首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Sodium homeostasis is at the center stage of astrocyte (and brain) physiology because the large inwardly directed Na+ gradient provides the energy for transport of ions, neurotransmitters, amino acids and many other molecules across the plasmalemma and endomembranes. Cell imaging with commercially available chemical indicators allows analysis of dynamic changes in intracellular Na+ concentration (Na+]i), albeit further technological developments, such as genetically‐controlled or membrane targeted indicators or dyes usable for advanced microscopy (such as fluorescence‐lifetime imaging microscopy) are urgently needed. Thus, important questions related to the existence of Na+ gradients between different cellular compartments or occurrence of localised Na+ micro/nanodomains at the plasma membrane remain debatable. Extrusion of Na+ (and hence Na+ homeostasis) in astrocytes is mediated by the ubiquitously expressed Na+/K+‐ATPase (NKA), the major energy consumer of the brain. The activity of the NKA is counteracted by constant constitutive influx of Na+ through transporters such as the NKCC1 (Na+‐K+?2Cl‐co‐transport) or the NBC (Na+?2 ‐co‐transport). In addition, Na+‐permeable ion channels at the plasma membrane as well as Na+‐dependent solute carrier transporters provide for Na+ influx into astrocytes. Activation of these pathways in response to neuronal activity results in an increase of [Na+]i in astrocytes and there is manifold evidence for diverse signalling functions of these [Na+]i transients. Thus, in addition to its established homeostatic functions, activity dependent fluctuations of astrocyte [Na+]i regulate signalling cascades by feeding back on Na+‐dependent transporters. The Na+ signalling system may be ideally placed for fast coordinating signalling between neuronal activity and glial “homeostatic” Na+‐dependent transporters. GLIA 2016;64:1611–1627  相似文献   

2.
The clearance of extracellular glutamate is mainly mediated by pH‐ and sodium‐dependent transport into astrocytes. During hepatic encephalopathy (HE), however, elevated extracellular glutamate concentrations are observed. The primary candidate responsible for the toxic effects observed during HE is ammonium (NH4+/NH3). Here, we examined the effects of NH4+/NH3 on steady‐state intracellular pH (pHi) and sodium concentration ([Na+]i) in cultured astrocytes in two different age groups. Moreover, we assessed the influence of NH4+/NH3 on glutamate transporter activity by measuring D ‐aspartate‐induced pHi and [Na+]i transients. In 20–34 days in vitro (DIV) astrocytes, NH4+/NH3 decreased steady‐state pHi by 0.19 pH units and increased [Na+]i by 21 mM. D ‐Aspartate‐induced pHi and [Na+]i transients were reduced by 80–90% in the presence of NH4+/NH3, indicating a dramatic reduction of glutamate uptake activity. In 9–16 DIV astrocytes, in contrast, pHi and [Na+]i were minimally affected by NH4+/NH3, and D ‐aspartate‐induced pHi and [Na+]i transients were reduced by only 30–40%. Next we determined the contribution of Na+, K+, Cl?‐cotransport (NKCC). Immunocytochemical stainings indicated an increased expression of NKCC1 in 20–34 DIV astrocytes. Moreover, inhibition of NKCC with bumetanide prevented NH4+/NH3‐evoked changes in steady‐state pHi and [Na+]i and attenuated the reduction of D ‐aspartate‐induced pHi and [Na+]i transients by NH4+/NH3 to 30% in 20–34 DIV astrocytes. Our results suggest that NH4+/NH3 decreases steady‐state pHi and increases steady‐state [Na+]i in astrocytes by an age‐dependent activation of NKCC. These NH4+/NH3‐evoked changes in the transmembrane pH and sodium gradients directly reduce glutamate transport activity, and may, thus, contribute to elevated extracellular glutamate levels observed during HE. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
During neuronal activity in the mammalian brain, the K+ released into the synaptic space is initially buffered by the astrocytic compartment. In parallel, the extracellular space (ECS) shrinks, presumably due to astrocytic cell swelling. With the Na+/K+/2Cl? cotransporter and the Kir4.1/AQP4 complex not required for the astrocytic cell swelling in the hippocampus, the molecular mechanisms underlying the activity‐dependent ECS shrinkage have remained unresolved. To identify these molecular mechanisms, we employed ion‐sensitive microelectrodes to measure changes in ECS, [K+]o and [H+]o/pHo during electrical stimulation of rat hippocampal slices. Transporters and receptors responding directly to the K+ and glutamate released into the extracellular space (the K+/Cl? cotransporter, KCC, glutamate transporters and G protein‐coupled receptors) did not modulate the extracellular space dynamics. The ‐transporting mechanism, which in astrocytes mainly constitutes the electrogenic Na+/ cotransporter 1 (NBCe1), is activated by the K+‐mediated depolarization of the astrocytic membrane. Inhibition of this transporter reduced the ECS shrinkage by ~25% without affecting the K+ transients, pointing to NBCe1 as a key contributor to the stimulus‐induced astrocytic cell swelling. Inhibition of the monocarboxylate cotransporters (MCT), like‐wise, reduced the ECS shrinkage by ~25% without compromising the K+ transients. Isosmotic reduction of extracellular Cl? revealed a requirement for this ion in parts of the ECS shrinkage. Taken together, the stimulus‐evoked astrocytic cell swelling does not appear to occur as a direct effect of the K+ clearance, as earlier proposed, but partly via the pH‐regulating transport mechanisms activated by the K+‐induced astrocytic depolarization and the activity‐dependent metabolism.  相似文献   

4.
It is becoming increasingly clear that astrocytes play very dynamic and interactive roles that are important for the normal functioning of the central nervous system. In culture, astrocytes express many receptors coupled to increases in intracellular calcium ([Ca2+]i). In vivo, it is likely that these receptors are important for the modulation of astrocytic functions such as the uptake of neurotransmitters and ions. Currently, however, very little is known about the expression or stimulation of such astrocytic receptors in vivo. To address this issue, confocal microscopy and calcium sensitive fluorescent dyes were used to examine the dynamic changes in astrocytic [Ca2+]i, within acutely isolated hippocampal slices. Astrocytes were subsequently identified by immunocytochemistry for glial fibrillary acidic protein. In this paper, we present data indicating that hippocampal astrocytes in situ respond to glutamate, kainate, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), 1-aminocyclopentane-trans-1,3-dicarboxylic acid (t-ACPD), N-methyl-D-aspartate (NMDA), and depolarization with increases in [Ca2+]i. The increases in [Ca2+]i occurred in both the astrocytic cell bodies and the processes. Temporally the changes in [Ca2+]i were very dynamic, and various patterns ranging from sustained elevations to oscillations of [Ca2+]i were observed. Individual astrocytes responded to neuroligands selective for both ionotropic and metabotropic glutamate receptors with increases in [Ca2+]i. These findings indicate that astrocytes in vivo contain glutamatergic receptors coupled to increases in [C2+]i and are able to respond to neuronally released neurotransmitters. (c) 1995 Wiley-Liss, Inc.  相似文献   

5.
Gap junctions between glial cells allow intercellular exchange of ions and small molecules. We have investigated the influence of gap junction coupling on regulation of intracellular Na+ concentration ([Na+]i) in cultured rat hippocampal astrocytes, using fluorescence ratio imaging with the Na+ indicator dye SBFI (sodium-binding benzofuran isophthalate). The [Na+]i in neighboring astrocytes was very similar (12.0 ± 3.3 mM) and did not fluctuate under resting conditions. During uncoupling of gap junctions with octanol (0.5 mM), baseline [Na+]i was unaltered in 24%, increased in 54%, and decreased in 22% of cells. Qualitatively similar results were obtained with two other uncoupling agents, heptanol and α-glycyrrhetinic acid (AGA). Octanol did not alter the recovery from intracellular Na+ load induced by removal of extracellular K+, indicating that octanol's effects on baseline [Na+]i were not due to inhibition of Na+, K+-ATPase activity. Under control conditions, increasing [K+]o from 3 to 8 mM caused similar decreases in [Na+]i in groups of astrocytes, presumably by stimulating Na+, K+-ATPase. During octanol application, [K+]o-induced [Na+]i decreases were amplified in cells with increased baseline [Na+]i, and reduced in cells with decreased baseline [Na+]i. This suggests that baseline [Na+]i in astrocytes “sets” the responsiveness of Na+, K+-ATPase to increases in [K+]o. Our results indicate that individual hippocampal astrocytes in culture rapidly develop different levels of baseline [Na+]i when they are isolated from one another by uncoupling agents. In astrocytes, therefore, an apparent function of coupling is the intercellular exchange of Na+ ions to equalize baseline [Na+]i, which serves to coordinate physiological responses that depend on the intracellular concentration of this ion. GLIA 20:299–307, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Cultured mouse cortical astrocytes of the stellate type were studied by using the patch-clamp technique in whole-cell configuration. The astrocytes express at least two types of outwardly rectifying K+ channels which mediate a transient and a sustained current. Activation of AMPA receptors by kainate leads to a substantial blockade of both types of K+ currents. The blockade is absent when Na+ is withdrawn from the external medium, suggesting that it is caused by constant Na+ influx through AMPA receptors. The presence of high Na+ solutions in the pipette induces a blockade of both K+ currents which is very similar to the blockade induced by kainate, supporting thus the view that the mechanism of the blockade of K+ channels by kainate involves Na+ increases in the submembrane area. The blockade occurs between 20 and 40 mM [Na+]i, which is within the physiological range of [Na+]i in astrocytes. The data may suggest that the blockade of K+ channels by high [Na+]i conditions could provide a mechanism to prevent K+ leakage from the astrocytes into the extracellular space during periods of intense neuronal activity. GLIA 20:38-50, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
The release of glutamine from astrocytes adjacent to synapses in the central nervous system is thought to play a vital role in the mechanism of glutamate recycling and is therefore important for maintaining excitatory neurotransmission. Here we investigate the nature of astrocytic membrane transport of glutamine in rat brainstem slices, using electrophysiological recording and fluorescent imaging of pHi and . Glutamine application to perisynaptic astrocytes induced a membrane current, caused by activation of system A (SA) family transporters. A significant electroneutral component was also observed, which was mediated by the system N (SN) family transporters. This response was stimulated by glutamine (KM of 1.57 mM), histidine, and asparagine, but not by leucine or serine, indicating activation of the SNAT3 isoform of SN. We hypothesized that increasing the [Na+]i would alter the SNAT3 transporter equilibrium, thereby stimulating glutamine release. In support of this hypothesis, we show that SNAT3 transport can be driven by changing cation concentration and that manipulations to raise [Na+]i (activation of excitatory amino acid transporters (EAATs), SA transporters or AMPA receptors) all directly influence SNAT3 transport rate. A kinetic model of glutamine fluxes is presented, which shows that EAAT activation causes the release of glutamine, driven mainly by the increased [Na+]i. These data demonstrate that SNAT3 is functionally active in perisynaptic astrocytes in situ. As a result, astrocytic signaling, as would be stimulated by neighboring synaptic activity, has the capacity to stimulate astrocytic glutamine release to support glutamate recycling.  相似文献   

8.
Network activity in the brain is associated with a transient increase in extracellular K+ concentration. The excess K+ is removed from the extracellular space by mechanisms proposed to involve Kir4.1‐mediated spatial buffering, the Na+/K+/2Cl? cotransporter 1 (NKCC1), and/or Na+/K+‐ATPase activity. Their individual contribution to [K+]o management has been of extended controversy. This study aimed, by several complementary approaches, to delineate the transport characteristics of Kir4.1, NKCC1, and Na+/K+‐ATPase and to resolve their involvement in clearance of extracellular K+ transients. Primary cultures of rat astrocytes displayed robust NKCC1 activity with [K+]o increases above basal levels. Increased [K+]o produced NKCC1‐mediated swelling of cultured astrocytes and NKCC1 could thereby potentially act as a mechanism of K+ clearance while concomitantly mediate the associated shrinkage of the extracellular space. In rat hippocampal slices, inhibition of NKCC1 failed to affect the rate of K+ removal from the extracellular space while Kir4.1 enacted its spatial buffering only during a local [K+]o increase. In contrast, inhibition of the different isoforms of Na+/K+‐ATPase reduced post‐stimulus clearance of K+ transients. The astrocyte‐characteristic α2β2 subunit composition of Na+/K+‐ATPase, when expressed in Xenopus oocytes, displayed a K+ affinity and voltage‐sensitivity that would render this subunit composition specifically geared for controlling [K+]o during neuronal activity. In rat hippocampal slices, simultaneous measurements of the extracellular space volume revealed that neither Kir4.1, NKCC1, nor Na+/K+‐ATPase accounted for the stimulus‐induced shrinkage of the extracellular space. Thus, NKCC1 plays no role in activity‐induced extracellular K+ recovery in native hippocampal tissue while Kir4.1 and Na+/K+‐ATPase serve temporally distinct roles. GLIA 2014;62:608–622  相似文献   

9.
Astrocytes respond to the excitatory neurotransmitter glutamate with dynamic spatio-temporal changes in intracellular calcium [Ca2+]i. Although they share a common wave-like appearance, the different [Ca2+]i changes--an initial spike, sustained elevation, oscillatory intracellular waves, and regenerative intercellular waves--are actually separate and distinct phenomena. These separate components of the astrocytic Ca2+ response appear to be generated by two different signal transduction pathways. The metabotropic response evokes an initial spatial Ca2+ spike that can propagate rapidly from cell to cell and appears to involve IP3. The metabotropic response can also produce oscillatory intracellular waves of various amplitudes and frequencies that propagate within cells and are sustained only in the presence of external Ca2+. The ionotropic response, however, evokes a sustained elevation in [Ca2+]i associated with receptor-mediated Na+ and Ca2+ influx, depolarization, and voltage-dependent Ca2+ influx. In addition, the ionotropic response can lead to regenerative intercellular waves that propagate smoothly and nondecrementally from cell to cell, possibly involving Na+/Ca2+ exchange. All these astrocytic [Ca2+]i changes tend to appear wave-like, traveling from region to region as a transient rise in [Ca2+]i. Nevertheless, as our understanding of the cellular events that underlie these [Ca2+]i changes grows, it becomes increasingly clear that glutamate-induced Ca2+ signaling is a composite of separate and distinct phenomena, which may be distinguished not based on appearance alone, but rather on their underlying mechanisms. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Influx of sodium ions into active neurons is a highly energy‐expensive process which must be strictly limited. Astrocytes could play an important role herein because they take up glutamate and potassium from the extracellular space, thereby dampening neuronal excitation. Here, we performed sodium imaging in mouse hippocampal slices combined with field potential and whole‐cell patch‐clamp recordings and measurement of extracellular potassium ([K+]o). Network activity was induced by Mg2+‐free, bicuculline‐containing saline, during which neurons showed recurring epileptiform bursting, accompanied by transient increases in [K+]o and astrocyte depolarizations. During bursts, neurons displayed sodium increases by up to 22 mM. Astrocyte sodium concentration increased by up to 8.5 mM, which could be followed by an undershoot below baseline. Network sodium oscillations were dependent on action potentials and activation of ionotropic glutamate receptors. Inhibition of glutamate uptake caused acceleration, followed by cessation of electrical activity, irreversible sodium increases, and swelling of neurons. The gliotoxin NaFAc (sodium‐fluoroacetate) resulted in elevation of astrocyte sodium concentration and reduced glial uptake of glutamate and potassium uptake through Na+/K+‐ATPase. Moreover, NaFAc extended epileptiform bursts, caused elevation of neuronal sodium, and dramatically prolonged accompanying sodium signals, most likely because of the decreased clearance of glutamate and potassium by astrocytes. Our experiments establish that recurrent neuronal bursting evokes sodium transients in neurons and astrocytes and confirm the essential role of glutamate transporters for network activity. They suggest that astrocytes restrict discharge duration and show that an intact astrocyte metabolism is critical for the neurons' capacity to recover from sodium loads during synchronized activity. GLIA 2015;63:936–957  相似文献   

11.
In some cells, Ca2+ depletion induces an increase in intracellular Ca2+ ([Ca2+]i) after reperfusion with Ca2+-containing solution, but the mechanism for the reperfusion injury is not fully elucidated. Using an antisense strategy we studied the role of the Na+-Ca2+ exchanger in reperfusion injury in cultured rat astrocytes. When astrocytes were perfused in Ca2+-free medium for 15–60 min, a persistent increase in [Ca2+]i was observed immediately after reperfusion with Ca2+-containing medium, and the number of surviving cells decreased 3–5 days latter. The increase in [Ca2+]i was enhanced by low extracellular Na+ ([Na+]o) during reperfusion and blocked by the inhibitors of the Na+-Ca2+ exchanger amiloride and 3,4-dichlorobenzamil, but not by the Ca2+ channel antagonists nifedipine, Cd2+ and Ni2+. Treatment of astrocytes with antisense, but not sense, oligodeoxynucleotide to the Na+-Ca2+ exchanger decreased Na+–Ca2+ exchanger protein level and exchange activity. The antisense oligomer attenuated reperfusion-induced increase in [Ca2+]i and cell toxicity. The Na+-Ca2+ exchange inhibitors 3,4-dichlorobenzamil and ascorbic acid protected astrocytes from reperfusion injury partially, while the stimulators sodium nitroprusside and 8-bromo-cyclic GMP and low [Na+]o exacerbated the injury. Pretreatment of astrocytes with ouabain and monensin caused similar delayed glial cell death. These findings suggest that Ca2+ entry via the Na+–Ca2+ exchanger plays an important role in reperfusion-induced delayed glial cell death.  相似文献   

12.
Hypotonicity following water intoxication and/or salt loss leads to mainly astrocytic brain swelling. Astrocytic swelling also occurs following brain trauma or ischemia, together with an increase in extracellular K+ ([K+]o), stimulating a bumetanide/furosemide/ethacrynic acid‐inhibitable cotransporter, NKCC1, that accumulates Na+ and K+ together with 2 Cl and osmotically obliged water. Either type of swelling may become fatal and is associated with phosphorylation of extracellular regulated kinases 1 and 2 (ERK1/2). Only the swelling associated with elevated [K+]o, leads to an increase in astrocytic proliferation and in expression of the astrocytic marker, glial fibrillary acidic protein. These differences prompted us to investigate key aspects of the molecular pathways between hypotonicity‐induced and high‐K+‐mediated swelling in primary cultures of mouse astrocytes. In the latter Ca2+‐mediated, AG1478‐inhibitable transactivation of the epidermal growth factor (EGF) receptor leads, via bumetanide‐inhibitable activation of the mitogen activated protein (MAP) kinase pathway to ERK phosphorylation and to NKCC1‐mediated swelling. In the former, inhibition of the MAP kinase pathway, but not of EGF receptor activation, abolishes ERK phosphorylation, but has no effect on swelling, indicating that activation of ERK is a result, not a cause, of the swelling.  相似文献   

13.
Initial clearance of extracellular K+ ([K+]o) following neuronal excitation occurs by astrocytic uptake, because elevated [K+]o activates astrocytic but not neuronal Na+,K+-ATPases. Subsequently, astrocytic K+ is re-released via Kir4.1 channels after distribution in the astrocytic functional syncytium via gap junctions. The dispersal ensures widespread release, preventing renewed [K+]o increase and allowing neuronal Na+,K+-ATPase-mediated re-uptake. Na+,K+-ATPase operation creates extracellular hypertonicity and cell shrinkage which is reversed by the astrocytic cotransporter NKCC1. Inhibition of Kir channels by activation of specific PKC isotypes may decrease syncytial distribution and enable physiologically occurring [K+]o increases to open L-channels for Ca2+, activating [K+]o-stimulated gliotransmitter release and regulating gap junctions. Learning is impaired when [K+]o is decreased to levels mainly affecting astrocytic membrane potential or Na+,K+-ATPase or by abnormalities in its α2 subunit. It is enhanced by NKCC1-mediated ion and water uptake during the undershoot, reversing neuronal inactivity, but impaired in migraine with aura in which [K+]o is highly increased. Vasopressin augments NKCC1 effects and facilitates learning. Enhanced myelination, facilitated by astrocytic-oligodendrocytic gap junctions also promotes learning.  相似文献   

14.
We investigated the effects of oxygen (O2)/glucose deprivation on intracellular sodium concentration ([Na+]i) of cortical pyramidal cells in a slice preparation of rat frontal cortex. Intracellular recordings were combined with microfluorometric measurements of [Na+]i using the Na+-sensitive dye sodium-binding benzofuran isophthalate (SBFI). Deprivation of O2/glucose caused an initial membrane hyperpolarization that was followed by a slowly developing large depolarization. Levels of [Na+]i started to increase significantly during the phase of membrane hyperpolarization. Neither tetrodotoxin, a combination of ionotropic and metabotropic glutamate receptor antagonists (d -amino-phosphonovalerate, 6-cyano-7-nitroquinoxaline-2,3-dione plus S-methyl-4-carboxyphenylglycine) nor bepridil, an inhibitor of the Na+/Ca2+-exchanger, affected these responses to O2/glucose. The present results demonstrate that, in cortical neurons, O2/glucose deprivation induces an early rise in [Na+]i which cannot be ascribed to the activity of voltage gated Na+-channels, glutamate receptors or of the Na+/Ca2+-exchanger.  相似文献   

15.
16.
Cultured astrocytes and cell lines derived therefrom maintain a high energy level ([ATP]/[ADP]) through operation of oxidative phosphorylation and glycolysis. The contribution from the latter to total ATP production is 25–32%. A powerful Na+/K+ pump maintains potassium, sodium, and calcium gradients out of equilibrium. [Na+]i is about 20 mM, [K+]i is 130 mM and [Ca2+]i is less than 100 nM. Under non-stimulated conditions, the Na+/K+ ATPase consumes 20% of astrocytic ATP production. Inhibition of the pump by ouabain decreases energy expenditure, raises [creatine phosphate]/[creatine], and leads to a leakage of sodium, potassium, and calcium ions. Decrease in the pump function via a fall in [ATP] also collapses ion gradients; the rate and extent of the fall correlates positively with cellular energy state. Under “normal” conditions (i.e., when ATP production pathways are not inhibited), there appears to be no preferential utilization of energy produced by either glycolysis or oxidative phosphorylation for the support of pump function. GLIA 21:35–45, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Jun Li  Sien-Yao Chow 《Epilepsia》1994,35(1):20-26
Summary: Effects of chronic treatment of dibutyryl cyclic AMP (db-cyclic AMP) on Na+, K+-ATPase activity in cell homogenates and intracellular N a f and K+ contents [(Na+)i and (K+)i] were studied in primary cultures of astrocytes derived from cerebral cortex of neonatal audiogenic seizure-susceptible DBA and audiogenic seizure-resistant C57 mice. Na+, K+-ATPase activity in cell homogenates was greater and (Na+)i was less in DBA astrocytes than in C57 astrocytes. There was no difference in (K+)i between astrocytes from DBA and C57 mice. Addition of db-cyclic AMP to the medium from day 14 to day 21 in culture (final concentration 0.25 mM) increased Na+, K+-ATPase activity in cell homogenates and decreased (Na+)i, but had no significant effect on (K+)i in astrocytes from either DBA or C57 mice. Chronic treatment with db-cyclic AMP altered cell growth. Protein and DNA content of cultured astrocytes from both DBA and C57 mice was decreased. DNA was more affected than protein. Modifying K+ and Na+ concentration in medium altered Na+, K+-ATPase activity in cell homogenates as well as (Na+)i and (K+)i in cultured astrocytes of both DBA and C57 mice. Changes in (Na+)i and (K+)i at different K+ concentrations in medium paralleled those in Na+, K+-ATPase activity in cell homogenates. Results indicate that the ability to transport Na+ across the cell membrane and the response of Na+, K+-ATPase to db-cyclic AMP and to the changes in K + in medium of cultured astrocytes from audiogenic seizure-susceptible DBA mice are sufficient.  相似文献   

18.
Joel A. Black  Stephen G. Waxman 《Glia》2014,62(7):1162-1175
Astrogliosis is a prominent feature of many, if not all, pathologies of the brain and spinal cord, yet a detailed understanding of the underlying molecular pathways involved in the transformation from quiescent to reactive astrocyte remains elusive. We investigated the contribution of voltage‐gated sodium channels to astrogliosis in an in vitro model of mechanical injury to astrocytes. Previous studies have shown that a scratch injury to astrocytes invokes dual mechanisms of migration and proliferation in these cells. Our results demonstrate that wound closure after mechanical injury, involving both migration and proliferation, is attenuated by pharmacological treatment with tetrodotoxin (TTX) and KB‐R7943, at a dose that blocks reverse mode of the Na+/Ca2+ exchanger (NCX), and by knockdown of Nav1.5 mRNA. We also show that astrocytes display a robust [Ca2+]i transient after mechanical injury and demonstrate that this [Ca2+]i response is also attenuated by TTX, KB‐R7943, and Nav1.5 mRNA knockdown. Our results suggest that Nav1.5 and NCX are potential targets for modulation of astrogliosis after injury via their effect on [Ca2+]i. GLIA 2014;62:1162–1175  相似文献   

19.
Summary. Glutamate uptake into astrocytes and the resulting increase in intracellular Na+ (Na+i) have been identified as a key signal coupling excitatory neuronal activity to increased glucose utilization. Arguments based mostly on mathematical modeling led to the conclusion that physiological concentrations of glutamate more than double astrocytic Na+/K+-ATPase activity, which should proportionally increase its ATP hydrolysis rate. This hypothesis was tested in the present study by fluorescence monitoring of free Mg2+ (Mg2+i), a parameter that inversely correlates with ATP levels. Glutamate application measurably increased Mg2+i (i.e. decreased ATP), which was reversible after glutamate washout. Na+i and ATP changes were then directly compared by simultaneous Na+i and Mg2+ imaging. Glutamate increased both parameters with different rates and blocking the Na+/K+-ATPase during the glutamate-evoked Na+i response, resulted in a drop of Mg2+i levels (i.e. increased ATP). Taken together, this study demonstrates the tight correlation between glutamate transport, Na+ homeostasis and ATP levels in astrocytes.  相似文献   

20.
Several studies have shown that astrocytes release neurotransmitters into the extracellular space that may then activate receptors on nearby neurons. In the present study, the actions of adenosine 5′‐O‐(2‐thiodiphosphate) (ADPbetaS)‐activated astrocyte conditioned medium (ADPbetaS‐ACM) on cultured dorsal spinal cord neurons were evaluated by using confocal laser scanning microscopy and whole‐cell patch‐clamp recording. ADPbetaS caused astrocytic glutamate efflux (43 μM), which in turn induced inward currents in dorsal horn neurons with short time in culture. The inward currents were abolished by 2‐amino‐5‐phosphonlanoicacid (AP‐5; NMDAR antagonist) plus 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX; non‐NMDAR antagonist) but were unaffected by MRS2179 (selective P2Y1 receptor antagonist). Furthermore, N6‐methyl‐2′‐deoxyadenosine‐3′,5′‐bisphosphate (MRS2179) was used to block glutamate release from astrocytes. As a result, ADPbetaS‐ ACM‐induced inward currents in neurons were significantly blocked. On the other hand, both NMDAR and non‐NMDAR were involved in ADPbetaS‐ACM (concentration was diluted to one‐tenth)‐evoked small [Ca2+]i transients in neurons. Under this condition, the values of glutamate concentrations in the medium are close to values for extracellular glutamate concentrations under physiological conditions. For this reason, it is possible that astrocyte‐derived glutamate is important for distant neuron under physiological conditions at dorsal spinal cord. These observations indicate that astrocytic P2Y1 receptor activation triggered glutamate efflux, which acts on distant neurons to elevate calcium levels or acts on nearby neurons to evoke inward current. Finally, our results support the conclusion that the astrocytic P2Y1 receptor plays an important role in bidirectional communication between astrocytes and neurons. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号