首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The National Human Genome Research Institute's catalog of published genome‐wide association studies (GWAS) lists over 10,000 genetic variants collectively associated with over 800 human diseases or traits. Most of these GWAS have been conducted in European‐ancestry populations. Findings gleaned from these studies have led to identification of disease‐associated loci and biologic pathways involved in disease etiology. In multiple instances, these genomic findings have led to the development of novel medical therapies or evidence for prescribing a given drug as the appropriate treatment for a given individual beyond phenotypic appearances or socially defined constructs of race or ethnicity. Such findings have implications for populations throughout the globe and GWAS are increasingly being conducted in more diverse populations. A major challenge for investigators seeking to follow up genomic findings between diverse populations is discordant patterns of linkage disequilibrium (LD). We provide an overview of common measures of LD and opportunities for their use in novel methods designed to address challenges associated with following up GWAS conducted in European‐ancestry populations in African‐ancestry populations or, more generally, between populations with discordant LD patterns. We detail the strengths and weaknesses associated with different approaches. We also describe application of these strategies in follow‐up studies of populations with concordant LD patterns (replication) or discordant LD patterns (transferability) as well as fine‐mapping studies. We review application of these methods to a variety of traits and diseases.  相似文献   

2.
Methods to identify genes or pathways associated with complex diseases are often inadequate to elucidate most risk because they make implicit and oversimplified assumptions about underlying models of disease etiology. These can lead to incomplete or inadequate conclusions. To address this, we previously developed human phenotype networks (HPN), linking phenotypes based on shared biology. However, such visualization alone is often uninterpretable, and requires additional filtering. Here, we expand the HPN to include another method, evolutionary triangulation (ET). ET utilizes the hypothesis that alleles affecting disease risk in multiple populations are distributed consistently with differences in disease prevalence and compares allele frequencies among populations and their relationship to phenotype prevalence. We hypothesized that combining these methods will increase our ability to detect genetic patterns of association in complex diseases. We combined HPN and ET to identify network patterns associated with type 2 diabetes mellitus (T2DM), a leading cause of death worldwide. Fasting glucose, a continuous trait, was used as a proxy for T2DM and differs significantly among continental populations. The combined method identified several diabetes‐related traits and several phenotypes related to cardiovascular diseases, for which diabetes is a major risk factor. ET‐HPN found more phenotypes related to our target and related phenotypes than the application of either method alone. Not only could we detect phenotype connections related to T2DM, but we also identified phenotypes that are distributed in parallel to it, e.g., amyotrophic lateral sclerosis. Our analyses showed that ET‐filtered HPN provides information that neither technique can individually.  相似文献   

3.
Genome‐wide association studies (GWAS) offer an excellent opportunity to identify the genetic variants underlying complex human diseases. Successful utilization of this approach requires a large sample size to identify single nucleotide polymorphisms (SNPs) with subtle effects. Meta‐analysis is a cost‐efficient means to achieve large sample size by combining data from multiple independent GWAS; however, results from studies performed on different populations can be variable due to various reasons, including varied linkage equilibrium structures as well as gene‐gene and gene‐environment interactions. Nevertheless, one should expect effects of the SNP are more similar between similar populations than those between populations with quite different genetic and environmental backgrounds. Prior information on populations of GWAS is often not considered in current meta‐analysis methods, rendering such analyses less optimal for the detecting association. This article describes a test that improves meta‐analysis to incorporate variable heterogeneity among populations. The proposed method is remarkably simple in computation and hence can be performed in a rapid fashion in the setting of GWAS. Simulation results demonstrate the validity and higher power of the proposed method over conventional methods in the presence of heterogeneity. As a demonstration, we applied the test to real GWAS data to identify SNPs associated with circulating insulin‐like growth factor I concentrations.  相似文献   

4.
Obesity is a well-established risk factor for endometrial cancer, the most common gynecologic malignancy. Recent genome-wide association studies (GWAS) have identified multiple genetic markers for obesity. The authors evaluated the association of obesity-related single nucleotide polymorphisms (SNPs) with endometrial cancer using GWAS data from their recently completed study, the Shanghai Endometrial Cancer Genetics Study, which comprised 832 endometrial cancer cases and 2,049 controls (1996-2005). Thirty-five SNPs previously associated with obesity or body mass index (BMI; weight (kg)/height (m)(2)) at a minimum significance level of ≤5 × 10(-7) in the US National Human Genome Research Institute's GWAS catalog (http://genome.gov/gwastudies) and representing 26 unique loci were evaluated by either direct genotyping or imputation. The authors found that for 22 of the 26 unique loci tested (84.6%), the BMI-associated risk variants were present at a higher frequency in cases than in population controls (P = 0.0003). Multiple regression analysis showed that 9 of 35 BMI-associated variants, representing 7 loci, were significantly associated (P ≤ 0.05) with the risk of endometrial cancer; for all but 1 SNP, the direction of association was consistent with that found for BMI. For consistent SNPs, the allelic odds ratios ranged from 1.15 to 1.29. These 7 loci are in the SEC16B/RASAL, TMEM18, MSRA, SOX6, MTCH2, FTO, and MC4R genes. The associations persisted after adjustment for BMI, suggesting that genetic markers of obesity provide value in addition to BMI in predicting endometrial cancer risk.  相似文献   

5.
Genome‐wide association studies (GWAS) of common disease have been hugely successful in implicating loci that modify disease risk. The bulk of these associations have proven robust and reproducible, in part due to community adoption of statistical criteria for claiming significant genotype‐phenotype associations. As the cost of sequencing continues to drop, assembling large samples in global populations is becoming increasingly feasible. Sequencing studies interrogate not only common variants, as was true for genotyping‐based GWAS, but variation across the full allele frequency spectrum, yielding many more (independent) statistical tests. We sought to empirically determine genome‐wide significance thresholds for various analysis scenarios. Using whole‐genome sequence data, we simulated sequencing‐based disease studies of varying sample size and ancestry. We determined that future sequencing efforts in >2,000 samples of European, Asian, or admixed ancestry should set genome‐wide significance at approximately P = 5 × 10?9, and studies of African samples should apply a more stringent genome‐wide significance threshold of P = 1 × 10?9. Adoption of a revised multiple test correction will be crucial in avoiding irreproducible claims of association.  相似文献   

6.
The primary circulating form of vitamin D is 25‐hydroxy vitamin D (25(OH)D), a modifiable trait linked with a growing number of chronic diseases. In addition to environmental determinants of 25(OH)D, including dietary sources and skin ultraviolet B (UVB) exposure, twin‐ and family‐based studies suggest that genetics contribute substantially to vitamin D variability with heritability estimates ranging from 43% to 80%. Genome‐wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) located in four gene regions associated with 25(OH)D. These SNPs collectively explain only a fraction of the heritability in 25(OH)D estimated by twin‐ and family‐based studies. Using 25(OH)D concentrations and GWAS data on 5,575 subjects drawn from five cohorts, we hypothesized that genome‐wide data, in the form of (1) a polygenic score comprised of hundreds or thousands of SNPs that do not individually reach GWAS significance, or (2) a linear mixed model for genome‐wide complex trait analysis, would explain variance in measured circulating 25(OH)D beyond that explained by known genome‐wide significant 25(OH)D‐associated SNPs. GWAS identified SNPs explained 5.2% of the variation in circulating 25(OH)D in these samples and there was little evidence additional markers significantly improved predictive ability. On average, a polygenic score comprised of GWAS‐identified SNPs explained a larger proportion of variation in circulating 25(OH)D than scores comprised of thousands of SNPs that were on average, nonsignificant. Employing a linear mixed model for genome‐wide complex trait analysis explained little additional variability (range 0–22%). The absence of a significant polygenic effect in this relatively large sample suggests an oligogenetic architecture for 25(OH)D.  相似文献   

7.
Genome‐wide association studies (GWAS) have identified many single nucleotide polymorphisms (SNPs) associated with complex traits. However, the genetic heritability of most of these traits remains unexplained. To help guide future studies, we address the crucial question of whether future GWAS can detect new SNP associations and explain additional heritability given the new availability of larger GWAS SNP arrays, imputation, and reduced genotyping costs. We first describe the pairwise and imputation coverage of all SNPs in the human genome by commercially available GWAS SNP arrays, using the 1000 Genomes Project as a reference. Next, we describe the findings from 6 years of GWAS of 172 chronic diseases, calculating the power to detect each of them while taking array coverage and sample size into account. We then calculate the power to detect these SNP associations under different conditions using improved coverage and/or sample sizes. Finally, we estimate the percentages of SNP associations and heritability previously detected and detectable by future GWAS under each condition. Overall, we estimated that previous GWAS have detected less than one‐fifth of all GWAS‐detectable SNPs underlying chronic disease. Furthermore, increasing sample size has a much larger impact than increasing coverage on the potential of future GWAS to detect additional SNP‐disease associations and heritability.  相似文献   

8.
Genetic studies have identified thousands of variants associated with complex traits. However, most association studies are limited to populations of European descent and a single phenotype. The Population Architecture using Genomics and Epidemiology (PAGE) Study was initiated in 2008 by the National Human Genome Research Institute to investigate the epidemiologic architecture of well-replicated genetic variants associated with complex diseases in several large, ethnically diverse population-based studies. Combining DNA samples and hundreds of phenotypes from multiple cohorts, PAGE is well-suited to address generalization of associations and variability of effects in diverse populations; identify genetic and environmental modifiers; evaluate disease subtypes, intermediate phenotypes, and biomarkers; and investigate associations with novel phenotypes. PAGE investigators harmonize phenotypes across studies where possible and perform coordinated cohort-specific analyses and meta-analyses. PAGE researchers are genotyping thousands of genetic variants in up to 121,000 DNA samples from African-American, white, Hispanic/Latino, Asian/Pacific Islander, and American Indian participants. Initial analyses will focus on single nucleotide polymorphisms (SNPs) associated with obesity, lipids, cardiovascular disease, type 2 diabetes, inflammation, various cancers, and related biomarkers. PAGE SNPs are also assessed for pleiotropy using the "phenome-wide association study" approach, testing each SNP for associations with hundreds of phenotypes. PAGE data will be deposited into the National Center for Biotechnology Information's Database of Genotypes and Phenotypes and made available via a custom browser.  相似文献   

9.
To date, thousands of genetic variants to be associated with numerous human traits and diseases have been identified by genome-wide association studies (GWASs). The GWASs focus on testing the association between single trait and genetic variants. However, the analysis of multiple traits and single nucleotide polymorphisms (SNPs) might reflect physiological process of complex diseases and the corresponding study is called pleiotropy association analysis. Modern day GWASs report only summary statistics instead of individual-level phenotype and genotype data to avoid logistical and privacy issues. Existing methods for combining multiple phenotypes GWAS summary statistics mainly focus on low-dimensional phenotypes while lose power in high-dimensional cases. To overcome this defect, we propose two kinds of truncated tests to combine multiple phenotypes summary statistics. Extensive simulations show that the proposed methods are robust and powerful when the dimension of the phenotypes is high and only part of the phenotypes are associated with the SNPs. We apply the proposed methods to blood cytokines data collected from Finnish population. Results show that the proposed tests can identify additional genetic markers that are missed by single trait analysis.  相似文献   

10.
In genome‐wide association studies (GWAS) genetic loci that influence complex traits are localized by inspecting associations between genotypes of genetic markers and the values of the trait of interest. On the other hand, admixture mapping, which is performed in case of populations consisting of a recent mix of two ancestral groups, relies on the ancestry information at each locus (locus‐specific ancestry). Recently it has been proposed to jointly model genotype and locus‐specific ancestry within the framework of single marker tests. Here, we extend this approach for population‐based GWAS in the direction of multimarker models. A modified version of the Bayesian information criterion is developed for building a multilocus model that accounts for the differential correlation structure due to linkage disequilibrium (LD) and admixture LD. Simulation studies and a real data example illustrate the advantages of this new approach compared to single‐marker analysis or modern model selection strategies based on separately analyzing genotype and ancestry data, as well as to single‐marker analysis combining genotypic and ancestry information. Depending on the signal strength, our procedure automatically chooses whether genotypic or locus‐specific ancestry markers are added to the model. This results in a good compromise between the power to detect causal mutations and the precision of their localization. The proposed method has been implemented in R and is available at http://www.math.uni.wroc.pl/~mbogdan/admixtures/ .  相似文献   

11.
Although type 2 diabetes (T2D) results from metabolic defects in insulin secretion and insulin sensitivity, most of the genetic risk loci identified to date relates to insulin secretion. We reported that T2D loci influencing insulin sensitivity may be identified through interactions with insulin secretion loci, thereby leading to T2D. Here, we hypothesize that joint testing of variant main effects and interaction effects with an insulin secretion locus increases power to identify genetic interactions leading to T2D. We tested this hypothesis with an intronic MTNR1B SNP, rs10830963, which is associated with acute insulin response to glucose, a dynamic measure of insulin secretion. rs10830963 was tested for interaction and joint (main + interaction) effects with genome‐wide data in African Americans (2,452 cases and 3,772 controls) from five cohorts. Genome‐wide genotype data (Affymetrix Human Genome 6.0 array) was imputed to a 1000 Genomes Project reference panel. T2D risk was modeled using logistic regression with rs10830963 dosage, age, sex, and principal component as predictors. Joint effects were captured using the Kraft two degrees of freedom test. Genome‐wide significant (< 5 × 10?8) interaction with MTNR1B and joint effects were detected for CMIP intronic SNP rs17197883 (Pinteraction = 1.43 × 10?8; Pjoint = 4.70 × 10?8). CMIP variants have been nominally associated with T2D, fasting glucose, and adiponectin in individuals of East Asian ancestry, with high‐density lipoprotein, and with waist‐to‐hip ratio adjusted for body mass index in Europeans. These data support the hypothesis that additional genetic factors contributing to T2D risk, including insulin sensitivity loci, can be identified through interactions with insulin secretion loci.  相似文献   

12.
Genome‐wide association studies (GWAS) have confirmed the ubiquitous existence of genetic heterogeneity for common disease: multiple common genetic variants have been identified to be associated, while many more are yet expected to be uncovered. However, the single SNP (single‐nucleotide polymorphism) based trend test (or its variants) that has been dominantly used in GWAS is based on contrasting the allele frequency difference between the case and control groups, completely ignoring possible genetic heterogeneity. In spite of the widely accepted notion of genetic heterogeneity, we are not aware of any previous attempt to apply genetic heterogeneity motivated methods in GWAS. Here, to explicitly account for unknown genetic heterogeneity, we applied a mixture model based single‐SNP test to the Wellcome Trust Case Control Consortium (WTCCC) GWAS data with traits of Crohn's disease, bipolar disease, coronary artery disease, and type 2 diabetes, identifying much larger numbers of significant SNPs and risk loci for each trait than those of the popular trend test, demonstrating potential power gain of the mixture model based test.  相似文献   

13.
Genome‐wide association studies (GWAS) have been successful in identifying common variants related to complex disorders. However, some disorders have proved resistant to this strategy with few associations confirmed, despite evidence from twin and family studies of a genetic component. Sophisticated strategies that account for phenotypic heterogeneity may be required to uncover these genetic contributions. Age at onset is an example of a potential source of this heterogeneity in ischaemic stroke. We explore the contribution of age at onset in the Wellcome Trust Case‐Control Consortium 2 ischaemic stroke study. We first examine four established stroke loci in younger onset cases. We extend this to all single‐nucleotide polymorphisms (SNPs) genome‐wide, testing for stronger association signals in younger subsets of cases. Finally, we estimate the pseudoheritability accounted for by common SNPs present on genome‐wide genotyping arrays for cases stratified by age at onset. We find evidence for stronger associations in younger onset cases for the four established stroke loci. Genome‐wide, in cardioembolic and small vessel stroke subphenotypes, a significant number of SNPs show stronger association P‐values when the oldest cases are removed. Finally, we show that the pseudoheritability estimated by common SNPs in cardioembolic stroke increased from 16.5% for older onset cases to 28.5% for younger onset cases. Our results indicate that age at onset is a valuable measure for case ascertainment and in analysis of GWAS in ischaemic stroke: focussing on younger cases who may have a stronger genetic predisposition increases power to detect associations.  相似文献   

14.
Single nucleotide polymorphism (SNP) high‐dimensional datasets are available from Genome Wide Association Studies (GWAS). Such data provide researchers opportunities to investigate the complex genetic basis of diseases. Much of genetic risk might be due to undiscovered epistatic interactions, which are interactions in which combination of several genes affect disease. Research aimed at discovering interacting SNPs from GWAS datasets proceeded in two directions. First, tools were developed to evaluate candidate interactions. Second, algorithms were developed to search over the space of candidate interactions. Another problem when learning interacting SNPs, which has not received much attention, is evaluating how likely it is that the learned SNPs are associated with the disease. A complete system should provide this information as well. We develop such a system. Our system, called LEAP, includes a new heuristic search algorithm for learning interacting SNPs, and a Bayesian network based algorithm for computing the probability of their association. We evaluated the performance of LEAP using 100 1,000‐SNP simulated datasets, each of which contains 15 SNPs involved in interactions. When learning interacting SNPs from these datasets, LEAP outperformed seven others methods. Furthermore, only SNPs involved in interactions were found to be probable. We also used LEAP to analyze real Alzheimer's disease and breast cancer GWAS datasets. We obtained interesting and new results from the Alzheimer's dataset, but limited results from the breast cancer dataset. We conclude that our results support that LEAP is a useful tool for extracting candidate interacting SNPs from high‐dimensional datasets and determining their probability.  相似文献   

15.
Polygenic prediction using genome‐wide SNPs can provide high prediction accuracy for complex traits. Here, we investigate the question of how to account for genetic ancestry when conducting polygenic prediction. We show that the accuracy of polygenic prediction in structured populations may be partly due to genetic ancestry. However, we hypothesized that explicitly modeling ancestry could improve polygenic prediction accuracy. We analyzed three GWAS of hair color (HC), tanning ability (TA), and basal cell carcinoma (BCC) in European Americans (sample size from 7,440 to 9,822) and considered two widely used polygenic prediction approaches: polygenic risk scores (PRSs) and best linear unbiased prediction (BLUP). We compared polygenic prediction without correction for ancestry to polygenic prediction with ancestry as a separate component in the model. In 10‐fold cross‐validation using the PRS approach, the R2 for HC increased by 66% (0.0456–0.0755; P < 10−16), the R2 for TA increased by 123% (0.0154 to 0.0344; P < 10−16), and the liability‐scale R2 for BCC increased by 68% (0.0138–0.0232; P < 10−16) when explicitly modeling ancestry, which prevents ancestry effects from entering into each SNP effect and being overweighted. Surprisingly, explicitly modeling ancestry produces a similar improvement when using the BLUP approach, which fits all SNPs simultaneously in a single variance component and causes ancestry to be underweighted. We validate our findings via simulations, which show that the differences in prediction accuracy will increase in magnitude as sample sizes increase. In summary, our results show that explicitly modeling ancestry can be important in both PRS and BLUP prediction.  相似文献   

16.
Genome-wide association studies (GWAS) routinely apply principal component analysis (PCA) to infer population structure within a sample to correct for confounding due to ancestry. GWAS implementation of PCA uses tens of thousands of single-nucleotide polymorphisms (SNPs) to infer structure, despite the fact that only a small fraction of such SNPs provides useful information on ancestry. The identification of this reduced set of ancestry-informative markers (AIMs) from a GWAS has practical value; for example, researchers can genotype the AIM set to correct for potential confounding due to ancestry in follow-up studies that utilize custom SNP or sequencing technology. We propose a novel technique to identify AIMs from genome-wide SNP data using sparse PCA. The procedure uses penalized regression methods to identify those SNPs in a genome-wide panel that significantly contribute to the principal components while encouraging SNPs that provide negligible loadings to vanish from the analysis. We found that sparse PCA leads to negligible loss of ancestry information compared to traditional PCA analysis of genome-wide SNP data. We further demonstrate the value of sparse PCA for AIM selection using real data from the International HapMap Project and a genomewide study of inflammatory bowel disease. We have implemented our approach in open-source R software for public use.  相似文献   

17.
Genetic variants associated with fasting glucose in European ancestry populations are increasingly well understood. However, the nature of the associations between these single nucleotide polymorphisms (SNPs) and fasting glucose in other racial and ethnic groups is unclear. We sought to examine regions previously identified to be associated with fasting glucose in Caucasian genome-wide association studies (GWAS) across multiple ethnicities in the Multiethnic Study of Atherosclerosis (MESA). Nondiabetic MESA participants with fasting glucose measured at the baseline exam and with GWAS genotyping were included; 2,349 Caucasians, 664 individuals of Chinese descent, 1,366 African Americans, and 1,171 Hispanics. Genotype data were generated from the Affymetrix 6.0 array and imputation in IMPUTE. Fasting glucose was regressed on SNP dosage data in each ethnic group adjusting for age, gender, MESA study center, and ethnic-specific principal components. SNPs from the three gene regions with the strongest associations to fasting glucose in previous Caucasian GWAS (MTNR1B / GCK / G6PC2) were examined in depth. There was limited power to replicate associations in other ethnic groups due to smaller allele frequencies and limited sample size; SNP associations may also have differed across ethnic groups due to differing linkage disequilibrium patterns with causal variants. rs10830963 in MTNR1B and rs4607517 in GCK demonstrated consistent magnitude and direction of association with fasting glucose across ethnic groups, although the associations were often not nominally significant. In conclusion, certain SNPs in MTNR1B and GCK demonstrate consistent effects across four racial and ethnic groups, narrowing the putative region for these causal variants.  相似文献   

18.
Genome‐wide association studies (GWAS) have been widely used to identify genetic effects on complex diseases or traits. Most currently used methods are based on separate single‐nucleotide polymorphism (SNP) analyses. Because this approach requires correction for multiple testing to avoid excessive false‐positive results, it suffers from reduced power to detect weak genetic effects under limited sample size. To increase the power to detect multiple weak genetic factors and reduce false‐positive results caused by multiple tests and dependence among test statistics, a modified forward multiple regression (MFMR) approach is proposed. Simulation studies show that MFMR has higher power than the Bonferroni and false discovery rate procedures for detecting moderate and weak genetic effects, and MFMR retains an acceptable‐false positive rate even if causal SNPs are correlated with many SNPs due to population stratification or other unknown reasons. Genet. Epidemiol. 33:518–525, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Genome‐wide association studies (GWAS) are now routinely imputed for untyped single nucleotide polymorphisms (SNPs) based on various powerful statistical algorithms for imputation trained on reference datasets. The use of predicted allele counts for imputed SNPs as the dosage variable is known to produce valid score test for genetic association. In this paper, we investigate how to best handle imputed SNPs in various modern complex tests for genetic associations incorporating gene–environment interactions. We focus on case‐control association studies where inference for an underlying logistic regression model can be performed using alternative methods that rely on varying degree on an assumption of gene–environment independence in the underlying population. As increasingly large‐scale GWAS are being performed through consortia effort where it is preferable to share only summary‐level information across studies, we also describe simple mechanisms for implementing score tests based on standard meta‐analysis of “one‐step” maximum‐likelihood estimates across studies. Applications of the methods in simulation studies and a dataset from GWAS of lung cancer illustrate ability of the proposed methods to maintain type‐I error rates for the underlying testing procedures. For analysis of imputed SNPs, similar to typed SNPs, the retrospective methods can lead to considerable efficiency gain for modeling of gene–environment interactions under the assumption of gene–environment independence. Methods are made available for public use through CGEN R software package.  相似文献   

20.

Objectives

Recent genetic association studies have provided convincing evidence that several novel loci and single nucleotide polymorphisms (SNPs) are associated with the risk of developing type 2 diabetes mellitus (T2DM). The aims of this study were: 1) to develop a predictive model of T2DM using genetic and clinical data; and 2) to compare misclassification rates of different models.

Methods

We selected 212 individuals with newly diagnosed T2DM and 472 controls aged in their 60s from the Korean Genome and Epidemiology Study. A total of 499 known SNPs from 87 T2DM-related genes were genotyped using germline DNA. SNPs were analyzed for significant association with T2DM using various classification algorithms including Quest (Quick, Unbiased, Efficient, Statistical tree), Support Vector Machine, C4.5, logistic regression, and K-nearest neighbor.

Results

We tested these models using the complete Korean Genome and Epidemiology Study cohort (n = 10,038) and computed the T2DM misclassification rates for each model. Average misclassification rates ranged at 28.2–52.7%. The misclassification rates for the logistic and machine-learning algorithms were lower than the statistical tree algorithms. Using 1-to-1 matched data, the misclassification rate of the statistical tree QUEST algorithm using body mass index and SNP variables was the lowest, but overall the logistic regression performed best.

Conclusions

The K-nearest neighbor method exhibited more robust results than other algorithms. For clinical and genetic data, our “multistage adjustment” model outperformed other models in yielding lower rates of misclassification. To improve the performance of these models, further studies using warranted, strategies to estimate better classifiers for the quantification of SNPs need to be developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号