首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visceral adiposity is associated with insulin resistance and type 2 diabetes. This study explores the metabolic differences between s.c. and visceral fat depots with respect to effects in vitro of glucocorticoids and insulin on glucose uptake.Adipocytes from human s.c. and omental fat depots were obtained during abdominal surgery in 18 nondiabetic subjects. Cells were isolated, and metabolic studies were performed directly after the biopsies and after a culture period of 24 h with or without dexamethasone. After washing, basal and insulin-stimulated [14C]glucose uptake as well as cellular content of insulin signaling proteins and glucose transporter 4 (GLUT4) was assessed. Omental adipocytes had an approximately 2-fold higher rate of insulin-stimulated glucose uptake compared with s.c. adipocytes (P < 0.01). Dexamethasone treatment markedly inhibited (by approximately 50%; P < 0.05) both basal and insulin-stimulated glucose uptake in omental adipocytes but had no consistent effect in s.c. adipocytes. The cellular content of insulin receptor substrate 1 and phosphatidylinositol 3-kinase did not differ significantly between the depots, but the expression of protein kinase B (PKB) tended to be increased in omental compared with s.c. adipocytes (P = 0.09). Dexamethasone treatment decreased the expression of insulin receptor substrate 1 (by approximately 40%; P < 0.05) and PKB (by approximately 20%; P < 0.05) in omental but not in s.c. adipocytes. In contrast, dexamethasone pretreatment had no effect on insulin-stimulated Ser473 phosphorylation of PKB. GLUT4 expression was approximately 4-fold higher in omental than s.c. adipocytes (P < 0.05). Dexamethasone treatment did not alter the expression of GLUT4. In conclusion, human omental adipocytes display approximately 2-fold higher glucose uptake rate compared with s.c. adipocytes, and this could be explained by a higher GLUT4 expression. A marked suppression is exerted by glucocorticoids on glucose uptake and on the expression of insulin signaling proteins in omental but not in s.c. adipocytes. These findings may be of relevance for the interaction between endogenous glucocorticoids and visceral fat in the development of insulin resistance.  相似文献   

2.
Human immunodeficiency virus (HIV) infection is associated with insulin resistance. HIV type 1 Nef downregulates cell surface protein expression, alters signal transduction, and interacts with the cytoskeleton and proteins involved in actin polymerization. These functions are required for glucose uptake by insulin-stimulated adipocytes. We sought to determine whether Nef alters adipocyte glucose homeostasis. Using radiolabeled glucose, we found that adipocytes exposed to recombinant Nef took in 42% less glucose after insulin stimulation than did control cells. This reduction resulted from a Nef-dependent inhibition of glucose transporter 4 (GLUT4) trafficking, as assessed by means of immunofluorescence microscopy. Immunoblot analysis revealed a decrease in phosphorylation of signal transducing proteins after Nef treatment, and fluorescence microscopy showed a dramatic alteration in cortical actin organization. We conclude that Nef interferes with insulin-stimulated processes in adipocytes. We have identified HIV Nef, which is detectable and antigenic in serum samples from HIV-infected people, as a novel contributor to the development of insulin resistance.  相似文献   

3.
Experimental and clinical studies have demonstrated that early postnatal overnutrition represents a risk factor for later obesity and associated metabolic and cardiovascular disturbance. In the present study, we assessed the levels of glucose transporter 4 (GLUT-4), GLUT-1, insulin receptor (IR), IR substrate 1 (IRS-1), phosphatidylinositol 3-kinase (PI3K) and Akt expression, as well as insulin-stimulated glucose transport and Akt activity in adipocytes from adult rats previously raised in small litters (SL). The normal litter (NL) served as control group. We also investigated glycemia, insulinemia, plasma lipid levels, and glucose tolerance. Our data demonstrated that early postnatal overfeeding induced a persistent hyperphagia accompanied by a significant increase in body weight until 90 days of age. The SL group also presented a significant increase ( approximately 42%) in epidydimal fat weight. Blood glucose, plasma insulin, and lipid levels were similar among the animals from the SL and NL groups. While insulin-stimulated glucose uptake was approximately twofold higher in adipocytes from the NL group, no stimulatory effect was observed in the SL group. The impaired insulin-stimulated glucose transport in adipose cells from the SL rats was associated with a significant decrease in GLUT-4, IRS-1 and PI3K expression, and Akt activity. In contrast, IR and Akt expression in adipocytes was not different between the SL and NL groups. Despite these alterations, our results showed no differences in glucose tolerance test in rats raised under different feeding conditions. Our findings reinforce a potent and long-term effect of neonatal overfeeding, which can program major changes in the metabolic regulatory mechanisms.  相似文献   

4.
OBJECTIVE: Leptin, a hormone produced in adipocytes, is a key signal in the regulation of food intake and energy expenditure. Beta-adrenergic agonists have been shown to inhibit leptin gene expression and leptin secretion. The mechanisms underlying the inhibitory effects of beta-adrenergic agonists have not been established. In this study, we examined the effects of Trecadrine, a novel beta3-adrenergic agonist, on basal and insulin-stimulated leptin secretion in isolated rat adipocytes. Because insulin-stimulated glucose metabolism is an important regulator of leptin expression and secretion by the adipocytes, the effects of Trecadrine on indices of adipocyte metabolism were also examined. MEASUREMENTS: Isolated adipocytes were incubated with Trecadrine (10(-8)-10(-4) M) in the absence or presence of insulin (1.6 nM). Leptin secretion, glucose utilization, lactate production, glucose incorporation into CO(2) and triglyceride, as well as lipolysis (glycerol release) were determined. RESULTS: Trecadrine induced a concentration-dependent inhibition of basal leptin secretion. Trecadrine also decreased insulin-stimulated leptin secretion; however, the effect was not as pronounced as in the absence of insulin. Treatment of adipocytes with Trecadrine increased basal glucose utilization and produced a further increase in insulin-stimulated glucose utilization. Basal lactate production was also increased by Trecadrine; however, the proportion (percentage) of glucose carbon released as lactate was unaffected. In the presence of insulin, absolute lactate production was unaffected by Trecadrine at 96 h. However, the percentage of glucose carbon released as lactate was significantly decreased by insulin treatment, and was further decreased by the co-treatment with Trecadrine. Trecadrine induced a dose-dependent increase of the absolute amount of glucose incorporated into triglyceride. However, the percentage of glucose utilized that was incorporated into triglyceride was unaffected by Trecadrine. Trecadrine did not modify the proportion of glucose utilized that was oxidized to CO(2). Trecadrine increased glycerol release after 96 h of treatment. Glycerol release was negatively correlated with leptin secretion. CONCLUSIONS: These results suggest that alterations of glucose metabolism are not directly involved in the effects of beta3-adrenergic agonists to inhibit leptin expression and secretion. The inverse relationship between leptin secretion and the increase of glycerol levels, which is an index of the activation of cAMP-dependent protein kinases, suggests that activation of the cAMP signaling pathway mediates the inhibitory effects of Trecadrine on leptin gene expression and secretion.  相似文献   

5.
The effects of neurotensin on insulin and somatostatin release were examined in isolated pancreatic islets prepared from 3-4 days rats, and maintained in culture for 48 h before use. In the presence of 12 mM glucose, glucagon (50-2,000 ng/ml, i.e. 14-560 nM) caused a 2-fold increase in insulin and somatostatin release. Neurotensin (150 ng/ml, i.e., 100 nM) did not affect the glucagon-stimulated release, nor did it alter the release of either peptide measured at 12 mM glucose in the absence of glucagon. In contrast, neurotension markedly inhibited the release of both insulin and somatostatin that was induced by 23 mM glucose. These observations suggest that neurotensin may modulate the release of insulin and somatostatin evoked by high glucose concentrations, but not that resulting from the action of glucagon on pancreatic islets.  相似文献   

6.
7.
The mammalian target of rapamycin (mTOR) pathway has recently emerged as a chronic modulator of insulin-mediated glucose metabolism. In this study, we evaluated the involvement of this pathway in the acute regulation of insulin action in both 3T3-L1 and human adipocytes. Insulin rapidly (t(1/2) = 5 min) stimulated the mTOR pathway, as reflected by a 10-fold stimulation of 70-kDa ribosomal S6 kinase 1 (S6K1) activity in 3T3-L1 adipocytes. Inhibition of mTOR/S6K1 by rapamycin increased insulin-stimulated glucose transport by as much as 45% in 3T3-L1 adipocytes. Activation of mTOR/S6K1 by insulin was associated with a rapamycin-sensitive increase in Ser636/639 phosphorylation of insulin receptor substrate (IRS)-1 but, surprisingly, did not result in impaired IRS-1-associated phosphatidylinositol (PI) 3-kinase activity. However, insulin-induced activation of Akt was increased by rapamycin. Insulin also activated S6K1 and increased phosphorylation of IRS-1 on Ser636/639 in human adipocytes. As in murine cells, rapamycin treatment of human adipocytes inhibited S6K1, blunted Ser636/639 phosphorylation of IRS-1, leading to increased Akt activation and glucose uptake by insulin. Further studies in 3T3-L1 adipocytes revealed that rapamycin prevented the relocalization of IRS-1 from the low-density membranes to the cytosol in response to insulin. Furthermore, inhibition of mTOR markedly potentiated the ability of insulin to increase PI 3,4,5-triphosphate levels concomitantly with an increased phosphorylation of Akt at the plasma membrane, low-density membranes, and cytosol. However, neither GLUT4 nor GLUT1 translocation induced by insulin were increased by rapamycin treatment. Taken together, these results indicate that the mTOR pathway is an important modulator of the signals involved in the acute regulation of insulin-stimulated glucose transport in 3T3-L1 and human adipocytes.  相似文献   

8.
高胰岛素和高糖对大鼠脂肪细胞胰岛素信号蛋白的影响   总被引:4,自引:0,他引:4  
目的 探讨高浓度胰岛素和高浓度糖(高糖)共同作用诱导胰岛素抵抗的分子机理。方法 分离的大鼠脂肪细胞在5、25mmo1/L糖或加胰岛素(10^4μU/m1)培养基中孵育24h,然后测定糖的转运率、胰岛素受体(IR)、胰岛素受体底物(IRs)1/2的酪氨酸磷酸化,IRsl/2,肌醇磷脂—3—激酶85亚单位(P85)和蛋白激酶B(PKB)的蛋白表达及PKB活性。结果 高糖使这些细胞的糖摄取率、IR和IRs—1的酪氨酸磷酸化分别下降了69%、43%和52%,IRs-1蛋白表达下降61%及PKB活性降低42%。高胰岛素加重高糖的以上抑制作用(与25mmo1/L葡萄糖组比较,P<0.05、P<0.01);高糖增加IRS—2蛋白表达20.4%,高胰岛素对抗高糖的此作用。结论 高糖能诱导胰岛素抵抗,高胰岛素加重高糖的此作用。其作用机制与影响胰岛素信号通道各蛋白的磷酸化、表达及PKB活性等因素有关。  相似文献   

9.
10.
A Trp64Arg mutation in the beta3-adrenergic receptor gene has been implicated in the pathophysiology of non-insulin-dependent diabetes mellitus and obesity. However, the findings have been controversial due to the use of different populations and different methods for the estimation of body fat. In the present study, the prevalence of Trp64Arg mutation of the beta3-adrenergic receptor gene was determined and its relation to body fat as assessed by dual-energy x-ray absorptiometry (DEXA) was evaluated in Thai men and women. The effect on insulin sensitivity as assessed by the serum insulin to glucose ratio was also examined. The subjects were 76 men and 135 women aged 20 to 80 years. Body fat and its regional distribution were assessed by DEXA. Mutation in the beta3-adrenergic receptor gene was determined by polymerase chain reaction (PCR)-restriction fragment length polymorphism. Data are expressed as the mean +/- SEM. Fifty-nine subjects (28.0%) had the Trp64Arg mutation in the beta3-adrenergic receptor gene; 54 (25.6%) were heterozygotes and five (2.4%) were homozygotes. The gene frequency of Trp64Arg mutation was 15.2% in these subjects. In women, Trp64Arg mutation was not associated with the difference in total body fat (Trp/Arg or Arg/Arg, 19.4 +/- 1.0 kg; Trp/Trp, 19.2 +/- 0.6 kg) or percent body fat (Trp/Arg or Arg/Arg, 34.6% +/- 1.2%; Trp/Trp, 34.3% +/- 0.6%). In contrast to the findings in women, men with Trp64Arg mutation had lower total body fat after controlling for age (Trp/Arg or Arg/Arg, 13.2 +/- 1.1 kg; Trp/Trp, 15.8 +/- 0.7 kg; P < .05). However, no difference was found in percent body fat (Trp/Arg or Arg/Arg, 20.9% +/- 1.3%; Trp/Trp, 23.3% +/- 0.7%). No difference in the fasting insulin resistance index (FIRI) was found between subjects with and without Trp64Arg mutation. The data suggest that Trp64Arg mutation of the beta3-adrenergic receptor is common in Thais and appears to exert effects on total body fat but not percent body fat in men. Trp64Arg mutation is not associated with insulin resistance as assessed by the FIRI in Thais.  相似文献   

11.
The beta(3)-adrenoreceptor plays a major role in lipolysis but the role and distribution of beta(3)-receptors in other specific sites have not been extensively studied. beta(3)-adrenergic receptors are present not only in adipose tissue but also in human gall bladder, colon, prostate, and skeletal muscle. Recently, beta(3)-adrenergic receptor stimulation was shown to elicit vasorelaxation of rat aorta through the NO-cGMP signal transduction pathway. Here we show that beta(3)-receptors are present in human corpus cavernosum and are localized mainly in smooth muscle cells. After activation by a selective beta(3)-adrenergic receptor agonist, BRL 37344, there was a cGMP-dependent but NO-independent vasorelaxation that was selectively blocked by a specific beta(3)-receptor antagonist. In addition, we report that the human corpus cavernosum exhibits basal beta(3)-receptor-mediated vasorelaxant tone and that beta(3)-receptor activity is linked to inhibition of the RhoA/Rho-kinase pathway. These observations indicate that beta(3)-receptors may play a physiological role in mediating penile erection and, therefore, could represent a therapeutic target for treatment of erectile dysfunction.  相似文献   

12.
A series of clinical trials and animal experiments have demonstrated that ginseng and its major active constituent, ginsenosides, possess glucose-lowering action. In our previous study, ginsenoside Rb(1) has been shown to regulate peroxisome proliferator-activated receptor gamma activity to facilitate adipogenesis of 3T3-L1 cells. However, the effect of Rb(1) on glucose transport in insulin-sensitive cells and its molecular mechanism need further elucidation. In this study, Rb(1) significantly stimulated basal and insulin-mediated glucose uptake in a time- and dose-dependent manner in 3T3-L1 adipocytes and C2C12 myotubes; the maximal effect was achieved at a concentration of 1 microM and a time of 3 h. In adipocytes, Rb(1) promoted GLUT1 and GLUT4 translocations to the cell surface, which was examined by analyzing their distribution in subcellular membrane fractions, and enhanced translocation of GLUT4 was confirmed using the transfection of GLUT4-green fluorescence protein in Chinese Hamster Ovary cells. Meanwhile, Rb(1) increased the phosphorylation of insulin receptor substrate-1 and protein kinase B (PKB), and stimulated phosphatidylinositol 3-kinase (PI3K) activity in the absence of the activation of the insulin receptor. Rb(1)-induced glucose uptake as well as GLUT1 and GLUT4 translocations was inhibited by the PI3K inhibitor. These results suggest that ginsenoside Rb(1) stimulates glucose transport in insulin-sensitive cells by promoting translocations of GLUT1 and GLUT4 by partially activating the insulin signaling pathway. These findings are useful in understanding the hypoglycemic and anti-diabetic properties of ginseng and ginsenosides.  相似文献   

13.
Anabolic and catabolic signaling oppose one another in adipose tissue to maintain cellular and organismal homeostasis, but these pathways are often dysregulated in metabolic disorders. Although it has long been established that stimulation of the β-adrenergic receptor inhibits insulin-stimulated glucose uptake in adipocytes, the mechanism has remained unclear. Here we report that β-adrenergic–mediated inhibition of glucose uptake requires lipolysis. We also show that lipolysis suppresses glucose uptake by inhibiting the mammalian target of rapamycin (mTOR) complexes 1 and 2 through complex dissociation. In addition, we show that products of lipolysis inhibit mTOR through complex dissociation in vitro. These findings reveal a previously unrecognized intracellular signaling mechanism whereby lipolysis blocks the phosphoinositide 3-kinase–Akt–mTOR pathway, resulting in decreased glucose uptake. This previously unidentified mechanism of mTOR regulation likely contributes to the development of insulin resistance.Adipose tissue plays an essential role in maintaining whole-body energy homeostasis by storing or releasing nutrients. This balance is controlled by opposing signaling pathways where anabolic processes are activated by insulin (INS) and catabolic actions are activated by catecholamines. An important unanswered question in adipose biology is how catecholamine-induced β-adrenergic signaling opposes insulin-stimulated glucose uptake (16). Surprisingly, the underlying mechanism for this well-established physiological response in adipocytes is still unknown.When nutrients are plentiful, insulin is released by the pancreas and stimulates the absorption of glucose and fatty acids in adipose tissue, where they are packaged and stored as triacylglycerol (TAG) in cellular lipid droplets. Insulin signaling in adipocytes is mediated by the phosphoinositide 3-kinase (PI3K)–Akt–mTOR pathway. mTOR is a highly conserved serine/threonine protein kinase that functions in either of two distinct multiprotein complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 is defined primarily by the association of mTOR with raptor, whereas mTORC2 includes mTOR with rictor (7). Importantly, mTORC2 phosphorylation of Akt at S473 is required for Akt activity on AS160, which is necessary for glucose uptake in response to insulin (811). Of note, for both mTORC1 and mTORC2, the integrity of these protein complexes is essential for kinase substrate specificity and proper signaling (12, 13).During periods of fasting or stress, catecholamines are released by the sympathetic nervous system to activate lipolysis. Stimulation of the β-adrenergic receptor on adipocytes activates adenylyl cyclase (AC), leading to elevated cAMP and protein kinase A (PKA) activity. PKA initiates lipolysis by direct phosphorylation of hormone-sensitive lipase (HSL) and perilipin (1416) and indirect activation of adipose triglyceride lipase (ATGL) (1719). Lipolysis involves hydrolysis of TAG stored in the lipid droplet to produce diacylglycerol (DAG), monoacylglycerol (MAG), fatty acids, and glycerol. These lipolytic products are important energy substrates that can act as precursors for other lipids and impact cellular signaling. However, their potential role as signaling molecules has been underappreciated (20).In this study, we provide insight into the mechanisms that link β-adrenergic stimulation to the inhibition of insulin-stimulated glucose uptake. Namely, we show that activation of lipolysis is crucial. Moreover, we find that products of lipolysis themselves cause mTOR inhibition by complex dissociation, which inhibits glucose uptake in adipocytes. This mechanism of mTOR regulation (i.e., by complex dissociation) has major implications in the regulation of cellular metabolism and likely contributes to stress-induced hyperglycemia and obesity-induced insulin resistance.  相似文献   

14.
Apelin is a peptide present in different cell types and secreted by adipocytes in humans and rodents. Apelin exerts its effects through a G-protein-coupled receptor called APJ. During the past years, a role of apelin/APJ in energy metabolism has emerged. Apelin was shown to stimulate glucose uptake in skeletal muscle through an AMP-activated protein kinase (AMPK)-dependent pathway in mice. So far, no metabolic effects of apelin have been reported on human adipose tissue (AT). Thus, the effect of apelin on AMPK in AT was measured as well as AMPK-mediated effects such as inhibition of lipolysis and stimulation of glucose uptake. AMPK and acetyl-CoA carboxylase phosphorylation were measured by western blot to reflect the AMPK activity. Lipolysis and glucose uptake were measured, ex vivo, in response to apelin on isolated adipocytes and explants from AT of the subcutaneous region of healthy subjects (body mass index: 25.6 ± 0.8 kg/m(2), n = 30 in total). APJ mRNA and protein are present in human AT and isolated adipocytes. Apelin stimulated AMPK phosphorylation at Thr-172 in a dose-dependent manner in human AT, which was associated with increased glucose uptake since C compound (20 μM), an AMPK inhibitor, completely prevented apelin-induced glucose uptake. However, in isolated adipocytes or AT explants, apelin had no significant effect on basal and isoprenaline-stimulated lipolysis. Thus, these results reveal, for the first time, that apelin is able to act on human AT in order to stimulate AMPK and glucose uptake.  相似文献   

15.
OBJECTIVE: To check if the oestradiol- and progesterone-driven reduction in noradrenaline responsiveness of brown adipocytes is due to a reduction in either the density or the affinity of beta3-adrenoceptors (beta3-AR). beta1/beta2-AR were also studied. DESIGN: Four groups of animals were considered. (i) control rats at thermoneutrality, (ii) cold-acclimated rats, to determine beta-AR under continuous sympathetic stimulation, which is known to decrease noradrenaline responsiveness, (iii) oestradiol- and (iv) progesterone-treated cold-acclimated rats to determine hormonal effects on beta-AR populations in thermogenically active brown adipocytes. METHODS: Oestradiol and progesterone were chronically elevated by means of s.c. Silastic implants. Densities and affinities of beta-AR populations were determined by binding studies using [3H]CGP-12177 as radioligand. RESULTS: Two populations of low and high binding affinities (K(d) 1.6 and 27.3 nmol/l) corresponding to beta3- and beta1/beta2-AR respectively were found at thermoneutrality. beta3-AR density was higher than that of beta1/beta2-AR (B(max) 419 and 143 fmol/mg protein respectively). Cold-acclimated rats showed a reduction of beta3-AR binding capacity (B(max) 308 fmol/mg protein). Oestradiol and progesterone reduced the density of beta3-AR to 167 and 185 fmol/mg protein respectively, while increasing their affinity for [3H]CGP-12177 (K(d) 9.5 and 4.0 nmol/l vs 16 nmol/l in cold-acclimated untreated rats). The density of beta1/beta2-AR was also reduced after oestradiol treatment (B(max) 51 fmol/mg protein). CONCLUSIONS: Both oestradiol and progesterone reduce the density of beta3-AR in brown adipose tissue (BAT) while increasing their affinity for [3H]CGP-12177. Oestradiol also reduces the density of beta1/beta2-AR whereas cold-acclimation reduces the density of beta3-AR.  相似文献   

16.
Rapamycin is an immunosuppressive agent used after organ transplantation, but its molecular effects on glucose metabolism needs further evaluation. We explored rapamycin effects on glucose uptake and insulin signalling proteins in adipocytes obtained via subcutaneous (n=62) and omental (n=10) fat biopsies in human donors. At therapeutic concentration (0.01 μM) rapamycin reduced basal and insulin-stimulated glucose uptake by 20-30%, after short-term (15 min) or long-term (20 h) culture of subcutaneous (n=23 and n=10) and omental adipocytes (n=6 and n=7). Rapamycin reduced PKB Ser473 and AS160 Thr642 phosphorylation, and IRS2 protein levels in subcutaneous adipocytes. Additionally, it reduced mTOR-raptor, mTOR-rictor and mTOR-Sin1 interactions, suggesting decreased mTORC1 and mTORC2 formation. Rapamycin also reduced IR Tyr1146 and IRS1 Ser307/Ser616/Ser636 phosphorylation, whereas no effects were observed on the insulin stimulated IRS1-Tyr and TSC2 Thr1462 phosphorylation. This is the first study to show that rapamycin reduces glucose uptake in human adipocytes through impaired insulin signalling and this may contribute to the development of insulin resistance associated with rapamycin therapy.  相似文献   

17.
OBJECTIVE: Circulating leptin, the product of the ob gene, is known to be closely correlated with adipose tissue mass, but it is also subject to short-term regulation by a variety of hormones including catecholamines. The aim of this study was to investigate the contribution of the three beta-adrenergic receptors to leptin secretion from cultured human adipocytes. DESIGN AND METHODS: The model of in vitro differentiated human subcutaneous adipocytes was used in this study. The presence of the beta-adrenoceptor subtypes was studied by RT-PCR. The functional role of the receptor subtypes was determined by stimulation of lipolysis by selective beta-adrenergic agonists and by measuring glycerol release. Leptin secretion into the medium of cultured human adipocytes from young normal-weight females was measured by radioimmunoassay. RESULTS AND CONCLUSION: In a first set of experiments, the expression of the three beta-adrenergic receptor subtypes in cultured human adipocytes was demonstrated. To test their functional activity, the effect of the beta-adrenoceptor agonists isoproterenol (non-selective agonist), dobutamine (beta(1)-selective), fenoterol (beta(2)-selective) and the beta(3)-selective agonists BRL 37344 and CGP 12177 was studied. All agonists exhibited a dose- and time-dependent stimulation of glycerol release into the medium in a rather uniform manner. Isoproterenol rapidly reduced leptin secretion from cultured subcutaneous adipocytes in a dose-dependent fashion. Incubation with 10(-6)mol/l isoproterenol for 24h resulted in a reduction of the leptin concentration by 48% (P < 0.01). A similar, but less pronounced suppressing effect was seen for dobutamine and fenoterol, whereas both BRL 37344 and CGP 12177 were not effective. These data provide evidence that catecholamines are able to suppress leptin release from differentiated human adipocytes, supporting the concept that leptin secretion is acutely regulated by surrounding hormones. This inhibition is obviously mediated via beta(1)- and beta(2)-adrenergic receptors.  相似文献   

18.
Three mouse monoclonal antibodies were produced that reacted with the alpha subunit of the human insulin receptor. All three both immunoprecipitated 125I-labeled insulin receptors from IM-9 lymphocytes and competitively inhibited 125I-labeled insulin binding to its receptor. Unlike insulin, the antibodies failed to stimulate receptor autophosphorylation in both intact IM-9 lymphocytes and purified human placental insulin receptors. Moreover, unlike insulin, the antibodies failed to stimulate receptor-mediated phosphorylation of exogenous substrates. However, like insulin, two of the three antibodies stimulated glucose transport in isolated human adipocytes. One antibody, on a molar basis, was as potent as insulin. These studies indicate, therefore, that monoclonal antibodies to the insulin receptor can mimic a major function of insulin without activating receptor kinase activity. They also raise the possibility that certain actions of insulin such as stimulation of glucose transport may not require the activation of receptor kinase activity.  相似文献   

19.
Vu V  Kim W  Fang X  Liu YT  Xu A  Sweeney G 《Endocrinology》2007,148(9):4411-4419
We developed a coculture system comprising primary rat adipocytes and L6 rat skeletal muscle cells to allow investigation of the effects of physiologically relevant mixtures of adipokines. We observed that coculture, or adipocyte-conditioned media, increased glucose uptake in muscle cells. An adipokine that could potentially mediate this effect is adiponectin, and we demonstrated that small interfering RNA-mediated knockdown of adiponectin receptor-2 in muscle cells reduced the uptake of glucose upon coculture with primary rat adipocytes. Analysis of coculture media by ELISA indicated total adiponectin concentration of up to 1 microg/ml, and Western blotting and gel filtration analysis demonstrated that the adipokine profile was hexamer greater than high molecular weight much greater than trimer. We used the streptozotocin-induced rat model of diabetes and found that high-molecular-weight adiponectin levels decreased in comparison with control animals and this correlated with the fact that diabetic rat-derived primary adipocytes in coculture did not stimulate glucose uptake to the same extent as control adipocytes. Coculture induced phosphorylation of AMP-activated protein kinase (T172) and interestingly also insulin receptor substrate-1 (Y612) and Akt (T308 & S473), which could be attenuated after adiponectin receptor-2-small interfering RNA treatment. In summary, we believe that this coculture system represents an excellent model to study the effects of primary adipocyte-derived adipokine mixtures on skeletal muscle metabolism, and here we have established that in the context of physiologically relevant mixtures of adipokines, adiponectin may be an important determinant of positive cross talk between adipocytes and skeletal muscle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号