首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Methods using statistical shape and appearance models have been proposed to analyze bone mineral density (BMD) in 3D from dual energy X-ray absorptiometry (DXA) scans. This paper presents a retrospective case-control study assessing the association of DXA-derived 3D measurements with osteoporotic hip fracture in postmenopausal women. Patients who experienced a hip fracture between 1 and 6 years from baseline and age-matched controls were included in this study. The 3D-SHAPER software (version 2.7, Galgo Medical, Barcelona, Spain) was used to derive 3D analysis from hip DXA scans at baseline. DXA and 3D measurements were compared between groups. Total hip areal BMD of hip fracture group as measured by DXA was 10.7% lower compared to control group. Differences in volumetric BMD (total hip) as measured by 3D-SHAPER were more pronounced in the trabecular compartment (−23.3%) than in the cortex (−8.2%). The area under the receiver operating curve was 0.742 for trabecular volumetric BMD, 0.706 for cortical volumetric BMD, and 0.712 for total hip areal BMD. Differences in the cortex were locally more pronounced at the medial aspect of the shaft, the lateral aspect of the greater trochanter, and the superolateral aspect of the neck. Marked differences in volumetric BMD were observed in the greater trochanter. This case-control study showed the association of DXA-derived 3D measurements with hip fracture. Analysis of large cohorts will be performed in future work to determine if DXA-derived 3D measurements could improve fracture risk prediction in clinical practice.  相似文献   

2.
Knowledge of precision is integral to the monitoring of bone mineral density (BMD) changes using dual-energy X-ray absorptiometry (DXA). We evaluated the precision for bone measurements acquired using a GE Lunar iDXA (GE Healthcare, Waukesha, WI) in self-selected men and women, with mean age of 34.8 yr (standard deviation [SD]: 8.4; range: 20.1–50.5), heterogeneous in terms of body mass index (mean: 25.8 kg/m2; SD: 5.1; range: 16.7–42.7 kg/m2). Two consecutive iDXA scans (with repositioning) of the total body, lumbar spine, and femur were conducted within 1 h, for each subject. The coefficient of variation (CV), the root-mean-square (RMS) averages of SDs of repeated measurements, and the corresponding 95% least significant change were calculated. Linear regression analyses were also undertaken. We found a high level of precision for BMD measurements, particularly for scans of the total body, lumbar spine, and total hip (RMS: 0.007, 0.004, and 0.007 g/cm2; CV: 0.63%, 0.41%, and 0.53%, respectively). Precision error for the femoral neck was higher but still represented good reproducibility (RMS: 0.014 g/cm2; CV: 1.36%). There were associations between body size and total-body BMD and total-hip BMD SD precisions (r = 0.534–0.806, p < 0.05) in male subjects. Regression parameters showed good association between consecutive measurements for all body sites (r2 = 0.98–0.99). The Lunar iDXA provided excellent precision for BMD measurements of the total body, lumbar spine, femoral neck, and total hip.  相似文献   

3.
We assessed the role of low aBMD and impaired architecture-assessed by an HR-pQCT system-in a case-control study of postmenopausal women with fractures. Vertebral and nonvertebral fractures are associated with low volumetric BMD and architectural alterations of trabecular and cortical bone, independent of aBMD assessed by DXA. INTRODUCTION: Alterations of bone architecture and low BMD both contribute to skeletal fragility, but the contribution of cortical and trabecular architecture, independently of areal BMD (aBMD), to the risk of fracture in postmenopausal women has not been thoroughly evaluated. We assessed the role of impaired architecture and low BMD in postmenopausal women with fractures. MATERIALS AND METHODS: A matched case-control study in women from the OFELY cohort was performed after 13 years of follow-up. One hundred one women (mean, 73.7+/-8 years) who sustained a fragility fracture during the follow-up of the study were age-matched with one control who never had a fracture. Density and architecture at the distal radius and tibia were measured with high-resolution pQCT (HR-pQCT) using an XTreme CT (Scanco Medical AG, Bassersdorf, Switzerland). aBMD at the total hip and ultradistal radius was measured by DXA. RESULTS: There were 80 peripheral fractures in 72 women, 44 vertebral fractures in 34 women, and both types of fractures in 5 women over the 14 years of follow-up. At the distal radius, women with fractures had lower volumetric total (D tot) and trabecular (D trab) BMDs, BV/TV, cortical thickness (Cort Th), trabecular number (TbN), and trabecular thickness (TbTh) and higher trabecular separation (TbSp) and distribution of trabecular separation (TbSpSd) than controls without fractures. In a logistic model, each SD decrease of volumetric total and trabecular densities was associated with a significantly increased risk of fracture at both sites (ORs ranged from 2.00 to 2.47). After adjusting for aBMD measured by DXA at the ultradistal radius, differences between cases and controls remained significant for D trab, and there was a similar trend for TbN, TbSp, and TbSpSd, with adjusted ORs ranging from 1.32 to 1.50. At the distal tibia, before and after adjusting for total hip aBMD, differences between cases and controls remained significant for D tot, D trab, Cort Th, and TbTh, with adjusted ORs ranging from 1.80 to 2.09. CONCLUSIONS: In postmenopausal women, vertebral and nonvertebral fractures are associated with low volumetric BMD and architectural alterations of trabecular and cortical bone that can be assessed noninvasively and that are partially independent of aBMD assessed by DXA.  相似文献   

4.
Analysis of total tissue composition and, particularly, body fat measurements has become progressively important in the diagnosis and follow-up of patients with different clinical conditions. Dual-energy X-ray absorptiometry (DXA) fan-beam scanners are widely used to measure body composition, but the development of translational equations to be able to compare data of different scanning systems is necessary. The aim of this study was to assess the extent of agreement for regional measurements of body composition among the following 3 fan-beam DXA scanners: (1) Hologic Discovery (Hologic, Inc., Waltham, MA), (2) Lunar iDXA (GE Healthcare, Madison, WI), and (3) Lunar Prodigy Advance (GE Healthcare, Madison, WI). The study population consisted of 91 adult healthy volunteers (40 males and 51 females; mean age 48.5 ± 14.4 yr) who underwent DXA evaluation of the lumbar spine, hip, and whole body in each machine on the same day. Agreement among the 3 scanners was evaluated according to the Bland-Altman method and Lin's concordance correlation coefficient. Results showed a better agreement and concordance for the Lunar iDXA scanner than for any of them with the Hologic scanner. Differences were higher for any tissue or region than for the whole tissue mass. Translational equations were developed to ensure comparability of body composition measurements obtained with each of these 3 scanners.  相似文献   

5.
This study assessed bone mineral density (BMD) comparability and precision using Lunar Prodigy and iDXA densitometers (GE Healthcare, Madison, WI) in adults. Additionally, the utility of supine forearm measurement with iDXA was investigated. Lumbar spine and bilateral proximal femur measurements were obtained in routine clinical manner in 345 volunteers, 202 women and 143 men of mean age 52.5 (range: 20.1-91.6)yr. Seated and supine distal forearm scans were obtained in a subset (n=50). Lumbar spine and proximal femur precision assessments were performed on each instrument following International Society for Clinical Densitometry recommendations in 30 postmenopausal women. BMD at the L1-L4 spine, total proximal femur, and femoral neck was very highly correlated (r(2)≥0.98) between densitometers, as was the one-third radius site (r(2)=0.96). Bland-Altman analyses demonstrated no clinically significant bias at all evaluated sites. BMD precision was similar between instruments at the L1-L4 spine, mean total proximal femur, and femoral neck. Finally, one-third radius BMD measurements in the supine vs seated position on the iDXA were highly correlated (r(2)=0.96). In conclusion, there is excellent BMD correlation between iDXA and Prodigy densitometers. Similarly, BMD precision is comparable with these two instruments.  相似文献   

6.
Background: Recently, a lateral-view dual X-ray absorptiometry (DXA) scanning method for measuring leg total, lean, and fat masses demonstrated accuracy vs the standard whole-body frontal DXA scanning view on the GE Lunar iDXA. The current study examined the lateral scanning method's agreement using a Hologic Horizon A DXA scanner. Methodology: Thirty healthy college-age participants (16 female; X̅age = 21.5 ± 1.7 yr) received 3 DXA scans (1 whole-body, 2 lateral leg scans) to quantify leg composition in the frontal and lateral plane. To mark regions of interest for postscan analysis, metallic markers were placed at 60% of the length above and below each leg's lateral epicondyle. Using lateral subject positioning, leg composition was measured with participants lying on their right and left sides. Paired t tests examined the lateral DXA scanning method's agreement when quantifying total, fat, and lean masses, bone mineral content, and bone mineral density compared to measurements of equal area in the whole-body frontal scanning view. Results: Comparisons of frontal and lateral view DXA scan measurements for right leg total mass (7.12 ± 0.91kg vs 6.39 ± 0.85kg), fat mass (1.70 ± 0.44kg vs 1.36 ± 0.33kg), lean mass (5.14 ± 1.05kg vs 4.77 ± 0.92kg), bone mineral content (0.28 ± 0.06kg vs 0.23 ± 0.05kg), and bone mineral density (1.39 ± 0.14g/cm2vs 1.36 ± 0.15g/cm2), respectively, were significantly different (p < 0.001–0.028). Similarly, comparisons of frontal and lateral left leg total mass (7.12 ± 0.97kg vs 6.38 ± 0.92kg), fat mass (1.70 ± 0.44kg vs 1.39 ± 0.36kg), lean mass (5.15 ± 1.12kg vs 4.76 ± 0.97kg), bone mineral content (0.28 ± 0.06kg vs 0.24 ± 0.06kg), and bone mineral density (1.39 ± 0.15g/cm2vs 1.36 ± 0.17g/cm2), respectively, were significantly different (p < 0.001–0.046). Conclusion: Unlike a previous study in which agreement of lateral vs frontal leg composition measurements of equal area was reported utilizing the GE Lunar iDXA, agreement was not observed using the Hologic Horizon A DXA scanner. Therefore, lateral view assessment may not be reliably performed on DXA scanner models produced by different manufacturers.  相似文献   

7.
We performed this study to enable a reliable transition for clinical study participants and patients from a GE Lunar Prodigy to a Hologic Horizon A dual-energy X-ray absorptiometry (DXA) scanner and to assess the reproducibility of measurements made on the new DXA scanner. Forty-five older adults had one spine, hip, and total body scan on a Prodigy dual-energy X-ray absorptiometry (DXA) scanner and 2 spine, hip, and total body scans, with repositioning, on a new Hologic Horizon A DXA scanner. Linear regression models were used to derive cross calibration equations for each measure on the 2 scanners. Precision (group root-mean-square average coefficient of variation) of bone mineral density (BMD) of the total hip, femoral neck, and lumbar spine (L1-L4), and total body fat, bone, and lean mass, appendicular lean mass, and trabecular bone score (TBS) was assessed using the International Society of Clinical Densitometry's (ISCD's) Advanced Precision Calculation Tool. Correlation coefficients for the BMD and body composition measures on the 2 scanners ranged from 0.94 to 0.99 (p<0.001). When compared with values on the Prodigy, mean BMD on the Horizon A was lower at each skeletal site (0.136 g/cm2 lower at the femoral neck and 0.169 g/cm2 lower at the lumbar spine (L1-4)), fat mass was 0.47 kg lower, and lean mass was 4.50 kg higher. Precision of the Horizon A scans was 1.60% for total hip, 1.94% for femoral neck, and 1.25% for spine (L1-4) BMD. Precision of TBS was 1.67%. Precision of total body fat mass was 2.16%, total body lean mass was 1.26%, appendicular lean mass was 1.97%, and total body bone mass was 1.12%. The differences in BMD and body composition values on the 2 scanners illustrate the importance of cross-calibration to account for these differences when transitioning clinical study participants and patients from one scanner to another.  相似文献   

8.
Although it is generally recommended that patients keep their hips flexed by 90 degrees during the measurement of spinal bone mineral density (BMD), there is no uniform agreement among the manufacturers of dual-energy X-ray absorptiometry (DXA) scanners regarding the positioning of legs while scanning the spine. We measured spinal BMD in 54 postmenopausal women, from L1 to L4 in posterior-anterior projection, using a Hologic Discovery scanner, first with their legs elevated as recommended by the manufacturer and then with their legs flat on the scanning table. Differences of bone mineral content (BMC), area of the region of interest (ROI), BMD, and T-score of the total spine between the 2 scans were compared. The mean (SD) age of the women was 54.3 yr (15 yr). Between the 2 scans, BMC, area of the ROI, BMD, and T-scores showed high correlations (r=0.98, 0.94, 0.99, and 0.99, respectively). BMC and the area of the ROI changed significantly between the 2 scans, but the changes of BMD and T-scores were not significant. The percentage changes of BMC and the area of the ROI were similar (2.6% and 2.4%, respectively), whereas T-scores showed no change and change of BMD was only 0.6%. The absolute difference in BMD between the 2 scans was only 0.005 (p=0.09). When spinal BMD was measured with their legs elevated, 31 women were found to have osteoporosis and further 13 were found to have osteopenia. When spinal BMD was measured with their legs flat, 32 women were found to have osteoporosis and further 12 were found to have osteopenia. In conclusion, no clinically or statistically significant difference in the total spinal BMD was found when the BMD in a group of women was measured on a Hologic Discovery DXA scanner with their legs positioned flat.  相似文献   

9.
Bone densitometry has become a major tool for osteoporosis risk assessment. The traditional dual-energy X-ray absorptiometry (DXA) methods are able to evaluate the bone mineral content (BMC; mg/cm) and the areal density (BMD; mg/cm2), but only quantitative computed tomography (QCT) has the potential to measure the true volumetric bone density in the sense of mass per unit volume (mg/cm3). Peripheral QCT (pQCT) measurements were carried out at the non-dominant radius using a Stratec XCT 960 (Unitrem, Roma) in 241 postmenopausal and 29 premenopausal women. The sites of evaluation were both the ultradistal and the proximal radius. The technique used has a coefficient of variation of 2% and it allows separation of the bone section into trabecular and cortical bone on the basis of density threshold. Bone mass of radius, hip and spine was also evaluated by DXA procedures. The bone density data obtained by pQCT were significantly correlated with all DXA measurements. The correlation coefficients between their respective BMD values ranged from 0.48 to 0.75, but for the BMC values of the radius the correlation coefficients ranged from 0.82 to 0.93. The BMD values measured by DXA, but not by pQCT, were positively related with patient heights. All pQCT density measurements, including those obtained at the proximal radius and containing exclusively cortical bone, where negatively related with age and years since menopause. A partial volume effect, which is increasingly relevant the thinner are the bone cortices, might explain that. However, by applying increasing density thresholds, cortical bone density seems to decrease with age as a consequence of a gradual density diminution from the inner part of the bone cortex outwards. Trabecular bone density decreases with aging, but its overall mass does not change as a consequence of an age-related enlargement of trabecular area. Thus, the proportion of trabecular bone over total bone rises, and this might be relevant for our understanding of the age-related changes in bone turnover and rate of bone loss.  相似文献   

10.
Precision is integral to the monitoring of bone mineral density (BMD) change using dual-energy X-ray absorptiometry (DXA). Hip structural analysis (HSA) is a relatively recent method of assessing cross-sectional geometrical strength from the 2-dimensional images produced by DXA scans. By performing serial scans, we evaluated the in vivo precision of DXA-derived HSA in adults using a GE Lunar iDXA absorptiometer (GE Medical Systems, Madison, WI) in males and females (n=42), mean age of 34.5 (standard deviation [SD]: 8.5; range: 19.3-52.6)yr with a heterogeneous sample. Two consecutive intelligent DXA (iDXA) scans with repositioning of both femurs were conducted for each participant. The coefficient of variation, root-mean-square (RMS) averages of SD, and hence the least significant change (95%) were calculated. We found a high level of precision for BMD measurements of both the total hip and femoral neck, with RMS-SD=0.006 and 0.010 g/cm(2) and percent coefficient of variation (%CV)=0.52% and 0.94%, respectively. We also found good precision for HSA-derived geometrical properties, including sectional modulus, cross-sectional moment of inertia, and cross-sectional area, with %CV (average of the left and right sides) at 4.48%, 3.78%, and 3.13%, respectively. Precision was poorer for buckling ratio and femoral strength index with %CV 28.5% and 9.25%, respectively. The iDXA provides high precision for BMD measurements and with varying levels of precision for HSA geometrical properties.  相似文献   

11.
Volumetric quantitative computed tomography (vQCT), using multiple thin-slice acquisition, measures three-dimensional volumetric bone mineral density (BMD, mg/cm3). vQCT is often used to measure BMD of lumbar vertebrae and may detect early changes in trabecular, cortical, or integral BMD that extend beyond the technical limits of areal dual X-ray absorptiometry (DXA) BMD measurements. The objective of this study was to determine the effect of 2 years of raloxifene (RLX) treatment on several volumetric BMD measures in a subset of postmenopausal women (n=58) enrolled in the Multiple Outcomes of Raloxifene Evaluation (MORE) trial. Patients in this study were randomized to one of three treatment groups: placebo (n=21), RLX 60 mg/day (n=17), or RLX 120 mg/day (n=20), and all patients received daily calcium (500 mg) and vitamin D (400-600 IU) supplementation. Data from the raloxifene treatment groups were pooled for each analysis. Following 2 years of raloxifene treatment, there was a significant percent change from baseline in the vQCT regions of interest (ROIs) of midintegral BMD, total trabecular BMD, and total integral BMD (P<0.05) compared to placebo, while there was no significant change in the spinal DXA BMD measurement. These data provide the first longitudinal assessment by vQCT of changes in vertebral bone density after 2 years of treatment with raloxifene. vQCT appears to be a valuable technique for measuring the effects of raloxifene treatment in this population of postmenopausal women with osteoporosis.  相似文献   

12.
We aimed to determine if cross-calibration equations could be applied to convert GE Lunar Prodigy total and regional bone measurements to the GE iDXA model to support longitudinal monitoring of subjects. The cross-calibration group comprised 63 adults (age 45.1 [12.8] yr; body mass index: 25.6 [3.7] kg/m2) and the validation group comprised 25 adults (age 40.5 [11.5] yr; body mass index: 25.7 [3.5] kg/m2). The parameters reported were total and regional bone mineral density (BMD), bone mineral content, and bone area. There were significant differences between densitometers for all anatomical regions and reported bone parameters (p < 0.0001); iDXA reported lower BMD than the Prodigy apart from the ribs. Linear regression indicated good agreement for all measurements. Bland-Altman analyses indicated significant bias for all measurements and that cross-calibration equations were required. The derived cross-calibration equations were effective in reducing differences between predicted and measured results for each parameter and at each region apart from leg BMD, where the difference remained significant (0.013 g/cm2; p < 0.05). Our results indicate that cross-calibration is important to maintain comparability of total body-derived regional bone measurements between the Lunar Prodigy and iDXA.  相似文献   

13.
No study has evaluated the precision of the GE Lunar iDXATM (GE Healthcare) in measuring bone mineral density (BMD) among severely obese patients. The purpose of the study was to evaluate the precision of the GE Lunar iDXATM for assessing BMD, including the lumbar spine L1–L4, L2–L4, the total hip, femoral neck, and total body in a severely obese population (body mass index [BMI] > 40 kg/m2). Sixty-four severely obese participants with a mean age of 46 ± 11 yr, BMI of 49 ± 6 kg/m2, and a mean body mass of 136.8 ± 20.4 kg took part in this investigation. Two consecutive iDXA scans (with repositioning) of the total body (total body BMD [TBBMD]), lumbar spine (L1–L4 and L2–L4), total hip (total hip BMD [THBMD]), and femoral neck (femoral neck BMD [FNBMD]) were conducted for each participant. The coefficient of variation (CV), the root mean square (RMS) averages of standard deviations of repeated measurements, the corresponding 95% least significant change, and intraclass correlations (ICCs) were calculated. In addition, analysis of bias and coefficients of repeatability were calculated. The results showed a high level of precision for total body (TBBMD), lumbar spine (L1–L4), and total hip (THBMD) with values of RMS: 0.013, 0.014, and 0.011 g/cm2; CV: 0.97%, 1.05%, and 0.99%, respectively. Precision error for the femoral neck was 2.34% (RMS: 0.025 g/cm2) but still represented high reproducibility. ICCs in all dual-energy X-ray absorptiometry measurements were 0.99 with FNBMD having the lowest at 0.98. Coefficients of repeatability for THBMD, FNBMD, L1–L4, L2–L4, and TBBMD were 0.0312, 0.0688, 0.0383, 0.0493, and 0.0312 g/cm2, respectively. The Lunar iDXA demonstrated excellent precision for BMD measurements and is the first study to assess reproducibility of the GE Lunar iDXA with severely obese adults.  相似文献   

14.
Asian women have lower rates of hip and forearm fractures despite lower areal BMD (aBMD) by DXA compared with white women and other racial groups. We hypothesized that the lower fracture rates may be explained by more favorable measurements of volumetric BMD (vBMD) and microarchitectural properties, despite lower areal BMD. To address this hypothesis, we used high‐resolution pQCT (HRpQCT), a new method that can provide this information noninvasively. We studied 63 premenopausal Chinese‐American (n = 31) and white (n = 32) women with DXA and HRpQCT. aBMD by DXA did not differ between groups for the lumbar spine (1.017 ± 0.108 versus 1.028 ± 0.152 g/cm2; p = 0.7), total hip (0.910 ± 0.093 versus 0.932 ± 0.134 g/cm2; p = 0.5), femoral neck (0.788 ± 0.083 versus 0.809 ± 0.129 g/cm2; p = 0.4), or one‐third radius (0.691 ± 0.052 versus 0.708 ± 0.047 g/cm2; p = 0.2). HRpQCT at the radius indicated greater trabecular (168 ± 41 versus 137 ± 33 mg HA/cm3; p = <0.01) and cortical (963 ± 46 versus 915 ± 42 mg HA/cm3; p < 0.0001) density; trabecular bone to tissue volume (0.140 ± 0.034 versus 0.114 ± 0.028; p = <0.01); trabecular (0.075 ± 0.013 versus 0.062 ± 0.009 mm; p < 0.0001) and cortical thickness (0.98 ± 0.16 versus 0.80 ± 0.14 mm; p < 0.0001); and lower total bone area (197 ± 34 versus 232 ± 33 mm2; p = <0.001) in the Chinese versus white women and no difference in trabecular number, spacing, or inhomogeneity before adjustment for covariates. Similar results were observed at the weight‐bearing tibia. At the radius, adjustment for covariates did not change the direction or significance of differences except for bone, which became similar between the groups. However, at the tibia, adjustment for covariates attenuated differences in cortical BMD and bone area and accentuated differences in trabecular microarchitecture such that Chinese women additionally had higher trabecular number and lower trabecular spacing, as well as inhomogeneity after adjustment. Using the high‐resolution technology, the results provide a mechanistic explanation for why Chinese women have fewer hip and forearm fractures than white women.  相似文献   

15.
Dual‐energy x‐ray absorptiometry (DXA) is used to assess bone mineral density (BMD) and body composition, but measurements vary among instruments from different manufacturers. We sought to develop cross‐calibration equations for whole‐body bone density and composition derived using GE Healthcare Lunar and Hologic DXA systems. This multinational study recruited 199 adult and pediatric participants from a site in the US (n = 40, ages 6 through 16 years) and one in China (n = 159, ages 5 through 81 years). The mean age of the participants was 44.2 years. Each participant was scanned on both GE Healthcare Lunar and Hologic Discovery or Delphi DXA systems on the same day (US) or within 1 week (China) and all scans were centrally analyzed by a single technologist using GE Healthcare Lunar Encore version 14.0 and Hologic Apex version 3.0. Paired t‐tests were used to test the results differences between the systems. Multiple regression and Deming regressions were used to derive the cross‐conversion equations between the GE Healthcare Lunar and Hologic whole‐body scans. Bone and soft tissue measures were highly correlated between the GE Healthcare Lunar and Hologic and systems, with r ranging from 0.96 percent fat [PFAT] to 0.98 (BMC). Significant differences were found between the two systems, with average absolute differences for PFAT, BMC, and BMD of 1.4%, 176.8 g and 0.013 g/cm2, respectively. After cross‐calibration, no significant differences remained between GE Healthcare Lunar measured results and the results converted from Hologic. The equations we derived reduce differences between BMD and body composition as determined by GE Healthcare Lunar and Hologic systems and will facilitate combining study results in clinical or epidemiological studies. © 2012 American Society for Bone and Mineral Research.  相似文献   

16.
The goal of this study was to determine the effect of vertebral fracture status on trabecular bone mineral density (BMD) measurements obtained in the proximal femur and spine by helical volumetric quantitative computed tomography (vQCT). The study population consisted of 71 Italian women (average age 73 +/- 6) years. This group included 26 subjects with radiographically confirmed atraumatic vertebral fractures and 45 controls. The subjects received helical CT scans of the L1 and L2 vertebral bodies and the hip. The three-dimensional CT images were processed using specialized image analysis algorithms to extract measurements of trabecular, cortical, and integral BMD in the spine and hip. To compare the vQCT results with the most widely used clinical BMD measurement, dual X-ray absorptiometry (DXA) scans of the anteroposterior (AP) spine and proximal femur were also obtained. The difference between the subjects with vertebral fractures and the age-matched controls was computed for each BMD measure. All BMD measurements showed statistically significant differences, which ranged from 7% to 22% between subjects with fractures and controls. Although, given our small sample size, we could not detect statistically significant differences in discriminatory power between BMD techniques, integral BMD of the spine measured by vQCT and DXA tended to show stronger associations with fracture status (0.001 < p < 0.004). Measurements by QCT and DXA at the hip were also associated with vertebral fracture status, although the association of DXA BMD with fracture status was explained largely by differences in body weight between subjects with vertebral fractures and controls.  相似文献   

17.
Children with chronic kidney disease (CKD) have multiple risk factors for impaired accretion of trabecular and cortical bone. CKD during childhood poses an immediate fracture risk and compromises adult bone mass, resulting in significantly greater skeletal fragility throughout life. High-turnover disease initially results in thickened trabeculae, with greater bone volume. As disease progresses, resorption cavities dissect trabeculae, connectivity degrades, and bone volume decreases. Increased bone turnover also results in increased cortical porosity and decreased cortical thickness. Dual-energy X-ray absorptiometry (DXA)-based measures of bone mineral density (BMD) are derived from the total bone mass within the projected bone area (g/cm2), concealing distinct disease effects in trabecular and cortical bone. In contrast, peripheral quantitative computed tomography (pQCT) estimates volumetric BMD (vBMD, g/cm3), distinguishes between cortical and trabecular bone, and provides accurate estimates of cortical dimensions. Recent data have confirmed that pQCT measures of cortical vBMD and thickness provide substantially greater fracture discrimination in adult dialysis patients compared with hip or spine DXA. The following review considers the structural effects of renal osteodystrophy as it relates to fracture risk and the potential advantages and disadvantages of DXA and alternative measures of bone density, geometry, and microarchitecture, such as pQCT, micro-CT (μCT), and micro magnetic resonance imaging (μMRI) for fracture risk assessment.  相似文献   

18.
Perimenopausal bone loss is considered to affect trabecular bone preferentially. Peripheral quantitative computed tomography (pQCT) quantifies trabecular bone mineral density (BMD) independently at the ultradistal radius. This article examines differences in pQCT BMD between late premenopausal and early postmenopausal women, comparing the differences with calcaneal ultrasound and axial dual energy X-ray absorptiometry measurements. One hundred nineteen normal perimenopausal women aged 45-55 yr who attended a randomized osteoporosis screening program were stratified by menopausal status into premenopausal (PRE: n = 79) and postmenopausal (POST: n = 40) groups. All measurements were lower in the postmenopausal group with the exception of ultrasonic velocity (PRE vs POST: 1397 +/- 53.8 vs 1421 +/- 58.5 m/s, p = 0.037). Total (391.8 +/- 52.9 vs 366.3 +/- 68.6 g/cm(3), p = 0.013) and subcortical (533.6 +/- 59.4 vs 504.3 +/- 79.8 g/cm(3) p = 0.018), but not trabecular (187.5 +/- 38.8 vs 173.2 +/- 46.6 g/cm(3), p = 0. 098) or cortical (561 +/- 53.4 vs 551.2 +/- 66 g/cm(3), p = 0.174), pQCT BMD measurements were significantly lower in the POST group, as were ultrasonic attenuation (79.4 +/- 16 vs 72.3 +/- 18.0 dB/Mz, p = 0.034), DXA spine (1.032 +/-16 vs 0.959 +/- 0.2 g/cm(2), p = 0.003), and all hip (p 相似文献   

19.
The majority of fragility fractures occur in women with osteopenia rather than osteoporosis as determined by dual‐energy X‐ray absorptiometry (DXA). However, it is difficult to identify which women with osteopenia are at greatest risk. We performed this study to determine whether osteopenic women with and without fractures had differences in trabecular morphology and biomechanical properties of bone. We hypothesized that women with fractures would have fewer trabecular plates, less trabecular connectivity, and lower stiffness. We enrolled 117 postmenopausal women with osteopenia by DXA (mean age 66 years; 58 with fragility fractures and 59 nonfractured controls). All had areal bone mineral density (aBMD) measured by DXA. Trabecular and cortical volumetric bone mineral density (vBMD), trabecular microarchitecture, and cortical porosity were measured by high‐resolution peripheral computed tomography (HR‐pQCT) of the distal radius and tibia. HR‐pQCT scans were subjected to finite element analysis to estimate whole bone stiffness and individual trabecula segmentation (ITS) to evaluate trabecular type (as plate or rod), orientation, and connectivity. Groups had similar age, race, body mass index (BMI), and mean T‐scores. Fracture subjects had lower cortical and trabecular vBMD, thinner cortices, and thinner, more widely separated trabeculae. By ITS, fracture subjects had fewer trabecular plates, less axially aligned trabeculae, and less trabecular connectivity. Whole bone stiffness was lower in women with fractures. Cortical porosity did not differ. Differences in cortical bone were found at both sites, whereas trabecular differences were more pronounced at the radius. In summary, postmenopausal women with osteopenia and fractures had lower cortical and trabecular vBMD; thinner, more widely separated and rodlike trabecular structure; less trabecular connectivity; and lower whole bone stiffness compared with controls, despite similar aBMD by DXA. Our results suggest that in addition to trabecular and cortical bone loss, changes in plate and rod structure may be important mechanisms of fracture in postmenopausal women with osteopenia. © 2014 American Society for Bone and Mineral Research.  相似文献   

20.
Hip structural analysis (HSA) estimates geometrical and mechanical properties from hip dual-energy X-ray absorptiometry (DXA) images and is widely used in osteoporosis trials. This study compares HSA to volumetric quantitative computed tomography (QCT) measurements in the same population. A total of 121 women (mean age 58 yr, mean body mass index 27 kg/m2) participated. Each woman received a volumetric QCT scan and DXA scan of the left hip. QCT scans were analyzed with in-house software that directly computed geometric and mechanical parameters at the neck and trochanteric regions. DXA HSA was performed with an implementation by GE/Lunar. Pair-wise linear regression of HSA variables was conducted by method to site matched QCT variables for bone density, cross-sectional area, and cross-sectional moment of inertia (CSMI) of the femur neck. HSA correlated well with QCT (r2 = 0.67 for neck bone mineral density [BMD] and 0.5 for CSMI) and standard DXA at the neck (r2 = 0.82 for BMD). HSA and volumetric QCT compared favorably, which supports the validity of a projective technique such as DXA to derive geometrical properties of the proximal hip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号