首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
With recent advances in genomewide microarray technologies, whole-genome association (WGA) studies have aimed at identifying susceptibility genes for complex human diseases using hundreds of thousands of single nucleotide polymorphisms (SNPs) genotyped at the same time. In this context and to take into account multiple testing, false discovery rate (FDR)-based strategies are now used frequently. However, a critical aspect of these strAtegies is that they are applied to a collection or a family of hypotheses and, thus, critically depend on these precise hypotheses. We investigated how modifying the family of hypotheses to be tested affected the performance of FDR-based procedures in WGA studies. We showed that FDR-based procedures performed more poorly when excluding SNPs with high prior probability of being associated. Results of simulation studies mimicking WGA studies according to three scenarios are reported, and show the extent to which SNPs elimination (family contraction) prior to the analysis impairs the performance of FDR-based procedures. To illustrate this situation, we used the data from a recent WGA study on type-1 diabetes (Clayton et al. [2005] Nat. Genet. 37:1243-1246) and report the results obtained when excluding or not SNPs located inside the human leukocyte antigen region. Based on our findings, excluding markers with high prior probability of being associated cannot be recommended for the analysis of WGA data with FDR-based strategies.  相似文献   

2.
When simultaneously testing multiple hypotheses, the usual approach in the context of confirmatory clinical trials is to control the familywise error rate (FWER), which bounds the probability of making at least one false rejection. In many trial settings, these hypotheses will additionally have a hierarchical structure that reflects the relative importance and links between different clinical objectives. The graphical approach of Bretz et al (2009) is a flexible and easily communicable way of controlling the FWER while respecting complex trial objectives and multiple structured hypotheses. However, the FWER can be a very stringent criterion that leads to procedures with low power, and may not be appropriate in exploratory trial settings. This motivates controlling generalized error rates, particularly when the number of hypotheses tested is no longer small. We consider the generalized familywise error rate (k-FWER), which is the probability of making k or more false rejections, as well as the tail probability of the false discovery proportion (FDP), which is the probability that the proportion of false rejections is greater than some threshold. We also consider asymptotic control of the false discovery rate, which is the expectation of the FDP. In this article, we show how to control these generalized error rates when using the graphical approach and its extensions. We demonstrate the utility of the resulting graphical procedures on three clinical trial case studies.  相似文献   

3.
Binary phenotypes commonly arise due to multiple underlying quantitative precursors and genetic variants may impact multiple traits in a pleiotropic manner. Hence, simultaneously analyzing such correlated traits may be more powerful than analyzing individual traits. Various genotype‐level methods, e.g., MultiPhen (O'Reilly et al. [ 2012 ]), have been developed to identify genetic factors underlying a multivariate phenotype. For univariate phenotypes, the usefulness and applicability of allele‐level tests have been investigated. The test of allele frequency difference among cases and controls is commonly used for mapping case‐control association. However, allelic methods for multivariate association mapping have not been studied much. In this article, we explore two allelic tests of multivariate association: one using a Binomial regression model based on inverted regression of genotype on phenotype (Binomial regression‐based Association of Multivariate Phenotypes [BAMP]), and the other employing the Mahalanobis distance between two sample means of the multivariate phenotype vector for two alleles at a single‐nucleotide polymorphism (Distance‐based Association of Multivariate Phenotypes [DAMP]). These methods can incorporate both discrete and continuous phenotypes. Some theoretical properties for BAMP are studied. Using simulations, the power of the methods for detecting multivariate association is compared with the genotype‐level test MultiPhen's. The allelic tests yield marginally higher power than MultiPhen for multivariate phenotypes. For one/two binary traits under recessive mode of inheritance, allelic tests are found to be substantially more powerful. All three tests are applied to two different real data and the results offer some support for the simulation study. We propose a hybrid approach for testing multivariate association that implements MultiPhen when Hardy‐Weinberg Equilibrium (HWE) is violated and BAMP otherwise, because the allelic approaches assume HWE.  相似文献   

4.
Validation studies have been used to increase the reliability of the statistical conclusions for scientific discoveries; such studies improve the reproducibility of the findings and reduce the possibility of false positives. Here, one of the important roles of statistics is to quantify reproducibility rigorously. Two concepts were recently defined for this purpose: (i) rediscovery rate (RDR), which is the expected proportion of statistically significant findings in a study that can be replicated in the validation study and (ii) false discovery rate in the validation study (vFDR). In this paper, we aim to develop a nonparametric approach to estimate the RDR and vFDR and show an explicit link between the RDR and the FDR. Among other things, the link explains why reproducing statistically significant results even with low FDR level may be difficult. Two metabolomics datasets are considered to illustrate the application of the RDR and vFDR concepts in high‐throughput data analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Current analysis of event‐related potentials (ERP) data is usually based on the a priori selection of channels and time windows of interest for studying the differences between experimental conditions in the spatio‐temporal domain. In this work we put forward a new strategy designed for situations when there is not a priori information about ‘when’ and ‘where’ these differences appear in the spatio‐temporal domain, simultaneously testing numerous hypotheses, which increase the risk of false positives. This issue is known as the problem of multiple comparisons and has been managed with methods that control the false discovery rate (FDR), such as permutation test and FDR methods. Although the former has been previously applied, to our knowledge, the FDR methods have not been introduced in the ERP data analysis. Here we compare the performance (on simulated and real data) of permutation test and two FDR methods (Benjamini and Hochberg (BH) and local‐fdr, by Efron). All these methods have been shown to be valid for dealing with the problem of multiple comparisons in the ERP analysis, avoiding the ad hoc selection of channels and/or time windows. FDR methods are a good alternative to the common and computationally more expensive permutation test. The BH method for independent tests gave the best overall performance regarding the balance between type I and type II errors. The local‐fdr method is preferable for high dimensional (multichannel) problems where most of the tests conform to the empirical null hypothesis. Differences among the methods according to assumptions, null distributions and dimensionality of the problem are also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
We address the problem of testing whether a possibly high-dimensional vector may act as a mediator between some exposure variable and the outcome of interest. We propose a global test for mediation, which combines a global test with the intersection-union principle. We discuss theoretical properties of our approach and conduct simulation studies that demonstrate that it performs equally well or better than its competitor. We also propose a multiple testing procedure, ScreenMin, that provides asymptotic control of either familywise error rate or false discovery rate when multiple groups of potential mediators are tested simultaneously. We apply our approach to data from a large Norwegian cohort study, where we look at the hypothesis that smoking increases the risk of lung cancer by modifying the level of DNA methylation.  相似文献   

7.
Recent work on prospective power and sample size calculations for analyses of high‐dimension gene expression data that control the false discovery rate (FDR) focuses on the average power over all the truly nonnull hypotheses, or equivalently, the expected proportion of nonnull hypotheses rejected. Using another characterization of power, we adapt Efron's ([2007] Ann Stat 35:1351–1377) empirical Bayes approach to post hoc power calculation to develop a method for prospective calculation of the “identification power” for individual genes. This is the probability that a gene with a given true degree of association with clinical outcome or state will be included in a set within which the FDR is controlled at a specified level. An example calculation using proportional hazards regression highlights the effects of large numbers of genes with little or no association on the identification power for individual genes with substantial association.  相似文献   

8.
Multiple testing has been widely adopted for genome-wide studies such as microarray experiments. To improve the power of multiple testing, Storey (J. Royal Statist. Soc. B 2007; 69: 347-368) recently developed the optimal discovery procedure (ODP) which maximizes the number of expected true positives for each fixed number of expected false positives. However, in applying the ODP, we must estimate the true status of each significance test (null or alternative) and the true probability distribution corresponding to each test. In this article, we derive the ODP under hierarchical, random effects models and develop an empirical Bayes estimation method for the derived ODP. Our methods can effectively circumvent the estimation problems in applying the ODP presented by Storey. Simulations and applications to clinical studies of leukemia and breast cancer demonstrated that our empirical Bayes method achieved theoretical optimality and performed well in comparison with existing multiple testing procedures.  相似文献   

9.
Power and sample size for DNA microarray studies   总被引:10,自引:0,他引:10  
A microarray study aims at having a high probability of declaring genes to be differentially expressed if they are truly expressed, while keeping the probability of making false declarations of expression acceptably low. Thus, in formal terms, well-designed microarray studies will have high power while controlling type I error risk. Achieving this objective is the purpose of this paper. Here, we discuss conceptual issues and present computational methods for statistical power and sample size in microarray studies, taking account of the multiple testing that is generic to these studies. The discussion encompasses choices of experimental design and replication for a study. Practical examples are used to demonstrate the methods. The examples show forcefully that replication of a microarray experiment can yield large increases in statistical power. The paper refers to cDNA arrays in the discussion and illustrations but the proposed methodology is equally applicable to expression data from oligonucleotide arrays.  相似文献   

10.
We study the link between two quality measures of SNP (single nucleotide polymorphism) data in genome‐wide association (GWA) studies, that is, per SNP call rates (CR) and p‐values for testing Hardy–Weinberg equilibrium (HWE). The aim is to improve these measures by applying methods based on realized randomized p‐values, the false discovery rate and estimates for the proportion of false hypotheses. While exact non‐randomized conditional p‐values for testing HWE cannot be recommended for estimating the proportion of false hypotheses, their realized randomized counterparts should be used. P‐values corresponding to the asymptotic unconditional chi‐square test lead to reasonable estimates only if SNPs with low minor allele frequency are excluded. We provide an algorithm to compute the probability that SNPs violate HWE given the observed CR, which yields an improved measure of data quality. The proposed methods are applied to SNP data from the KORA (Cooperative Health Research in the Region of Augsburg, Southern Germany) 500 K project, a GWA study in a population‐based sample genotyped by Affymetrix GeneChip 500 K arrays using the calling algorithm BRLMM 1.4.0. We show that all SNPs with CR = 100 per cent are nearly in perfect HWE which militates in favor of the population to meet the conditions required for HWE at least for these SNPs. Moreover, we show that the proportion of SNPs not being in HWE increases with decreasing CR. We conclude that using a single threshold for judging HWE p‐values without taking the CR into account is problematic. Instead we recommend a stratified analysis with respect to CR. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Clinical trials routinely involve multiple hypothesis testing. The closed testing procedure (CTP) is a fundamental principle in testing multiple hypotheses. This article presents an improved CTP in which intersection hypotheses can be tested at a level greater than α such that the control of the familywise error rate at level α remains. Consequently, our method uniformly improves the power of discovering false hypotheses over the original CTP. We illustrate that an improvement by our method exists for many commonly used tests. An empirical study on the effectiveness of a glucose-lowering drug is provided.  相似文献   

12.
Owzar K  Li Z  Cox N  Jung SH 《Genetic epidemiology》2012,36(6):538-548
For many clinical studies in cancer, germline DNA is prospectively collected for the purpose of discovering or validating single-nucleotide polymorphisms (SNPs) associated with clinical outcomes. The primary clinical endpoint for many of these studies are time-to-event outcomes such as time of death or disease progression which are subject to censoring mechanisms. The Cox score test can be readily employed to test the association between a SNP and the outcome of interest. In addition to the effect and sample size, and censoring distribution, the power of the test will depend on the underlying genetic risk model and the distribution of the risk allele. We propose a rigorous account for power and sample size calculations under a variety of genetic risk models without resorting to the commonly used contiguous alternative assumption. Practical advice along with an open-source software package to design SNP association studies with survival outcomes are provided.  相似文献   

13.
14.
Case-control association studies using unrelated individuals may offer an effective approach for identifying genetic variants that have small to moderate disease risks. In general, two different strategies may be employed to establish associations between genotypes and phenotypes: (1) collecting individual genotypes or (2) quantifying allele frequencies in DNA pools. These two technologies have their respective advantages. Individual genotyping gathers more information, whereas DNA pooling may be more cost effective. Recent technological advances in DNA pooling have generated great interest in using DNA pooling in association studies. In this article, we investigate the impacts of errors in genotyping or measuring allele frequencies on the identification of genetic associations with these two strategies. We find that, with current technologies, compared to individual genotyping, a larger sample is generally required to achieve the same power using DNA pooling. We further consider the use of DNA pooling as a screening tool to identify candidate regions for follow-up studies. We find that the majority of the positive regions identified from DNA pooling results may represent false positives if measurement errors are not appropriately considered in the design of the study.  相似文献   

15.
Multiple significance testing involving multiple phenotypes is not uncommon in the context of gene association studies but has remained largely unaddressed. If no adjustment is made for the multiple tests conducted, the type I error probability will exceed the nominal (per test) alpha level. Nevertheless, many investigators do not implement such adjustments. This may, in part, be because most available methods for adjusting the alpha rate either: 1) do not take the correlation structure among the variables into account and, therefore, tend to be overly stringent; or 2) do not allow statements to be made about specific variables but only about multivariate composites of variables. In this paper we develop a simulation-based method and computer program that holds the actual alpha rate to the nominal alpha rate but takes the correlation structure into account. We show that this method is more powerful than several common alternative approaches and that this power advantage increases as the number of variables and their intercorrelations increase. The method appears robust to marked non-normality and variance heterogeneity even with unequal numbers of subjects in each group. The fact that gene association studies with biallelic loci will have (at most) three groups (i.e., AA, Aa, aa) implies by the closure principle that, after detection of a significant result for a specific variable, pairwise comparisons for that variable can be conducted without further adjustment of the alpha level. Genet. Epidemiol. 15:87–101,1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
The multiplicity problem has become increasingly important in genetic studies as the capacity for high-throughput genotyping has increased. The control of False Discovery Rate (FDR) (Benjamini and Hochberg. [1995] J. R. Stat. Soc. Ser. B 57:289-300) has been adopted to address the problems of false positive control and low power inherent in high-volume genome-wide linkage and association studies. In many genetic studies, there is often a natural stratification of the m hypotheses to be tested. Given the FDR framework and the presence of such stratification, we investigate the performance of a stratified false discovery control approach (i.e. control or estimate FDR separately for each stratum) and compare it to the aggregated method (i.e. consider all hypotheses in a single stratum). Under the fixed rejection region framework (i.e. reject all hypotheses with unadjusted p-values less than a pre-specified level and then estimate FDR), we demonstrate that the aggregated FDR is a weighted average of the stratum-specific FDRs. Under the fixed FDR framework (i.e. reject as many hypotheses as possible and meanwhile control FDR at a pre-specified level), we specify a condition necessary for the expected total number of true positives under the stratified FDR method to be equal to or greater than that obtained from the aggregated FDR method. Application to a recent Genome-Wide Association (GWA) study by Maraganore et al. ([2005] Am. J. Hum. Genet. 77:685-693) illustrates the potential advantages of control or estimation of FDR by stratum. Our analyses also show that controlling FDR at a low rate, e.g. 5% or 10%, may not be feasible for some GWA studies.  相似文献   

17.
We present a new method, the delta-centralization (DC) method, to correct for population stratification (PS) in case-control association studies. DC works well even when there is a lot of confounding due to PS. The latter causes overdispersion in the usual chi-square statistics which then have non-central chi-square distributions. Other methods approach the noncentrality indirectly, but we deal with it directly, by estimating the non-centrality parameter tau itself. Specifically: (1) We define a quantity delta, a function of the relevant subpopulation parameters. We show that, for relatively large samples, delta exactly predicts the elevation of the false positive rate due to PS, when there is no true association between marker genotype and disease. (This quantity delta is quite different from Wright's F(ST) and can be large even when F(ST) is small.) (2) We show how to estimate delta, using a panel of unlinked "neutral" loci. (3) We then show that delta2 corresponds to tau the noncentrality parameter of the chi-square distribution. Thus, we can centralize the chi-square using our estimate of 6; this is the DC method. (4) We demonstrate, via computer simulations, that DC works well with as few as 25-30 unlinked markers, where the markers are chosen to have allele frequencies reasonably close (within +/- .1) to those at the test locus. (5) We compare DC with genomic control and show that where as the latter becomes overconservative when there is considerable confounding due to PS (i.e. when delta is large), DC performs well for all values of delta.  相似文献   

18.
Subgroup analyses are an essential part of fully understanding the complete results from confirmatory clinical trials. However, they come with substantial methodological challenges. In case no statistically significant overall treatment effect is found in a clinical trial, this does not necessarily indicate that no patients will benefit from treatment. Subgroup analyses could be conducted to investigate whether a treatment might still be beneficial for particular subgroups of patients. Assessment of the level of evidence associated with such subgroup findings is primordial as it may form the basis for performing a new clinical trial or even drawing the conclusion that a specific patient group could benefit from a new therapy. Previous research addressed the overall type I error and the power associated with a single subgroup finding for continuous outcomes and suitable replication strategies. The current study aims at investigating two scenarios as part of a nonconfirmatory strategy in a trial with dichotomous outcomes: (a) when a covariate of interest is represented by ordered subgroups, eg, in case of biomarkers, and thus, a trend can be studied that may reflect an underlying mechanism, and (b) when multiple covariates, and thus multiple subgroups, are investigated at the same time. Based on simulation studies, this paper assesses the credibility of subgroup findings in overall nonsignificant trials and provides practical recommendations for evaluating the strength of evidence of subgroup findings in these settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号