首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the organization of the brain after recovery from aphasia were investigated by measuring increases in regional cerebral blood flow (rCBF) during repetition of pseudowords and during verb generation. Six right-handed patients who had recovered from Wernicke's aphasia caused by an infarction destroying the left posterior perisylvian language zone were compared with 6 healthy, right-handed volunteers. In the control subjects, strong rCBF increases were found in the left hemisphere in the posterior part of the superior and middle temporal gyrus (Wernicke's area), and during the generation task in lateral prefrontal cortex (LPFC) and in inferior frontal gyrus (Broca's area). There were some weak right hemisphere increases in superior temporal gyrus and inferior premotor cortex. In the patients, rCBF increases were preserved in the frontal areas. There was clear right hemisphere activation in superior temporal gyrus and inferior premotor and lateral prefrontal cortices, homotopic to the left hemisphere language zones. Increased left frontal and right perisylvian activity in patients with persisting destruction of Wernicke's area emphasizes redistribution of activity within the framework of a preexisting, parallel processing and bilateral network as the central mechanism in functional reorganization of the language system after stroke.  相似文献   

2.
During speech comprehension the auditory association cortex in the superior temporal cortex is involved in perceptual analysis of the speech signal, whereas the basal language area in the inferior temporal cortex mediates access to word meaning. Disruption of the interaction between the superior and inferior temporal cortices is one factor that may determine recovery from aphasic stroke. We used positron emission tomography to investigate semantic processing within inferior temporal cortex in control subjects and after infarction involving the superior temporal cortex. In the control group, semantic decision making on clear speech activated both anterior fusiform gyri. Chronic aphasic patients were impaired at the task and demonstrated reduced activation within the left anterior fusiform gyrus. A similar pattern of impaired performance and reduced left anterior fusiform gyrus activation was observed when control subjects heard perceptually degraded speech. Performance in both groups predicted activity in the right anterior fusiform gyrus and the temporal poles, where accuracy linearly correlated with activity. These results demonstrate that the function of the basal language area is sensitive to changes in the quality of perceptual input. In addition, different profiles of response observed in each hemisphere suggest distinct contributions of both left and right inferior temporal cortices to the semantic processing of speech.  相似文献   

3.
Aphasia is an acquired language disorder that is a common consequence of stroke.The pathogenesis of the disease is not fully understood,and as a result,current treatment options are not satisfactory.Here,we used blood oxygenation level-dependent functional magnetic resonance imaging to evaluate the activation of bilateral cortices in patients with Broca's aphasia 1 to 3 months after stroke.Our results showed that language expression was associated with multiple brain regions in which the right hemisphere participated in the generation of language.The activation areas in the left hemisphere of aphasia patients were significantly smaller compared with those in healthy adults.The activation frequency,volumes,and intensity in the regions related to language,such as the left inferior frontal gyrus(Broca's area),the left superior temporal gyrus,and the right inferior frontal gyrus(the mirror region of Broca's area),were lower in patients compared with healthy adults.In contrast,activation in the right superior temporal gyrus,the bilateral superior parietal lobule,and the left inferior temporal gyrus was stronger in patients compared with healthy controls.These results suggest that the right inferior frontal gyrus plays a role in the recovery of language function in the subacute stage of stroke-related aphasia by increasing the engagement of related brain areas.  相似文献   

4.
Neural pathways involved in the processing of concrete and abstract words.   总被引:3,自引:0,他引:3  
The purpose of this study was to delineate the neural pathways involved in processing concrete and abstract words using functional magnetic resonance imaging (fMRI). Word and pseudoword stimuli were presented visually, one at a time, and the participant was required to make a lexical decision. Lexical decision epochs alternated with a resting baseline. In each lexical decision epoch, the stimuli were either concrete words and pseudowords, or abstract words and pseudowords. Behavioral data indicated that, as with previous research, concrete word stimuli were processed more efficiently than abstract word stimuli. Analysis of the fMRI data indicated that processing of word stimuli, compared to the baseline condition, was associated with neural activation in the bilateral fusiform gyrus, anterior cingulate, left middle temporal gyrus, right posterior superior temporal gyrus, and left and right inferior frontal gyrus. A direct comparison between the abstract and concrete stimuli epochs yielded a significant area of activation in the right anterior temporal cortex. The results are consistent with recent positron emission tomography work showing right hemisphere activation during processing of abstract representations of language. The results are interpreted as support for a right hemisphere neural pathway in the processing of abstract word representations.  相似文献   

5.
Recent neuroimaging and neuropsychological data suggest that speech perception is supported in bilaterally auditory areas. We evaluate this issue building on well-known behavioral effects. While undergoing positron emission tomography (PET), subjects performed standard auditory tasks: direction discrimination of frequency-modulated (FM) tones, categorical perception (CP) of consonant-vowel (CV) syllables, and word/non-word judgments (lexical decision, LD). Compared to rest, the three conditions led to bilateral activation of the auditory cortices. However, lateralization patterns differed as a function of stimulus type: the LD task generated stronger responses in the left, the FM task a stronger response in the right hemisphere. Contrasts between either words or syllables versus FM were associated with significantly greater activity bilaterally in superior temporal gyrus (STG) ventro-lateral to Heschl's gyrus. These activations extended into the superior temporal sulcus (STS) and the middle temporal gyrus (MTG) and were greater in the left. The same areas were more active in the LD than the CP task. In contrast, the FM task was associated with significantly greater activity in the right lateral-posterior STG and lateral MTG. The findings argue for a view in which speech perception is mediated bilaterally in the auditory cortices and that the well-documented lateralization is likely associated with processes subsequent to the auditory analysis of speech.  相似文献   

6.
We investigated plasticity of language networks exposed to slowly evolving brain damage. Single subject 0-15-water language activation positron emission tomography studies were analyzed in 61 right-handed patients with brain tumors of the left hemisphere, and 12 normal controls. In controls, activations were found in left Brodmann's Area (BA)44 and BA45, superior posterior temporal gyrus bilaterally, and right cerebellum. Patients additionally activated left BA46, BA47, anterior insula, and left cerebellum. Superior temporal activation was less frequent, and activations in areas other than posterior temporal gyrus were found bilaterally. Frontolateral activations within the nondominant hemisphere were only seen in patients (63%) with frontal or posterior temporal lesions. Laterality indices of frontolateral cortex showed reversed language dominance in 18% of patients. Laterality indices of the cerebellum were negatively correlated with language performance. Two compensatory mechanisms in patients with slowly evolving brain lesions are described: An intrahemispheric mechanism with recruitment of left frontolateral regions other than classic language areas; and an interhemispheric compensatory mechanism with frontolateral activation in the nondominant hemisphere. The latter one was only found in patients with frontal or posterior temporal lesions, thus supporting the hypothesis that right frontolateral activations are a disinhibition phenomenon.  相似文献   

7.
目的采用脑磁图(magnetoencephaiography MEG)的等价偶极子定位法(equivalent current dipole,ECD)和合成孔径磁场定位法(SAM Synthetic Aperture Magnetometry SAM)定位母语为汉语健康自愿者的听觉性语言中枢探讨汉字的语言加工过程。方法采用北京医科大学附属第一医院制定的利手评定标准,对15例母语为汉语的健康受试者进行利手评定。给予听动物名称、植物名称的语言任务刺激,采用MEG记录刺激后产生的诱发磁场。将采集的数据与MRI叠加获得听觉性语言中枢定位。结果所有受试者听动物名称、植物名称均在双侧大脑半球诱发出明显的晚发磁反应波,其中左侧大脑半球磁反应波分化较右侧大脑半球好。听觉性语言中枢定位于左侧颞中回、颞上回、缘上回。结论母语为汉语的正常人听觉性语言中枢与经典的语言中枢基本相符,即听觉性语言中枢定位于左侧颞中回、颞上回,缘上回。  相似文献   

8.
By means of fMRI measurements, the present study identifies brain regions in left and right peri-sylvian areas that subserve grammatical or prosodic processing. Normal volunteers heard 1) normal sentences; 2) so-called syntactic sentences comprising syntactic, but no lexical-semantic information; and 3) manipulated speech signals comprising only prosodic information, i.e., speech melody. For all conditions, significant blood oxygenation signals were recorded from the supratemporal plane bilaterally. Left hemisphere areas that surround Heschl gyrus responded more strongly during the two sentence conditions than to speech melody. This finding suggests that the anterior and posterior portions of the superior temporal region (STR) support lexical-semantic and syntactic aspects of sentence processing. In contrast, the right superior temporal region, in especially the planum temporale, responded more strongly to speech melody. Significant brain activation in the fronto-opercular cortices was observed when participants heard pseudo sentences and was strongest during the speech melody condition. In contrast, the fronto-opercular area is not prominently involved in listening to normal sentences. Thus, the functional activation in fronto-opercular regions increases as the grammatical information available in the sentence decreases. Generally, brain responses to speech melody were stronger in right than left hemisphere sites, suggesting a particular role of right cortical areas in the processing of slow prosodic modulations.  相似文献   

9.
Although there is evidence that exact calculation recruits left hemisphere perisylvian language systems, recent work has shown that exact calculation can be retained despite severe damage to these networks. In this study, we sought to identify a "core" network for calculation and hence to determine the extent to which left hemisphere language areas are part of this network. We examined performance on addition and subtraction problems in two modalities: one using conventional two-digit problems that can be easily encoded into language; the other using novel shape representations. With regard to numerical problems, our results revealed increased left fronto-temporal activity in addition, and increased parietal activity in subtraction, potentially reflecting retrieval of linguistically encoded information during addition. The shape problems elicited activations of occipital, parietal and dorsal temporal regions, reflecting visual reasoning processes. A core activation common to both calculation types involved the superior parietal lobule bilaterally, right temporal sub-gyral area, and left lateralized activations in inferior parietal (BA 40), frontal (BA 6/8/32) and occipital (BA 18) regions. The large bilateral parietal activation could be attributed to visuo-spatial processing in calculation. The inferior parietal region, and particularly the left angular gyrus, was part of the core calculation network. However, given its activation in both shape and number tasks, its role is unlikely to reflect linguistic processing per se. A possibility is that it serves to integrate right hemisphere visuo-spatial and left hemisphere linguistic and executive processing in calculation.  相似文献   

10.
Aphasia is an acquired language disorder that is a common consequence of stroke. hTe pathogenesis of the disease is not fully understood, and as a result, current treatment options are not satisfactory. Here, we used blood oxygenation level-dependent functional magnetic reso-nance imaging to evaluate the activation of bilateral cortices in patients with Broca’s aphasia 1 to 3 months atfer stroke. Our results showed that language expression was associated with multiple brain regions in which the right hemisphere participated in the generation of lan-guage. hTe activation areas in the letf hemisphere of aphasia patients were signiifcantly smaller compared with those in healthy adults. hTe activation frequency, volumes, and intensity in the regions related to language, such as the letf inferior frontal gyrus (Broca’s area), the letf superior temporal gyrus, and the right inferior frontal gyrus (the mirror region of Broca’s area), were lower in patients compared with healthy adults. In contrast, activation in the right superior temporal gyrus, the bilateral superior parietal lobule, and the letf inferior temporal gyrus was stronger in patients compared with healthy controls. hTese results suggest that the right inferior frontal gyrus plays a role in the recovery of language function in the subacute stage of stroke-related aphasia by increasing the engagement of related brain areas.  相似文献   

11.
Negative visual stimuli have been found to elicit stronger brain activation than do neutral stimuli. Such emotion effects have been shown for pictures, faces, and words alike, but the literature suggests stimulus‐specific differences regarding locus and lateralization of the activity. In the current functional magnetic resonance imaging study, we directly compared brain responses to passively viewed negative and neutral pictures of complex scenes, faces, and words (nouns) in 43 healthy participants (21 males) varying in age and demographic background. Both negative pictures and faces activated the extrastriate visual cortices of both hemispheres more strongly than neutral ones, but effects were larger and extended more dorsally for pictures, whereas negative faces additionally activated the superior temporal sulci. Negative words differentially activated typical higher‐level language processing areas such as the left inferior frontal and angular gyrus. There were small emotion effects in the amygdala for faces and words, which were both lateralized to the left hemisphere. Although pictures elicited overall the strongest amygdala activity, amygdala response to negative pictures was not significantly stronger than to neutral ones. Across stimulus types, emotion effects converged in the left anterior insula. No gender effects were apparent, but age had a small, stimulus‐specific impact on emotion processing. Our study specifies similarities and differences in effects of negative emotional content on the processing of different types of stimuli, indicating that brain response to negative stimuli is specifically enhanced in areas involved in processing of the respective stimulus type in general and converges across stimuli in the left anterior insula.  相似文献   

12.
OBJECTIVE: To investigate whether congenital and clinically quiescent arachnoid cysts (AC) in the left temporal fossa alter the functional organization of adjacent cortices. METHODS: fMRI mapping was applied in five right-handed asymptomatic patients to determine the functional organization of language. Moreover, morphometry was performed in each patient to gain the size of cortical surface areas and cortical thickness values in the neighboring brain adjacent to the AC and explicitly in the left opercular region. RESULTS: Four patients showed a clear left hemisphere language dominance regardless of the cyst size; a mixed laterality of language organization was found in the remaining patient. An interesting dissociation of morphometric data was assessed when comparing strongly language-related cortices in the inferior frontal gyrus with the entire neighboring cortices. Morphometry in the neighboring brain regions of the AC showed 1) overall reduced cortical surface areas and 2) a decrease in cortical thickness compared to the homologous right side. However, the surface area of the fronto-opercular region in the left inferior frontal gyrus-i.e., the pars triangularis and the pars opercularis-was larger on the left as compared to the right side. Both structures have earlier been identified to represent the morphologic substrate of language dominance in the left hemisphere. CONCLUSION: Arachnoid cysts do not disturb the normal asymmetry of hemisphere language organization despite delicate locations adjacent to the left inferior frontal gyrus.  相似文献   

13.
The traditional Stroop test of cognitive interference requires overt speech responses. One alternative, the counting Stroop, generates cognitive interference similar to the traditional Stroop test but allows button press responses. Previous counting Stroop studies have used concrete words in the control condition, which may have masked inferior frontal activation. We studied 7 healthy young adults using fMRI on a counting Stroop condition, with a nonlinguistic control condition (geometric shapes). As expected, we found activation in bilateral inferior frontal gyri, as well as in lateral and medial prefrontal, inferior parietal, and extrastriate cortices. Additional functional connectivity analyses using inferior frontal activation clusters (right area 44, left area 47) as seed volumes showed connectivity with superior frontal area 8 and anterior cingulate gyrus, suggesting that the role of inferior frontal cortex was related to response conflict and inhibition. Connectivity with left perisylvian language areas was not observed, which further underscores the nonlinguistic nature of inferior frontal activity. We conclude that bilateral inferior frontal cortex is involved in response suppression associated with interference in the counting Stroop task.  相似文献   

14.
Modality independence of word comprehension   总被引:3,自引:0,他引:3  
Functional magnetic resonance imaging (fMRI) was used to examine the functional anatomy of word comprehension in the auditory and visual modalities of presentation. We asked our subjects to determine if word pairs were semantically associated (e.g., table, chair) and compared this to a reference task where they were asked to judge whether word pairs rhymed (e.g., bank, tank). This comparison showed task-specific and modality-independent activation for semantic processing in the heteromodal cortices of the left inferior frontal gyrus (BA 46, 47) and left middle temporal gyrus (BA 21). There were also modality-specific activations in the fusiform gyrus (BA 37) for written words and in the superior temporal gyrus (BA 22) for spoken words. Our findings are consistent with the hypothesis that word form recognition (lexical encoding) occurs in unimodal cortices and that heteromodal brain regions in the anterior as well as posterior components of the language network subserve word comprehension (semantic decoding).  相似文献   

15.
Prior neuroimaging studies on metaphor comprehension have tended to focus on the role of the right hemisphere, without reaching consensus and leaving aside the functional architecture of this process. The present work aimed to break down metaphor comprehension into its functional components. The study rationale is two-fold: on the one hand, the large-scale network model as emerging in cognitive neuroscience led us to a consideration of metaphor as supported by a distributed and bilateral network; on the other hand, we based on the accounts of figurative language put forward in pragmatics and cognitive science to postulate a decomposition of such a network into multiple sub-systems. During scanning, participants implicitly processed metaphorical (familiar and unfamiliar) and non-metaphorical passages, while being explicitly involved in an adjective matching task to be performed after reading the target passages. Several regions showed greater activity to metaphors as compared to non-metaphors, including left and right inferior frontal gyrus, right superior temporal gyrus, left angular gyrus, and anterior cingulate. This pattern of activations, markedly bilateral, can be decomposed into circumscribed functional sub-systems mediating different aspects of metaphor resolution, as foreseen in the pragmatic and cognitive literature: (a) the conceptual/pragmatic machinery in the bilateral inferior frontal gyrus and in the left angular gyrus, which supports the integration of linguistic material and world knowledge in context; (b) the attentional component in the anterior cingulate and prefrontal areas, which is set to monitor and filter for the relevant aspects of context and for the appropriate meanings; (c) the Theory of Mind system along the right superior temporal sulcus, which deals with the recognition of speakers' communicative intentions and is more extensively activated by unfamiliar metaphors. The results have several implications for the field of neuropragmatics, especially on the neuropsychological side and on the right hemisphere hypothesis.  相似文献   

16.
Background: Three aspects of language production are impaired to different degrees in individuals with post-stroke aphasia: ability to repeat words and nonwords, name pictures, and produce sentences. These impairments often persist into the chronic stages, and the neuroanatomical distribution of lesions associated with chronicity of each of these impairments is incompletely understood.

Aims: The primary objective of this study was to investigate the lesion correlates of picture naming, sentence production, and nonword repetition deficits in the same participant group because most prior lesion studies have mapped single language impairments. The broader goal of this study was to investigate the extent and degree of overlap and uniqueness among lesions resulting in these deficits in order to advance the current understanding of functional subdivision of neuroanatomical regions involved in language production.

Methods & Procedures: In this study, lesion-symptom mapping was used to determine if specific cortical regions are associated with nonword repetition, picture naming, and sentence production scores. Structural brain images and behavioural performance of 31 individuals with post-stroke left hemisphere lesions and a diagnosis of aphasia were used in the lesion analysis.

Outcomes & Results: Each impairment was associated with mostly unique, but a few shared lesions. Overall, sentence and repetition deficits were associated with left anterior perisylvian lesions, including the pars opercularis and triangularis of the inferior frontal lobe, anterior superior temporal gyrus, anterior portions of the supramarginal gyrus, the putamen, and anterior portions of the insula. In contrast, impaired picture naming was associated with posterior perisylvian lesions including major portions of the inferior parietal lobe and middle temporal gyrus. The distribution of lesions in the insula was consistent with this antero-posterior perisylvian gradient. Significant voxels in the posterior planum temporale were associated with a combination of all three deficits.

Conclusions: These findings emphasise the participation of each perisylvian region in multiple linguistic functions, suggesting a many(functions)-to-many(networks) framework while also identifying functional subdivisions within each region.  相似文献   

17.
The present study investigates the sensitivity of distinct brain regions to the syntactic processing of running speech. Experimental conditions varied the grammaticality of sentence types (correct vs. incorrect). Moreover, two different groups of subjects listened to the same sentence material, but followed two different task instructions. All participants were asked to listen to the auditory stimuli and to perform in a grammaticality judgment-task, whereas only half of the subjects were instructed to additionally repair incorrect sentences covertly. Significantly increased brain responses occurred in several left temporal areas as a function of sentences' grammaticality, particularly, in the 'pure' judgment-group. Spatial extent as well as the strength of focal brain activation changed as a function of grammaticality and task demand. A generally enhanced pattern of local blood supply to the right peri-sylvian cortex could be observed when individuals additionally realized the repair-task. In particular, the right inferior frontal gyrus (pars opercularis and pars triangularis) and the right temporal transverse gyrus (Heschl's gyrus) were more strongly affected by the repair-task demand. In contrast, an anterior portion of the superior temporal gyrus (planum polare) displayed increased activation bilaterally. Although left hemisphere activation varied clearly as a function of a sentence's grammaticality, the present findings demonstrate an involvement of the right peri-sylvian cortex, in particular, when task demands explicitly require an on-line repair. The results as a whole suggest a reconsideration of the notion that auditory language comprehension is restricted to the left hemisphere. The underlying mechanisms and the respective roles of both the left and the right hemisphere during speech processing are discussed.  相似文献   

18.
We determined the spatio-temporal dynamics of intracranially-recorded gamma-oscillations modulated by spontaneous cooing and babbling, which are considered to embody pre-linguistic language behaviors during infancy. Electrocorticographic (ECoG) signals were recorded from 110 cortical sites in the right hemisphere of a 10-month-old girl with focal epilepsy. Electrocorticographic signals were time-locked to the onset of cooing or babbling. The amplitudes of gamma-oscillations during vocalizations were compared to those during preceding silent reference periods. Cooing and babbling elicited significant gamma-augmentation at 30-100 Hz at distinct sites of the inferior Rolandic region, whereas both forms of vocalizations elicited gamma-augmentation at an identical superior temporal site. The spatial, temporal and spectral characteristics of gamma-augmentation elicited by cooing and babbling were similar to those elicited by phoneme vocalization in older children and adults. Differential activation within the right inferior Rolandic region during cooing and babbling may reflect the mechanical or developmental difference between these two forms of vocalizations. The right superior temporal gyrus may participate in an auditory feedback system during vocalization.  相似文献   

19.
An important question in brain and language research is how activity in multiple brain networks is coordinated over time during semantic comprehension. To address this question, we applied spatiotemporal source analysis to event-related potentials (ERPs) recorded as subjects read words that were meaningful or incongruous in the context of a sentence (N400 paradigm). The incongruous word was placed either early in the sentence or at the end. Source analysis showed activity in language areas of the left hemisphere, right temporal cortex and medial limbic cortex. The initial detection of semantic incongruity (approximately 250 ms) engaged the left prefrontal cortex and left anterior cingulate. In the critical (300-500 ms) interval, regional sources in left and right lateral prefrontal cortex, right temporal cortex, and both anterior and posterior cingulate were responsive to the semantic manipulation. Left hemisphere activity preceded right hemisphere activity, and semantic effects in frontal regions began earlier and were more sustained than the transient effects within posterior cortical regions. Findings are discussed with respect to recent theories of corticothalamic and corticolimbic networks in attention and semantic processing.  相似文献   

20.
Performances of memorized piano compositions unfold via dynamic integrations of motor, perceptual, cognitive, and emotive operations. The functional neuroanatomy of such elaborately skilled achievements was characterized in the present study by using (15)0-water positron emission tomography to image blindfolded pianists performing a concerto by J.S. Bach. The resulting brain activity was referenced to that for bimanual performance of memorized major scales. Scales and concerto performances both activated primary motor cortex, corresponding somatosensory areas, inferior parietal cortex, supplementary motor area, motor cingulate, bilateral superior and middle temporal cortex, right thalamus, anterior and posterior cerebellum. Regions specifically supporting the concerto performance included superior and middle temporal cortex, planum polare, thalamus, basal ganglia, posterior cerebellum, dorsolateral premotor cortex, right insula, right supplementary motor area, lingual gyrus, and posterior cingulate. Areas specifically implicated in generating and playing scales were posterior cingulate, middle temporal, right middle frontal, and right precuneus cortices, with lesser increases in right hemispheric superior temporal, temporoparietal, fusiform, precuneus, and prefrontal cortices, along with left inferior frontal gyrus. Finally, much greater deactivations were present for playing the concerto than scales. This seems to reflect a deeper attentional focus in which tonically active orienting and evaluative processes, among others, are suspended. This inference is supported by observed deactivations in posterior cingulate, parahippocampus, precuneus, prefrontal, middle temporal, and posterior cerebellar cortices. For each of the foregoing analyses, a distributed set of interacting localized functions is outlined for future test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号