首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Exposure to endotoxins, allergens, or both in early life might regulate the development of tolerance to allergens later in life. OBJECTIVE: We investigated whether continuous exposure of infant mice to aerosolized endotoxin, allergen, or both inhibits subsequent allergen-induced immune and inflammatory responses. METHODS: Infant BALB/c mice were pre-exposed to aerosolized endotoxin, ovalbumin (OVA), or both (3 times a week for the first 4 weeks of life) before systemic sensitization (days 1-14) and repeated airway challenge (days 28-30) with OVA. RESULTS: Compared with that seen in negative control animals, systemic sensitization and airway allergen challenges induced high serum levels of allergen-specific IgE (0.7 +/- 0.09 vs 0.02 +/- 0.01 OD units), predominant T(H)2-type cytokine production (IL-5 by splenic mononuclear cells in vitro, 1.2 +/- 0.2 vs 0.04 +/- 0.06 ng/mL), airway inflammation (bronchoalveolar lavage fluid leukocytes, 125 +/- 15 vs 64 +/- 7/microL; eosinophils, 28 +/- 5 vs 1 +/- 0/microL) and development of in vivo airway hyperreactivity (maximal enhanced pause, 11 +/- 1.9 vs 4 +/- 0.2). Pre-exposure with LPS before sensitization increased production of specific IgG2a (67 +/- 10 vs 32 +/- 5 U/mL) but failed to prevent T(H)2-mediated immune responses. Pre-exposure with OVA or with OVA plus LPS completely suppressed allergen sensitization, airway inflammation, and development of in vivo airway hyperreactivity; values were similar to those of negative control animals. Inhibition was due to allergen-specific T-cell anergy indicated by omitted allergen-specific T(H)2 and T(H)1 immune responses. In addition, combined exposure to endotoxin and allergen induced a general shift toward an unspecific T(H)1 immune response. CONCLUSION: Exposure with endotoxins before allergen sensitization is not able to induce unresponsiveness but might decrease the susceptibility for sensitization to a variety of common allergens.  相似文献   

2.
BACKGROUND: New preventive strategies against the development of allergic diseases focus on potentially immunomodulatory components, such as bacterial LPSs. Optimal time frames for initiating immunomodulation to receive a sufficient effect against allergen sensitization are still unclear. OBJECTIVE: Using a mouse model, we investigated the influence of prenatal LPS exposure on later allergen-mediated sensitization and airway inflammation in the offspring. METHODS: Pregnant BALB/c mice were repeatedly exposed to aerosolized LPS (LPS Escherichia coli; 3x per week, day 7 of gestation time up to delivery). Some of the offspring were further exposed to aerosolized LPS before allergen sensitization with ovalbumin (OVA; administered intraperitoneally day 28 up to day 42) and OVA airway challenges (days 56-58). Positive control animals were placebo exposed to PBS instead of LPS, and negative control animals were first placebo exposed and later placebo sensitized with PBS instead of OVA. RESULTS: Compared with positive control animals, prenatal LPS exposure suppressed (1) allergen-specific sensitization (IgE production), (2) eosinophilic airway inflammation (reduced numbers of eosinophils in bronchoalveolar lavage fluids), and (3) in vivo airway reactivity in response to methacholine. These effects occurred only when prenatal was combined with further postnatal LPS exposure. Suppression of allergen-mediated inflammatory responses was associated with increased Toll-like receptor and T-bet expression by lung tissues and a shift toward predominantly T(H)1 immune responses in spleen cells cultured with OVA in vitro. CONCLUSION: Prenatal initiated and postnatal sustained LPS exposure increased endotoxin susceptibility and prevented later allergen sensitization in offspring through inhibition of T(H)2 immune responses. CLINICAL IMPLICATIONS: Immunomodulation with bacterial compounds during gestation time might be an effective mode for first-step primary prevention against allergic diseases.  相似文献   

3.
BACKGROUND: Epidemiological studies suggest that ozone exposure is related to increased asthma symptoms. Dendritic cells (DCs) are the principal antigen-presenting cells in the airways. OBJECTIVE: We have examined whether ambient doses of ozone (100 ppb for 2 h) enhance allergic sensitization and/or airway inflammation in a mouse model. METHODS: C57BL/6 mice were sensitized to inhaled ovalbumin (OVA) by intratracheal instillation of OVA-pulsed DCs on day 0. Daily exposure to OVA aerosol on days 14-20 resulted in an eosinophilic airway inflammation, as reflected in bronchoalveolar lavage fluid and lung histology. In a first experiment, mice were exposed to ozone or room air immediately prior to and following sensitization. Subsequently, we tested the effect of ozone exposure during antigen challenge in DC-sensitized mice. RESULTS: Exposure to ozone during sensitization did not influence airway inflammation after subsequent allergen challenge. In contrast, in sensitized mice, challenge with OVA together with ozone (days 14-20) resulted in enhanced airway eosinophilia and lymphocytosis, as compared with mice exposed to OVA and room air (1.91 x 106 +/- 0.46 x 106 vs. 0.16 x 106 +/- 0.06 x 106 eosinophils/mL lavage fluid; P = 0.015; 0.49 x 106 +/- 0.11 x 106 vs. 0.08 x 106 +/- 0.03 x 106 lymphocytes/mL lavage fluid; P = 0.004). Ozone exposure without subsequent OVA exposure did not cause airway inflammation. CONCLUSION: Ozone exposure does not increase allergic sensitization but enhances antigen-induced airway inflammation in mice that are sensitized via the airways.  相似文献   

4.
BACKGROUND: IL-4 and IL-13 play a putative role in mucus hypersecretion in asthma. Suplatast tosilate prevents the synthesis of T(H2) cytokines. OBJECTIVE: Because suplatast tosilate inhibits T(H2) cytokines but does not inhibits IFN-gamma production, we examined the effect of suplatast on IL-4- or IL-13- and ovalbumin (OVA)-induced mucin synthesis in NCI-H292 cells in vitro and in bronchi of pathogen-free BALB/c mice in vivo. METHODS: In vitro, NCI-H292 cells were preincubated with suplatast tosilate (0.1-100 microgram/mL) 1 hour before adding human recombinant IL-4 (10 ng/mL). In vivo, mouse recombinant IL-4 or IL-13 (250 ng per/mouse) was instilled intranasally in mice pretreated with suplatast tosilate (50 mg.kg(-1).d(-1)). Mucous glycoconjugates were stained with Alcian blue (AB)/periodic acid-Schiff (PAS) stain. To evaluate effects of suplatast tosilate on goblet-cell metaplasia in OVA-sensitized mice, animals were pretreated with suplatast tosilate (1-50 mg.kg(-1).d(-1)) intragastrically. IL-4 and IL-13 were measured, and allergic inflammatory cells were analyzed in bronchoalveolar lavage fluid of OVA-sensitized mice. RESULTS: Pretreatment with suplastast did not prevent IL-4- or IL-13-induced increase in mucous glycoconjugate production in NCI-H292 cells or in mice. OVA sensitization increased AB/PAS-stained area of the epithelium (48.1% +/- 2.4%, P <.01 compared with control mice). Suplatast tosilate inhibited OVA-induced goblet-cell metaplasia in airway epithelium in a dose-dependent fashion; 50 mg.kg(-1).d(-1) decreased the AB/PAS area to 22.7% +/- 2.7% (P <.05 compared with OVA sensitization alone). Pretreatment with suplatast tosilate also prevented OVA-induced increase in IL-4 and IL-13 levels and decreased the number of lymphocytes and eosinophils in bronchoalveolar lavage fluid (P <.05 compared with values of mice given OVA alone). CONCLUSION: These results indicate that suplatast tosilate prevents allergen-induced goblet-cell metaplasia and the recruitment of eosinophils and lymphocytes into the airways. These results suggest that this effect is due to the prevention of the production of T(H2) cytokines in airways.  相似文献   

5.
BACKGROUND: In humans the prevalence of asthma is higher among females than among males after puberty. The reason for this phenomenon is not clear. OBJECTIVE: We tested the hypothesis that female mice are more susceptible to the development of allergic asthma than male mice and studied allergic immune responses in the lung. METHODS: We compared allergic airway inflammation, i.e. methacholine (MCh) responsiveness, serum IgE, and cytokines, and the number of the different leucocytes in lungs of male and female BALB/c mice, twice-sensitized to ovalbumin (OVA) and subsequently challenged with OVA (OVA-mice) or phosphate-buffered saline (PBS-mice) aerosols on days 24-26, 30, and 31. RESULTS: OVA challenge significantly increased MCh responsiveness, numbers of eosinophils, CD4(+) T cells, CD4(+)/CD25(+) T cells, B cells, and levels of Thelper (Th)2 cytokines, total, and OVA-specific IgE. There was, however, also an effect of gender, with female mice responding to OVA challenges with higher numbers of eosinophils, CD4(+) T cells, B cells, and levels of IL-4, IL-13, IFN-gamma, total, and OVA-specific IgE than male mice. In contrast, female PBS-mice had significantly lower percentages of regulatory CD4(+)/CD25(+) T cells than males (females 4.2+/-0.2% vs. males 5.3+/-0.1% of CD4(+) T cells, P<0.05). CONCLUSION: Female mice develop a more pronounced type of allergic airway inflammation than male mice after OVA challenge. The reduced percentage of regulatory T cells in the lungs of female PBS-mice may indicate that the level of these cells in the lung during the sensitization phase is important for the development and/or progression of an allergic immune response after multiple OVA challenges.  相似文献   

6.
BACKGROUND: Airway dendritic cells (DCs) are crucial for the generation of TH2 cells from naive T cells during sensitization and for reactivation of primed TH2 cells on allergen challenge in mouse models of asthma. It is unknown whether CD80/CD86 costimulation is necessary during both phases of the response because primed T cells rely less on costimulatory molecules compared with naive T cells. OBJECTIVE: We sought to study the contribution of CD80/CD86 costimulatory molecules on DCs during sensitization or challenge in a mouse model of asthma. METHODS: Naive BALB/c mice received an intratracheal injection of ovalbumin (OVA)-pulsed DCs obtained from the bone marrow of wild-type (WT) or CD80/CD86-/- mice and were subsequently challenged with OVA aerosol to address the role of costimulation during sensitization. OVA-sensitized mice received OVA-pulsed WT or CD80/CD86-/- DCs without OVA aerosol to address the role of costimulation during challenge. RESULTS: WT DCs induced the proliferation and effector TH2 differentiation of naive OVA-specific T cells, whereas CD80/CD86-/- DCs induced only proliferation. Not surprisingly, WT DCs but not CD80/CD86-/- DCs induced sensitization to OVA in naive mice. In contrast, in OVA-sensitized mice intratracheal injection of CD80/CD86-/- OVA-pulsed DCs led to eosinophilic airway inflammation, goblet cell hyperplasia, and effector TH2 cytokine production that was not different from that seen after injection with WT OVA-DCs, even when the inducible costimulator ICOS was blocked or cytotoxic T lymphocyte-associated antigen 4 immunoglobulin was given. CONCLUSION: CD80/CD86 costimulation on DCs is only necessary during priming of naive T cells into TH2 cells but not during restimulation of previously primed TH2 cells in the challenge phase.  相似文献   

7.
We studied the role of interleukin (IL)-4, IL-5, and allergen-specific immunoglobulin (Ig) E in the development of allergen-induced sensitization, airway inflammation, and airway hy-perresponsiveness (AHR). Normal, IL-4-, and IL-5-deficient C57BL/6 mice were sensitized intraperitoneally to ovalbumin (OVA) and repeatedly challenged with OVA via the airways. After allergen sensitization and airway challenge, normal and IL-5-deficient, but not IL-4-deficient, mice developed increased serum levels of total and antigen-specific IgE levels and increased IL-4 production in the lung tissue compared with nonsensitized control mice. Only normal mice showed significantly increased IL-5 production in the lung tissue and an eosinophilic infiltration of the peribronchial regions of the airways, whereas both IL-4- and IL-5-deficient mice had little or no IL-5 production and no significant eosinophilic airway inflammation. Associated with the inflammatory responses in the lung, only normal mice developed increased airway responsiveness to methacholine after sensitization and airway challenge; in both IL-4- and IL-5-deficient mice, airway responsiveness was similar to that in nonsensitized control mice. Reconstitution of sensitized, IL-4-deficient mice before allergen airway challenge with IL-5, but not with allergen-specific IgE, restored eosinophilic airway inflammation and the development of AHR. These data demonstrate the importance of IL-4 for allergen-driven airway sensitization and that IL-5, but not allergen-specific IgE, is required for development of eosinophilic airway inflammation and AHR after this mode of sensitization and challenge.  相似文献   

8.
9.
BACKGROUND: Infection with influenza virus has been associated with seemingly opposing effects on the development of asthma. However, there are no data about the effects of mucosal vaccination with inactivated influenza on the inception of allergic asthma. OBJECTIVE: To assess the immunological effects of inhaled inactivated influenza vaccine, using two different types of flu vaccines, on the inception of allergic sensitization and allergen-mediated airway disease in a mouse model. METHODS: BALB/c mice were intranasally or intratracheally vaccinated with whole or split influenza virus vaccine (days -1 or -1, 27) before systemic sensitization with ovalbumin (OVA) (days 1, 14) and repeated airway allergen challenges (days 28-30). Allergen sensitization (IgE serum levels), airway inflammation (differential cells in bronchoalveolar lavage fluid) and airway hyper-reactivity (AHR) (in vivo lung function) were analysed. RESULTS: The intranasal instillation of whole influenza vaccine before allergen sensitization significantly reduced the serum levels of total and OVA-specific IgE as well as allergen-induced AHR. Prevention was due to an allergen-specific shift from a predominant T helper (Th)2- towards a Th1-immune response. Application of split influenza vaccine did not show the same preventive effect. CONCLUSION: Intranasal administration of inactivated whole influenza vaccine reduced subsequent allergen sensitization and prevented allergen-induced AHR. Our results show that the composition of the influenza vaccine has a major influence on subsequent development of allergen-induced sensitization and AHR, and suggest that mucosal inactivated whole influenza vaccination may represent a step towards the development of a preventive strategy for atopic asthma.  相似文献   

10.
BACKGROUND: We have shown previously that lipopolysaccharides (LPS) inhibited airway inflammation in allergen-sensitized and challenged mice when administered during sensitization, while exacerbating the inflammation when given upon challenge. We have here investigated the effect of LPS administered during both sensitization and challenge on airway inflammation, as well as on the profile of the T-helper (Th) response to allergen. METHODS: Mice were sensitized and challenged with ovalbumin (OVA), in the presence or absence of effective doses of LPS, namely 1 mug during sensitization and 1 ng during challenge. Inflammation was assessed by measuring cell counts and cytokine levels in bronchoalveolar lavage fluid (BALF). The profile of the Th response was determined by quantifying OVA-specific IgE and IgG2a in serum and Th1/Th2 cytokines in the culture medium of splenocytes and in BALF. RESULTS: Allergen-induced airway eosinophilia was increased in mice exposed to LPS during challenge only when compared with controls, whereas it was similarly reduced in animals exposed during sensitization only and during both sensitization and challenge. Mice exposed to LPS during sensitization only or during both sensitization and challenge also displayed a decrease in IgE and an increase in IgG2a, suggesting a switch in the immune response toward the Th1 profile. This was confirmed by quantification of Th1/Th2 cytokines in culture medium of splenocytes and in BALF. CONCLUSIONS: Our data demonstrate that exposure to endotoxins during sensitization prevents allergen-induced airway inflammation, as well as its exacerbation triggered by further exposure to endotoxins during challenge, while switching the immune response to allergen from a Th2 to a Th1 profile.  相似文献   

11.
BACKGROUND: Histamine-1-receptor (H1R)-antagonists were shown to influence various immunological functions on different cell types and may thus be employed for immune-modulating strategies for the prevention of primary immune responses. OBJECTIVE: The aim of this study was to investigate the effects of an H1R-antagonist on allergen-induced sensitization, airway inflammation (AI) and airway hyper-reactivity (AHR) in a murine model. METHODS: BALB/c mice were systemically sensitized with ovalbumin (OVA) (six times, days 1-14) and challenged with aerosolized allergen (days 28-30). One day prior to the first and 2 h prior to every following sensitization, mice received either 1 or 0.01 microg of desloratadine (DL) or placebo per os. RESULTS: Sensitization with OVA significantly increased specific and total IgE and IgG1 serum levels, as well as in vitro IL-5 and IL-4 production by spleen and peribronchial lymph node (PBLN) cells. Sensitized and challenged mice showed a marked eosinophilic infiltration in broncho-alveolar lavage fluids and lung tissues, and developed in vivo AHR to inhaled methacholine. Oral treatment with DL prior to OVA sensitization significantly decreased production of OVA-specific IgG1, as well as in vitro Th2-cytokine production by spleen and PBLN cells, compared with OVA-sensitized mice. Moreover, eosinophilic inflammation and development of in vivo AHR were significantly reduced in DL-treated mice, compared with sensitized controls. CONCLUSION: Treatment with H1R-anatagonist prior to and during sensitization suppressed allergen-induced Th2 responses, as well as development of eosinophilic AI and AHR. This underscores an important immune modulating function of histamine, and implies a potential role of H1R-anatagonists in preventive strategies against allergic diseases.  相似文献   

12.
BACKGROUND: Several studies have considered that the in utero environment plays an important role in the onset of the allergic phenotype. We assessed whether allergic sensitization and allergen exposure during pregnancy favor the postnatal onset of allergy in the neonate. METHODS: BALB/c mice were sensitized to ovalbumin (OVA) before mating followed by allergen aerosol exposure during pregnancy. T and B cell responses in offspring were followed up until day 60 postpartum. At the age of 4 weeks offspring were exposed to a heterologous antigen, beta-lactoglobulin (BLG). RESULTS: Pregnant mice developed immediate hypersensitivity responses and Th-2/ Th-0 immunity following allergen aerosol exposure. At birth, T cells from offspring of nonsensitized BALB/c mice were characterized by an impaired IFN-gamma production, which was lowered even further in offspring of OVA-sensitized BALB/c mice. Offspring of OVA-sensitized BALB/c mice responded with immediate-type cutaneous hypersensitivity reactions to OVA which could be related to the pre- and postnatal transfer of maternal OVA-specific IgG1 antibodies. After exposure to BLG, offspring of OVA-sensitized BALB/c mice developed an accelerated Th-2-driven immune response compared to offspring from nonsensitized BALB/c mice as indicated by enhanced anti-BLG IgG1 antibody production and increased numbers of positive immediate-type cutaneous hypersensitivity reactions to BLG. CONCLUSION: Our data suggest that Th-2/Th-0 immunity present during pregnancy has a decisive impact on shaping the Th-1/Th-2 T cell profile in response to postnatal allergen exposure.  相似文献   

13.
Chemokine receptor (CCR) 5 is expressed on dendritic cells, macrophages, CD8 cells, memory CD4 T cells, and stromal cells, and is frequently used as a marker of T helper type 1 cells. Interventions that abrogate CCR5 or interfere with its ligand binding have been shown to alter T helper type 2-induced inflammatory responses. The role of CCR5 on allergic airway responses is not defined. CCR5-deficient (CCR5(-/-)) and wild-type (CCR5(+/+)) mice were sensitized and challenged with ovalbumin (OVA) and allergic airway responses were monitored 48 hours after the last OVA challenge. Cytokine levels in lung cell culture supernatants were also assessed. CCR5(-/-) mice showed significantly lower airway hyperresponsiveness (AHR) and lower numbers of total cells, eosinophils, and lymphocytes in bronchoalveolar lavage (BAL) fluid compared with CCR5(+/+) mice after sensitization and challenge. The levels of IL-4 and IL-13 in BAL fluid of CCR5(-/-) mice were lower than in CCR5(+/+) mice. Decreased numbers of lung T cells were also detected in CCR5(-/-) mice after sensitization and challenge. Transfer of OVA-sensitized T cells from CCR5(+/+), but not transfer of CCR5(-/-) cells, into CCR5(-/-) mice restored AHR and numbers of eosinophils in BAL fluid after OVA challenge. Accordingly, the numbers of airway-infiltrating donor T cells were significantly higher in the recipients of CCR5(+/+) T cells. Taken together, these data suggest that CCR5 plays a pivotal role in allergen-induced AHR and airway inflammation, and that CCR5 expression on T cells is essential to the accumulation of these cells in the airways.  相似文献   

14.
BACKGROUND: The role of CD8+ T cells in the immune response to airway challenge with an allergen is poorly understood. OBJECTIVE: The aim of this study was to test the hypothesis that resident naive CD8+ T cells modulate the magnitude of CD4+ T cell-dependent allergic airway responses. METHODS: Cervical lymph node CD4+ T cells (2 x 10(6)) were harvested from ovalbumin (OVA)- or sham-sensitized rats and injected intraperitoneally into naive Brown Norway recipients. The recipients were treated with a CD8alpha mAb (OX-8) to deplete the resident CD8+ T cells (n = 12) or mouse ascites (n = 12). Two days after adoptive transfer, the recipient animals were OVA challenged, lung resistance was measured for 8 hours, and bronchoalveolar lavage (BAL) was performed. RESULTS: After OVA challenge, primed CD4-transferred CD8-depleted rats had larger early airway responses and late airway responses compared with primed CD4-transferred CD8-nondepleted rats (early airway responses: 158.6% +/- 19.2% vs 115.7% +/- 5.9%, P < .05; late airway responses: 8.5% +/- 1.7% vs 4.4% +/- 0.9%, P < .05). BAL eosinophilia was also greater (4.67% +/- 0.45% vs 2.34 +/- 0.26%, P < .01). The cells in BAL fluid expressing IL-4 mRNA were not significantly changed by CD8 depletion, but IL-5 mRNA+ cells were higher in number, and IFN-gamma mRNA+ cells were fewer in the CD8-depleted group. CONCLUSIONS: Resident CD8+ T cells downregulate the late allergic response and airway inflammation evoked by CD4+ T-cell transfers in Brown Norway rats. This downregulation does not require antigen priming.  相似文献   

15.
Allergic conjunctivitis from an allergen-driven T helper type 2 (Th2) response is characterized by conjunctival eosinophilic infiltration. Association between signalling through Toll-like receptor 4 (TLR-4) and adaptive immune responses has been observed in allergic airway disease. We examined whether administration of bacterial lipopolysaccharide (LPS), a prototypic bacterial product that activates immune cells via TLR-4, could affect the development of allergic conjunctivitis and modify the immune response to ovalbumin (OVA) allergen in an experimental allergic conjunctivitis (EAC) model. Mice were challenged with two doses of OVA via conjunctival sac after systemic challenge with OVA in alum. Several indicators for allergy were evaluated in wild-type and TLR-4(-/-) mice with or without adding of different doses of LPS into OVA in alum. Mice challenged with OVA via conjunctival sac following systemic challenge with OVA in alum had severe allergic conjunctivitis. Of interest, LPS administration markedly suppressed immunoglobulin (Ig)E-mediated and eosinophil-dependent conjunctival inflammation. In addition, mice sensitized with OVA plus LPS had less interleukin (IL)-4, IL-5 and eotaxin secretion than mice sensitized with OVA only. The suppression of allergic response by LPS administration was due to Th1 shift. In contrast, the presence of LPS during sensitization with OVA had no effect on severity of allergic conjunctivitis and Th2 responses in TLR4-4(-/-) mice. Our findings demonstrate, for the first time, that LPS suppresses Th2 responses via the TLR-4-dependent pathway in the EAC model.  相似文献   

16.
BACKGROUND: Spreading of sensitization with clinical manifestation of allergy is often observed in atopic individuals. OBJECTIVE: To investigate the effects of an established primary allergen sensitization on immune responses and airway inflammation/reactivity on secondary allergen sensitization and airway challenges in a murine model. METHODS: Balb/c mice were primarily sensitized intraperitoneally with ovalbumin or PBS, followed by systemic sensitization and airway challenges with latex extract as a secondary, unrelated allergen. Purely sham-sensitized animals were included as controls. In a second set of experiments, the primary and secondary allergens were switched. RESULTS: Sensitization with ovalbumin before sensitization with latex resulted in increased production of total and latex-specific (Hev b 3-specific) IgE and IgG(1), and enhanced secretion of T(H)2-cytokines by spleen mononuclear cells cultured with mitogen compared with single latex-sensitized mice. Furthermore, airway challenges of double-sensitized mice (ovalbumin + latex) with latex caused a significant increase in airway reactivity compared with purely latex-sensitized and challenged animals. These effects were dependent on dosing and timing of the primary sensitization in relation to the secondary sensitization and independent of the primary allergen used. CONCLUSION: Primary sensitization boosted systemic T(H)2 immune responses and enhanced the development of airway reactivity after sensitization and airway challenges with a secondary, unrelated allergen. This effect of consecutive priming was dependent on the strength of the primary sensitization but independent of the allergen used. The results explain the increased susceptibility toward sensitization spreading in atopic individuals. CLINICAL IMPLICATIONS: Because sensitization spreading is facilitated by primary sensitization, early prevention measurements or immunotherapy should be considered at this stage of monosensitization.  相似文献   

17.
In experimental models of bronchial asthma with mice, airway inflammation and increase in airway hyperreactivity (AHR) are induced by a combination of systemic sensitization and airway challenge with allergens. In this report, we present another possibility: that systemic antigen-specific sensitization alone can induce AHR before the development of inflammation in the airway. Male BALB/c mice were sensitized with ovalbumin (OVA) by a combination of intraperitoneal injection and aerosol inhalation, and various parameters for airway inflammation and hyperreactivity were sequentially analyzed. Bronchial response measured by a noninvasive method (enhanced pause) and the eosinophil count and interleukin (IL)-5 concentration in bronchoalveolar lavage fluid (BALF) gradually increased following the sensitization, and significant increase was achieved after repeated OVA aerosol inhalation along with development of histologic changes of the airway. In contrast, AHR was already significantly increased by systemic sensitization alone, although airway inflammation hardly developed at that time point. BALF IL-4 concentration and the expression of IL-4 mRNA in the lung reached maximal values after the systemic sensitization, then subsequently decreased. Treatment of mice with anti-IL-4 neutralizing antibody during systemic sensitization significantly suppressed this early increase in AHR. In addition, IL-4 gene-targeted mice did not reveal this early increase in AHR by systemic sensitization. These results suggest that an immune response in the lung in an early stage of sensitization can induce airway hyperreactivity before development of an eosinophilic airway inflammation in BALB/c mice and that IL-4 plays an essential role in this process. If this early increase in AHR does occur in sensitized human infants, it could be another therapeutic target for early prevention of the future onset of asthma.  相似文献   

18.
We previously showed that granulocyte-macrophage colony-stimulating factor (GM-CSF) breaks tolerance induction. The objective of this study was to determine whether GM-CSF breaks established inhalation tolerance. To induce tolerance, BALB/c mice were exposed to aerosolized ovalbumin (OVA) for 10 consecutive days. A control group was exposed to saline. Subsequently, tolerant and control animals were exposed to OVA in a GM-CSF-enriched airway microenvironment. Tolerant animals, unlike control animals, did not develop airway and peripheral blood eosinophilia, had diminished levels of OVA-specific IgE, and reduced airway hyper-responsiveness. While tolerant animals did not express IL-4, IL-5 and IL-13, levels of the regulatory cytokines IL-10, IFN-gamma and transfoming growth factor (TGF)-beta were similar between tolerant and non-tolerant animals. Lung CD4+ T cells were activated according to CD69, CD25 and T1/ST2 expression, but systemic responses characterized by splenocyte proliferation and Th2 effector function were dramatically reduced. Concurrent expression of GM-CSF and decorin, a natural inhibitor of TGF-beta, reversed eosinophilic unresponsiveness. Our study suggests that the breakdown of tolerance and, by extension, the emergence of eosinophilic inflammation, requires two signals: one that triggers sensitization and one that interferes with negative regulation. Moreover, our study shows that dysregulated expression of an extracellular matrix protein may break established tolerance and lead to eosinophilic airway inflammation.  相似文献   

19.
Epithelial cells from individuals with asthma or from allergen-sensitized mice contain intracellular interleukin (IL)-16 protein, not present in epithelial cells from individuals without asthma or unsensitized mice. IL-16 is only present in the bronchoalveolar lavage (BAL) fluid following airway challenge with either allergen or vasoactive amine. This suggests that the initial response to allergen (sensitization) results in synthesis but not secretion of IL-16. In this study, we investigated what factors produced during the sensitization phase are responsible for epithelial cell priming for IL-16 production. We determined that ovalbumin (OVA)-sensitized mice have an increase in systemic tumor necrosis factor-alpha levels, and that serum or BAL fluid stimulation of bronchial epithelial cells results in production of IL-16 that is subsequently secreted only following serotonin stimulation. The mechanism for IL-16 production was shown to be caspase-3-dependent, and serotonin-induced secretion of IL-16 required binding of the serotonin type 2 receptor. The relevance of the priming effect associated with sensitization for IL-16 production and storage was confirmed in vivo by serotonin airway challenge of OVA-sensitized mice, resulting in rapid secretion of IL-16 into BAL fluid. As IL-16 has been shown to regulate CD4+ cell recruitment and activation, and is detected early following airway challenge of individuals with asthma, this two-step process for IL-16 production by epithelial cells may represent a rapid response mechanism in the orchestration of allergic airway inflammation.  相似文献   

20.
BACKGROUND: The airway inflammation observed in asthma is orchestrated by activated Th-2 lymphocytes relevant for the induction of altered airway responsiveness. An increasing body of evidence is accumulating that not only the pro-inflammatory cytokines interleukin (IL)-4 and IL-5 but also the immunomodulating cytokines IL-12 and possibly IL-10 are crucial for regulating the allergic airway inflammation. OBJECTIVE: Since IL-10 is capable of downregulating a broad spectrum of pro-inflammatory cytokines, we wanted to address the role of endogenously produced IL-10 in vivo in allergic asthma. METHODS: Knockout (IL-10(-/-)) mice (C57BL/6-IL10tm1Cgn) and wild-type (WT) counterparts were immunized (day 0) and exposed (day 14-21) to ovalbumin (OVA). Airway inflammation and reactivity (AR), serum allergen-specific IgE responses and cytokine profiles in the bronchoalveolar lavage fluid (BALF) were studied. RESULTS: The IL-10(-/-) mice had more eosinophilic airway inflammation but comparable levels of allergen-specific serum IgE compared to the WT mice after allergen challenge. The AR was comparably increased in the OVA challenged WT and IL-10(-/-) mice vs sham-exposed WT, but not vs sham-exposed IL-10(-/-)mice since these showed a higher baseline AR. IFN gamma, IL-4 and IL-13 were comparable and IL-5 was even lower in the BALF of the in IL-10(-/-) mice compared to the similarly exposed WT mice. CONCLUSION: These results indicate that IL-10 plays an important and possibly direct role in the control of airway inflammation and responsiveness in an in vivo mouse model of allergy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号