV‐1 function mediated by NK cells is compromised by P2‐M, corroborating the association of HLA‐B genotype encoding P2‐M with accelerated HIV‐1 acquisition.  相似文献   

7.
Robust cell‐mediated immunity is required for immune control of tumours and protection from viral infections, with both CD4+ and CD8+ T cells playing a pivotal role. Synthetic long peptides (SLPs) represent an attractive way to induce such combined responses, as they contain both class I and class II epitopes. The ability of plasmacytoid dendritic cells (pDCs) to cross‐present SLPs has not yet been investigated; yet, pDCs play a critical role in shaping immune responses and have emerged as novel vectors for immunotherapy. Using overlapping 15‐mer peptide pools covering the entire sequence of CMVpp65 and MelA, representing a viral disease (cytomegalovirus, CMV) and a tumour (melanoma), respectively, we showed that human pDCs can effectively process SLPs. Our results demonstrated that pDCs potently cross‐present virus‐ and tumour‐derived SLPs and cross‐prime broad‐ranging, effective and long‐lived CD4+ and CD8+ T‐cell responses, triggering more efficient immune responses than short peptide loaded pDCs. This ability required intracellular processing by the proteasome and was enhanced by co‐exposure to TLR7/9‐L. Combining SLPs with pDCs represents a powerful immunotherapeutic strategy to elicit potent immune responses, which are required for clinical success in cancers and viral infections.  相似文献   

8.
The molecular definition of major histocompatibility complex (MHC) class I‐presented CD8+ T‐cell epitopes from clinically relevant Mycobacterium tuberculosis (Mtb) target proteins will aid in the rational design of T‐cell‐based diagnostics of tuberculosis (TB) and the measurement of TB vaccine‐take. We used an epitope discovery system, based on recombinant MHC class I molecules that cover the most frequent Caucasian alleles [human leucocyte antigen (HLA)‐A*0101, A*0201, A*0301, A*1101, A*2402, B*0702, B*0801 and B*1501], to identify MHC class I‐binding peptides from overlapping 9‐mer peptides representing the Mtb protein TB10.4. A total of 33 MHC class I‐binding epitopes were identified, spread across the entire amino acid sequence, with some clustering at the N‐ and C‐termini of the protein. Binding of individual peptides or closely related peptide species to different MHC class I alleles was frequently observed. For instance, the common motif of xIMYNYPAMx bound to six of eight alleles. Affinity (50% effective dose) and off‐rate (half life) analysis of candidate Mtb peptides will help to define the conditions for CD8+ T‐cell interaction with their nominal MHC class I‐peptide ligands. Subsequent construction of tetramers allowed us to confirm the recognition of some of the epitopes by CD8+ T cells from patients with active pulmonary TB. HLA‐B alleles served as the dominant MHC class I restricting molecules for anti‐Mtb TB10.4‐specific CD8+ T‐cell responses measured in CD8+ T cells from patients with pulmonary TB.  相似文献   

9.
It is generally assumed that the MHC class I antigen (Ag)‐processing (CAP) machinery — which supplies peptides for presentation by class I molecules — plays no role in class II–restricted presentation of cytoplasmic Ags. In striking contrast to this assumption, we previously reported that proteasome inhibition, TAP deficiency or ERAAP deficiency led to dramatically altered T helper (Th)‐cell responses to allograft (HY) and microbial (Listeria monocytogenes) Ags. Herein, we tested whether altered Ag processing and presentation, altered CD4+ T‐cell repertoire, or both underlay the above finding. We found that TAP deficiency and ERAAP deficiency dramatically altered the quality of class II‐associated self peptides suggesting that the CAP machinery impacts class II–restricted Ag processing and presentation. Consistent with altered self peptidomes, the CD4+ T‐cell receptor repertoire of mice deficient in the CAP machinery substantially differed from that of WT animals resulting in altered CD4+ T‐cell Ag recognition patterns. These data suggest that TAP and ERAAP sculpt the class II–restricted peptidome, impacting the CD4+ T‐cell repertoire, and ultimately altering Th‐cell responses. Together with our previous findings, these data suggest multiple CAP machinery components sequester or degrade MHC class II–restricted epitopes that would otherwise be capable of eliciting functional Th‐cell responses.  相似文献   

10.
The goals of molecular virology and immunology during the second half of the 20th century have been to provide the conceptual approaches and the tools for the development of safe and efficient virus vaccines for the human population. The success of the vaccination approach to prevent virus epidemics was attributed to the ability of inactivated and live virus vaccines to induce a humoral immune response and to produce antiviral neutralizing antibodies in the vaccinees. The successful development of antiviral vaccines and their application to most of the human population led to a marked decrease in virus epidemics around the globe. Despite this remarkable achievement, the developing epidemics of HIV-caused AIDS (accompanied by activation of latent herpesviruses in AIDS patients), epidemics of Dengue fever, and infections with respiratory syncytial virus may indicate that conventional approaches to the development of virus vaccines that induce antiviral humoral responses may not suffice. This may indicate that virus vaccines that induce a cellular immune response, leading to the destruction of virus-infected cells by CD8+ cytotoxic T cells (CTLs), may be needed. Antiviral CD8+ CTLs are induced by viral peptides presented within the peptide binding grooves of HLA class I molecules present on the surface of infected cells. Studies in the last decade provided an insight into the presentation of viral peptides by HLA class I molecules to CD8+ T cells. These studies are here reviewed, together with a review of the molecular events of virus replication, to obtain an overview of how viral peptides associate with the HLA class I molecules. A similar review is provided on the molecular pathway by which viral proteins, used as subunit vaccines or inactivated virus particles, are taken up by endosomes in the endosome pathway and are processed by proteolytic enzymes into peptides that interact with HLA class II molecules during their transport to the plasma membrane of antigen-presenting cells. Such peptides are identified by T-cell receptors present on the plasma membrane of CD4+ T helper cells. The need to develop viral synthetic peptides that will have the correct amino acid motifs for binding to HLA class I A, B, and C haplotypes is reviewed.The development of HIV vaccines that will stimulate, in an uninfected individual, the humoral (antibody) and cellular (CTL) immune defenses against HIV and HIV-infected cells, respectively, and may lead to protection from primary HIV infection are discussed. The need to eliminate the release of HIV virions from infected cells introduced by an infected donor to an uninfected recipient may require both the humoral and cellular immune responses. However, such CTLs may fail to identify HIV-infected cells with integrated HIV proviral DNA that do not express viral genes and proteins. Based on reported results on the immunization of monkeys with uninfected cells, which prevented infection with SIV grown in the same type of cells, it may be possible to consider immunization of specific human populations against HLA haplotypes prevalent in HIV-infected donors. Since HIV virions may carry the HLA class I molecules present in the infected donors' cells, synthesis of CTLs to the mutated amino acid sequence in peptide binding grooves of the foreign HLA haplotypes may induce anti-HLA CTLs in the immunized individual, which may destroy HIV-infected, virus synthesizing donor cells, as well as donor cells containing latent proviral DNA. Such anti-foreign HLA CTLs may prevent the release of virions from the infecting donor's cells. The importance of HLA haplotypes for protection against HIV will be discussed.Dedicated to the memory of Dr. Albert Sabin (1906–1993).  相似文献   

11.
Human herpes virus 6B (HHV‐6B) is a widespread virus that infects most people early in infancy and establishes a chronic life‐long infection with periodic reactivation. CD4 T cells have been implicated in control of HHV‐6B, but antigenic targets and functional characteristics of the CD4 T‐cell response are poorly understood. We identified 25 naturally processed MHC‐II peptides, derived from six different HHV‐6B proteins, and showed that they were recognized by CD4 T‐cell responses in HLA‐matched donors. The peptides were identified by mass spectrometry after elution from HLA‐DR molecules isolated from HHV‐6B‐infected T cells. The peptides showed strong binding to matched HLA alleles and elicited recall T‐cell responses in vitro. T‐cell lines expanded in vitro were used for functional characterization of the response. Responding cells were mainly CD3+CD4+, produced IFN‐γ, TNF‐α, and low levels of IL‐2, alone or in combination, highlighting the presence of polyfunctional T cells in the overall response. Many of the responding cells mobilized CD107a, stored granzyme B, and mediated specific killing of peptide‐pulsed target cells. These results highlight a potential role for polyfunctional cytotoxic CD4 T cells in the long‐term control of HHV‐6B infection.  相似文献   

12.
Protective T‐cell responses depend on efficient presentation of antigen (Ag) in the context of major histocompatibility complex class I (MHCI) and class II (MHCII) molecules. Invariant chain (Ii) serves as a chaperone for MHCII molecules and mediates trafficking to the endosomal pathway. The genetic exchange of the class II‐associated Ii peptide (CLIP) with antigenic peptides has proven efficient for loading of MHCII and activation of specific CD4+ T cells. Here, we investigated if Ii could similarly activate human CD8+ T cells when used as a vehicle for cytotoxic T‐cell (CTL) epitopes. The results show that wild type Ii, and Ii in which CLIP was replaced by known CTL epitopes from the cancer targets MART‐1 or CD20, coprecipitated with HLA‐A*02:01 and mediated colocalization in the endosomal pathway. Furthermore, HLA‐A*02:01‐positive cells expressing CLIP‐replaced Ii efficiently activated Ag‐specific CD8+ T cells in a TAP‐ and proteasome‐independent manner. Finally, dendritic cells transfected with mRNA encoding IiMART‐1 or IiCD20 primed naïve CD8+ T cells. The results show that Ii carrying antigenic peptides in the CLIP region can promote efficient presentation of the epitopes to CTLs independently of the classical MHCI peptide loading machinery, facilitating novel vaccination strategies against cancer.  相似文献   

13.
Background Characterization of T cell epitopes restricted by common HLA alleles is a powerful tool in the understanding of the immune responses to allergens and for the identification of potential peptides for future peptide immunotherapy (PIT). One important requirement is the identification and use of peptides that will bind to HLA molecules covering a large proportion of the population. Objective To identify commonly recognized CD4+ T cell epitopes in Fel d 1, restricted through frequently expressed HLA molecules for potential future use in PIT. Methods HLA matched antigen presenting cells, HLA blocking antibodies, and peptide truncations were used in ELISpot assays to establish HLA‐restricted T cell epitopes. Cytokine responses were measured by ex vivo and cultured IFN‐γ, IL‐4, and IL‐10 ELISpots. Results Responses to an immunodominant region of chain 2 were identified in the majority of atopic individuals and epitopes restricted by HLA‐DQB1*06 and ‐DPB1*0401 were characterized in detail. Significantly higher ex vivo IL‐4 and lower IFN‐γ responses were observed to both epitopes in individuals with atopic dermatitis (AD) compared with those without disease. IL‐10 responses were significantly lower in those with AD in the individuals with HLA‐DPB1*0401. Conclusions We have identified an immunodominant region of Fel d 1 which is frequently recognized by CD4+ T cells from atopic individuals and contains epitopes that are restricted by very common HLA alleles.  相似文献   

14.
Recognition and eradication of infected cells by cytotoxic T lymphocytes is a key defense mechanism against intracellular pathogens. High‐throughput definition of HLA class I‐associated immunopeptidomes by mass spectrometry is an increasingly important analytical tool to advance our understanding of the induction of T‐cell responses against pathogens such as HIV‐1. We utilized a liquid chromatography tandem mass spectrometry workflow including de novo‐assisted database searching to define the HLA class I‐associated immunopeptidome of HIV‐1‐infected human cells. We here report for the first time the identification of 75 HIV‐1‐derived peptides bound to HLA class I complexes that were purified directly from HIV‐1‐infected human primary CD4+ T cells and the C8166 human T‐cell line. Importantly, one‐third of eluted HIV‐1 peptides had not been previously known to be presented by HLA class I. Over 82% of the identified sequences originated from viral protein regions for which T‐cell responses have previously been reported but for which the precise HLA class I‐binding sequences have not yet been defined. These results validate and expand the current knowledge of virus‐specific antigenic peptide presentation during HIV‐1 infection and provide novel targets for T‐cell vaccine development.  相似文献   

15.
Cellular immune responses against the oncoantigen anaplastic lymphoma kinase (ALK) in patients with ALK‐positive anaplastic large cell lymphoma (ALCL) have been detected using peptide‐based approaches in individuals preselected for human leucocyte antigen (HLA)‐A*02:01. In this study, we aimed to evaluate nucleophosmin (NPM)‐ALK‐specific CD8+ T cell responses in ALCL patients ensuring endogenous peptide processing of ALK antigens and avoiding HLA preselection. We also examined the HLA class I restriction of ALK‐specific CD8+ T cells. Autologous dendritic cells (DCs) transfected with in‐vitro‐transcribed RNA (IVT‐RNA) encoding NPM–ALK were used as antigen‐presenting cells for T cell stimulation. Responder T lymphocytes were tested in interferon‐gamma enzyme‐linked immunospot (ELISPOT) assays with NPM–ALK‐transfected autologous DCs as well as CV‐1 in Origin with SV40 genes (COS‐7) cells co‐transfected with genes encoding the patients’ HLA class I alleles and with NPM–ALK encoding cDNA to verify responses and define the HLA restrictions of specific T cell responses. NPM–ALK‐specific CD8+ T cell responses were detected in three of five ALK‐positive ALCL patients tested between 1 and 13 years after diagnosis. The three patients had also maintained anti‐ALK antibody responses. No reactivity was detected in samples from five healthy donors. The NPM–ALK‐specific CD8+ T cell responses were restricted by HLA‐C‐alleles (C*06:02 and C*12:02) in all three cases. This approach allowed for the detection of NPM–ALK‐reactive T cells, irrespective of the individual HLA status, up to 9 years after ALCL diagnosis.  相似文献   

16.
Background Accumulating evidence suggests that T cells play an important role in the pathogenesis of atopic dermatitis (AD); yet, little is known of the differentiation status of CD4+ T cells specific for common environmental allergens, such as the major cat allergen, Fel d 1. Objective To determine the frequency, differentiation phenotype and function of circulating Fel d 1‐specific CD4+ T cells in adult individuals with severe persistent AD in comparison with healthy controls. Methods Using HLA class II tetrameric complexes based on a HLA‐DPB1*0401‐restricted Fel d 1 epitope, ex vivo and cultured T cell frequency and phenotype were analysed in individuals with AD and healthy controls. Cytokine secretion was measured by ex vivo and cultured IL‐4 and IFN‐γ ELISpots. Results Ex vivo Fel d 1‐specific DPB1*0401‐restricted CD4+ T cells in both atopics and non‐atopics express high levels of CCR7, CD62L, CD27 and CD28, placing the cells largely within the central memory subgroup. However, the functional phenotype was distinct, with greater IL‐4 production from the cells derived from atopics, which correlated with disease severity. Conclusions and Clinical Relevance Circulating Fel d 1‐specific DPB1*0401‐restricted CD4+ T cells in both atopic and non‐atopic donors maintain a central memory phenotype; however in atopics, the cells had greater Th2 effector function, compatible with a disease model of altered antigen delivery in atopic individuals. Cite this as: L. R. Crack, H. W. Chan, T. McPherson and G. S. Ogg, Clinical & Experimental Allergy, 2011 (41) 1555–1567.  相似文献   

17.
While the presentation mechanism of antigenic peptides derived from exogenous proteins by MHC class II molecules is well understood, relatively little is known about the presentation mechanism of endogenous MHC class II‐restricted antigens. We therefore screened a chemical library of 200 compounds derived from natural products to identify inhibitors of the presentation of endogenous MHC class II‐restricted antigens. We found that pyrenocine B, a compound derived from the fungus Pyrenochaeta terrestris, inhibits presentation of endogenous MHC class II‐restricted minor histocompatibility antigen IL‐4 inducible gene 1 (IL4I1) by primary dendritic cells (DCs). Phage display screening and surface plasmon resonance (SPR) analysis were used to investigate the mechanism of suppressive action by pyrenocine B. EpsinR, a target molecule for pyrenocine B, mediates endosomal trafficking through binding of soluble N‐ethylmaleimide‐sensitive factor attachment protein receptors (SNAREs). Lentiviral‐mediated short hairpin (sh) RNA downregulation of EpsinR expression in DCs resulted in a decrease in the responsiveness of CD4+ T cells. Our data thus suggest that EpsinR plays a role in antigen presentation, which provides insight into the mechanism of presentation pathway of endogenous MHC class II‐restricted antigen.  相似文献   

18.
Hypoxia and glucose deprivation are often observed in the microenvironment surrounding solid tumors in vivo. However, how they interfere with MHC class I antigen processing and CD8+ T‐cell responses remains unclear. In this study, we analyzed the production of antigenic peptides presented by classical MHC class I in mice, and showed that it is quantitatively decreased in the cells exposed to either hypoxia or glucose deprivation. In addition, we unexpectedly found increased surface expression of HLA‐E in human and Qa‐1 in mouse tumor cells exposed to combined oxygen and glucose deprivation. The induced Qa‐1 on the stressed tumor model interacted with an inhibitory NKG2/CD94 receptor on activated CD8+ T cells and attenuated their specific response to the antigen. Our results thus suggest that microenvironmental stresses modulate not only classical but also nonclassical MHC class I presentation, and confer the stressed cells the capability to escape from the CD8+ T‐cell recognition.  相似文献   

19.
In this study, a combination of epitope‐prediction programs and in vitro assays was used to identify dengue virus (DENV)‐specific CD8+ T cell epitopes. Peripheral blood mononuclear cells (PBMCs) isolated from patients who recovered from dengue fever were stimulated with candidate epitope peptides derived from DENV, which were predicted by using SYFPEITHI and RANKpep epitope‐prediction programs. The IFN‐γ ELISpot results and the results of intracellular staining of IFN‐γ showed that peptides NS4b_40 (TLYAVATTI), E_256 (QEGAMHTAL), NS3_205 (LPAIVREAI), NS5_210 (SRNSTHEMY), and NS3_207 (AIVREAIKR) could induce the recall response of CD8+ T cells. Furthermore, the results of the MHC–peptide complex stabilization assay revealed that peptide NS4b_40 (TLYAVATTI) has a high affinity for HLA‐A*0201 molecules. The IFN‐γ ELISpot results and staining of intracellular IFN‐γ confirmed that this peptide could induce high‐level CD8+ T cell response in HLA‐A*0201 positive PBMCs. Peptide NS4b_40 (TLYAVATTI) was identified as a novel DENV‐specific HLA‐A*0201‐restricted CD8+ T cell epitope. J. Med. Virol. 82:642–648, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Variation in the sequence of T‐cell epitopes between dengue virus (DENV) serotypes is believed to alter memory T‐cell responses during second heterologous infections. We identified a highly conserved, novel, HLA‐B57‐restricted epitope on the DENV NS1 protein. We predicted higher frequencies of B57‐NS126–34‐specific CD8+ T cells in peripheral blood mononuclear cells from individuals undergoing secondary rather than primary DENV infection. However, high tetramer‐positive T‐cell frequencies during acute infection were seen in only one of nine subjects with secondary infection. B57‐NS126–34‐specific and other DENV epitope‐specific CD8+ T cells, as well as total CD8+ T cells, expressed an activated phenotype (CD69+ and/or CD38+) during acute infection. In contrast, expression of CD71 was largely limited to DENV epitope‐specific CD8+ T cells. In vitro stimulation of cell lines indicated that CD71 expression was differentially sensitive to stimulation by homologous and heterologous variant peptides. CD71 may represent a useful marker of antigen‐specific T‐cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号