首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deep brain stimulation of the subthalamic nucleus (STN DBS) in Parkinson's disease (PD) improves motor functioning but has variable effects on mood. Little is known about the relationship between electrode contact location and mood response. The authors identified the anatomical location of electrode contacts and measured mood response to stimulation with the Visual Analog Scale in 24 STN DBS PD patients. Participants reported greater positive mood and decreased anxiety and apathy with bilateral and unilateral stimulation. Left DBS improved mood more than right DBS. Right DBS-induced increase in positive mood was related to more medial and dorsal contact locations. These results highlight the functional heterogeneity of the STN.  相似文献   

2.
目的探讨帕金森病(PD)患者脑深部电刺激(DBS)术最佳刺激靶点的位置。方法 40例PD患者接受立体定向双侧丘脑底核(STN)脑深部电刺激术。术中通过微电极记录采集神经元电活动,埋置脑深部电刺激器,术后复查电极位置,通过影像资料和电生理数据,确定电极尖端坐标,并计算电极各触点坐标,以及电极针道中STN上下边界和中心点的坐标。结果最佳刺激触点中心坐标的平均位置与STN上边界坐标的平均位置的差异无统计学意义。结论 STN上边界区域为DBS治疗PD的最佳刺激位置。  相似文献   

3.
《Clinical neurophysiology》2021,132(6):1321-1329
ObjectiveTwo major advances in clinical deep brain stimulation (DBS) technology have been the introduction of local field potential (LFP) recording capabilities, and the deployment of directional DBS electrodes. However, these two technologies are not operationally integrated within current clinical DBS devices. Therefore, we evaluated the theoretical advantages of using directional DBS electrodes for LFP recordings, with a focus on measuring beta-band activity in the subthalamic nucleus (STN).MethodsWe used a computational model of human STN neural activity to simulate LFP recordings. The model consisted of 235,280 anatomically and electrically detailed STN neurons surrounding the DBS electrode, which was previously optimized to mimic beta-band synchrony in the dorsolateral STN. We then used that model system to compare LFP recordings from cylindrical and directional DBS contacts, and evaluate how the selection of different contacts for bipolar recording affected the LFP measurements.ResultsThe model predicted two advantages of directional DBS electrodes over cylindrical DBS electrodes for STN LFP recording. First, recording from directional contacts could provide additional insight on the location of a synchronous volume of neurons within the STN. Second, directional contacts could detect a smaller volume of synchronous neurons than cylindrical contacts, which our simulations predicted to be a ~0.5 mm minimum radius.ConclusionsSTN LFP recordings from 8-contact directional DBS electrodes (28 possible bipolar pairs) can provide more information than 4-contact cylindrical DBS electrodes (6 possible bipolar pairs), but they also introduce additional complexity in analyzing the signals.SignificanceIntegration of directional electrodes with DBS systems that are capable of LFP recordings could improve localization of targeted volumes of synchronous neurons in PD patients.  相似文献   

4.
Objective: To explore neurons with β oscillatory activity in the subthalamic nucleus (STN) in relation to parkinsonian motor signs. Methods: We studied 27 patients with Parkinson's disease (PD) who underwent electrode implantation for STN deep brain stimulation. Thirteen patients were classified as akinetic-rigid (AR) type and 14 patients were classified as mixed type. Microelectrode recording was performed in the STN and the electromyogram (EMG) was simultaneously recorded. Single-unit and spectral analyses were performed. Coherence analysis was used to explore the relationship between β oscillatory activity and EMG activity. Unpaired t-test and chi-square were used to compare the differences between the two PD types. Results: Of 130 neurons identified in the AR type, 43.8% were β oscillatory neurons (mean: 21.3 ± 6.87 Hz, βFB) and 0.8% were tremor frequency oscillatory neurons (4–6 Hz, TFB). Of 102 neurons identified in the mixed type, 19.6% were β oscillatory neurons and 26.5% were TFB oscillatory neurons. There was a significant difference in proportion of neurons with βFB and TFB oscillations between the two PD groups. Additionally, 12% of the βFB oscillatory neurons were coherent with limb EMG of the AR type, but there was no coherence in the mixed type. Most oscillatory neurons were localized in the dorsal portion of the STN. Conclusion: The STN βFB oscillatory neurons correlate with parkinsonian rigidity-bradykinesia. The high proportion of βFB oscillatory neurons found in the AR type of PD is indirect evidence for their importance in generating motor impairment.  相似文献   

5.
To determine whether the immediate response to electrode implantation (micro lesion effect, MLE) in the internal segment of the globus pallidus (GPi) predicts symptom improvement with deep brain stimulation (DBS) at 6 months in patients with Parkinson's disease (PD) or generalized dystonia. Electrode implantation in the subthalamic nucleus (STN) prior to electrical stimulation has been reported to predict a beneficial effect of DBS in patients with PD, but whether this is also the case for the GPi in either PD or dystonia patients has not been established. We studied 20 patients (11 with PD and 9 with dystonia) who underwent electrode implantation in the GPi. Effects were assessed using standardized scales after 24 hours, weekly for 3 weeks prior to starting DBS, and after 6 months of DBS. 10 of 11 PD and 8 of 9 dystonia cases who benefited from electrode implantation also showed improvement in all motor and disability scores after 6 months of DBS of the GPi. One dystonia patient who did not show MLE benefited from DBS. The presence of MLE after electrode implantation in the GPi may help predict motor benefit from DBS in PD and generalized dystonia patients. © 2009 Movement Disorder Society  相似文献   

6.
Background: Subthalamic deep brain stimulation (STN‐DBS) is an effective treatment for Parkinson's disease (PD), but can have side effects caused by stimulus spread to structures outside the target volume such as the pyramidal tract. Objectives: To assess the relevance of pyramidal tract activation with STN‐DBS in PD. Methods: In a multimodal, blinded study in 20 STN‐DBS patients, we measured stimulation thresholds for evoking electromyographic activity in orbicularis oris and first dorsal interosseous muscles at each of 150 electrode sites. We also modeled the electric field spread and calculated its overlap with the estimated anatomical location of corticospinal and corticobulbar tracts from primary motor cortex using 3 Tesla MRI probabilistic tractography. Results: Mean resting motor thresholds were significantly lower for the contralateral orbicularis oris (3.5 ± 1.0 mA) compared with ipsilaterally (4.1 ± 1.1 mA) and with the contralateral first dorsal interosseous (4.0 ± 1.2 mA). The modeled volumes of corticobulbar and corticospinal tract activated correlated inversely with the resting motor threshold of the contralateral orbicularis oris and first dorsal interosseous, respectively. Active motor thresholds were significantly lower compared with resting motor thresholds by around 30% to 35% and correlated with the clinically used stimulation amplitude. Backward multiple regression in 12 individuals with a “lateral‐type” speech showed that stimulation amplitude, levodopa equivalent dose reduction postsurgery, preoperative speech intelligibility, and first dorsal interosseous resting motor thresholds explained 79.9% of the variance in postoperative speech intelligibility. Conclusions: Direct pyramidal tract activation can occur at stimulation thresholds that are within the range used in clinical routine. This spread of current compromises increase in stimulation strengths and is related to the development of side effects such as speech disturbances with chronic stimulation. © 2017 International Parkinson and Movement Disorder Society  相似文献   

7.
《Brain stimulation》2021,14(4):754-760
BackgroundParkinson's disease (PD) is a common neurodegenerative disorder that results in movement-related dysfunction and has variable cognitive impairment. Deep brain stimulation (DBS) of the dorsal subthalamic nucleus (STN) has been shown to be effective in improving motor symptoms; however, cognitive impairment is often unchanged, and in some cases, worsened particularly on tasks of verbal fluency. Traditional DBS strategies use high frequency gamma stimulation for motor symptoms (∼130 Hz), but there is evidence that low frequency theta oscillations (5–12 Hz) are important in cognition.MethodsWe tested the effects of stimulation frequency and location on verbal fluency among patients who underwent STN DBS implantation with externalized leads. During baseline cognitive testing, STN field potentials were recorded and the individual patients’ peak theta frequency power was identified during each cognitive task. Patients repeated cognitive testing at five different stimulation settings: no stimulation, dorsal contact gamma (130 Hz), ventral contact gamma, dorsal theta (peak baseline theta) and ventral theta (peak baseline theta) frequency stimulation.ResultsAcute left dorsal peak theta frequency STN stimulation improves overall verbal fluency compared to no stimulation and to either dorsal or ventral gamma stimulation. Stratifying by type of verbal fluency probes, verbal fluency in episodic categories was improved with dorsal theta stimulation compared to all other conditions, while there were no differences between stimulation conditions in non-episodic probe conditions.ConclusionHere, we provide evidence that dorsal STN theta stimulation may improve verbal fluency, suggesting a potential possibility of integrating theta stimulation into current DBS paradigms to improve cognitive outcomes.  相似文献   

8.
Deep brain stimulation (DBS) is used for advanced and medically intractable patients with Parkinson's disease (PD), essential tremor (ET), and dystonia who meet strict criteria after a detailed motor, cognitive, and psychiatric evaluation. The potential targets are the ventral intermediate nucleus (VIM) of the thalamus for tremor, the globus pallidus interna (GPI) and the subthalamic nucleus (STN) for PD, and GPI for dystonia. The optimal target for PD has not been determined yet, although STN DBS has been performed more frequently in recent years. The mechanism of DBS effect is believed to be associated with disruption of pathological network activity in the cortico-basal ganglia-thalamic circuits by affecting the firing rates and bursting patterns of neurons and synchronized oscillatory activity of neuronal networks. Good candidates should be free of dementia, major psychiatric disorders, structural brain lesions, and important general medical problems. Although the risk for complications with DBS is less than with lesioning techniques, there is still a small risk for major complications associated with surgery. Bilateral procedures are more likely to cause problems with speech, cognition, and gait.  相似文献   

9.
R Kumar  A M Lozano  E Sime  E Halket  A E Lang 《Neurology》1999,53(3):561-566
OBJECTIVE: To compare the effects of unilateral subthalamic nucleus (STN) deep brain stimulation (DBS) with bilateral STN DBS in advanced PD. METHODS: Our initial 10 consecutive patients with medication-refractory motor fluctuations and levodopa-induced dyskinesias undergoing chronic bilateral STN DBS underwent a standardized evaluation of unilateral and bilateral STN DBS in the medication-off state 6 to 18 months after electrode implantation. RESULTS: Bilateral STN DBS improved the mean total Unified Parkinson's Disease Rating Scale motor score by 54%, whereas unilateral stimulation improved motor scores only 23%. Unilateral STN DBS improved postural stability and gait 14%, other axial motor features 19%, and overall parkinsonism in limbs contralateral to stimulation by 46%, including an 86% improvement in contralateral tremor. However, bilateral STN DBS resulted in greater improvement in each of these domains, including limb function, i.e., the reduction in scores from the limbs on one side was greater with bilateral than with unilateral stimulation of the contralateral STN. CONCLUSIONS: Bilateral STN DBS improves parkinsonism considerably more than unilateral STN DBS; bilateral simultaneous electrode implantation may be the most appropriate surgical option for patients with significant bilateral disability. Unilateral STN DBS results in moderate improvement in all aspects of off-period parkinsonism and improves tremor as much as is typically reported with DBS of the ventral intermedius nucleus of the thalamus (Vim). For this reason, STN DBS may be a more appropriate choice than Vim DBS or thalamotomy for parkinsonian tremor. Some patients with highly asymmetric tremor-dominant PD might be appropriately treated with unilateral instead of bilateral STN DBS.  相似文献   

10.
《Brain stimulation》2020,13(6):1765-1773
BackgroundDeep Brain Stimulation (DBS) targeting the subthalamic nucleus (STN) and globus pallidus interna (GPi) is an effective treatment for cardinal motor symptoms and motor complications in Parkinson’s Disease (PD). However, malpositioned DBS electrodes can result in suboptimal therapeutic response.ObjectiveWe explored whether recovery of the H-reflex—an easily measured electrophysiological analogue of the stretch reflex, known to be altered in PD—could serve as an adjunct biomarker of suboptimal versus optimal electrode position during STN- or GPi-DBS implantation.MethodsChanges in soleus H-reflex recovery were investigated intraoperatively throughout awake DBS target refinement across 26 nuclei (14 STN). H-reflex recovery was evaluated during microelectrode recording (MER) and macrostimulation at multiple locations within and outside target nuclei, at varying stimulus intensities.ResultsFollowing MER, H-reflex recovery normalized (i.e., became less Parkinsonian) in 21/26 nuclei, and correlated with on-table motor improvement consistent with an insertional effect. During macrostimulation, H-reflex recovery was maximally normalized in 23/26 nuclei when current was applied at the location within the nucleus producing optimal motor benefit. At these optimal sites, H-reflex normalization was greatest at stimulation intensities generating maximum motor benefit free of stimulation-induced side effects, with subthreshold or suprathreshold intensities generating less dramatic normalization.ConclusionH-reflex recovery is modulated by stimulation of the STN or GPi in patients with PD and varies depending on the location and intensity of stimulation within the target nucleus. H-reflex recovery shows potential as an easily-measured, objective, patient-specific, adjunct biomarker of suboptimal versus optimal electrode position during DBS surgery for PD.  相似文献   

11.
IntroductionSubthalamic nucleus deep brain stimulation (STN DBS) improves cardinal motor symptoms of Parkinson's disease (PD) but can worsen verbal fluency (VF). An optimal site of stimulation for overall motor improvement has been previously identified using an atlas-independent, fully individualized, field-modeling approach. This study examines if cardinal motor components (bradykinesia, tremor, and rigidity) share this identified optimal improvement site and if there is co-localization with a site that worsens VF.MethodsAn atlas-independent, field-modeling approach was used to identify sites of maximal STN DBS effect on overall and cardinal motor symptoms and VF in 60 patients. Anatomic coordinates were referenced to the STN midpoint. Symptom severity was assessed with the MDS-UPDRS part III and established VF scales.ResultsSites for improved bradykinesia and rigidity co-localized with each other and the overall part III site (0.09 mm lateral, 0.93 mm posterior, 1.75 mm dorsal). The optimal site for tremor was posterior to this site (0.10 mm lateral, 1.40 mm posterior, 1.93 mm dorsal). Semantic and phonemic VF sites were indistinguishable and co-localized medial to the motor sites (0.32 mm medial, 1.18 mm posterior, 1.74 mm dorsal).ConclusionThis study identifies statistically distinct, maximally effective stimulation sites for tremor improvement, VF worsening, and overall and other cardinal motor improvements in STN DBS. Current electrode sizes and voltage settings stimulate all of these sites simultaneously. However, future targeted lead placement and focused directional stimulation may avoid VF worsening while maintaining motor improvements in STN DBS.  相似文献   

12.
Deep brain stimulation (DBS) has been used in the clinic to treat Parkinson's disease (PD) and other neuropsychiatric disorders. Our previous work has shown that DBS in the subthalamic nucleus (STN) can improve major motor deficits, and induce a variety of neural responses in rats with unilateral dopamine (DA) lesions. In the present study, we examined the effect of STN DBS on reaction time (RT) performance and parallel changes in neural activity in the cortico‐basal ganglia regions of partially bilateral DA‐ lesioned rats. We recorded neural activity with a multiple‐channel single‐unit electrode system in the primary motor cortex (MI), the STN, and the substantia nigra pars reticulata (SNr) during RT test. RT performance was severely impaired following bilateral injection of 6‐OHDA into the dorsolateral part of the striatum. In parallel with such behavioral impairments, the number of responsive neurons to different behavioral events was remarkably decreased after DA lesion. Bilateral STN DBS improved RT performance in 6‐OHDA lesioned rats, and restored operational behavior‐related neural responses in cortico‐basal ganglia regions. These behavioral and electrophysiological effects of DBS lasted nearly an hour after DBS termination. These results demonstrate that a partial DA lesion‐induced impairment of RT performance is associated with changes in neural activity in the cortico‐basal ganglia circuit. Furthermore, STN DBS can reverse changes in behavior and neural activity caused by partial DA depletion. The observed long‐lasting beneficial effect of STN DBS suggests the involvement of the mechanism of neural plasticity in modulating cortico‐basal ganglia circuits. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Deep brain stimulation (DBS) into the subthalamic nucleus (STN) is a highly effective treatment for advanced Parkinson's disease (PD). The consequences of STN stimulation on intracortical and corticospinal excitability have been addressed in a few studies using transcranial magnetic stimulation (TMS). Although excitability measurements were compared between the STN stimulation OFF and ON condition, in these experiments, there are no longitudinal studies examining the impact of electrode implantation per se on motor excitability. Here, we explored the effects of STN electrode implantation on resting motor thresholds (RMT), motor evoked potential (MEP) recruitment curves, and MEP onset latencies on 2 consecutive days before and shortly after STN surgery with the stimulator switched off, thus avoiding the effects of chronic DBS on the motor system, in 8 PD patients not taking any dopaminergic medication. After surgery, RMT and MEP recruitment curves were unchanged. In contrast, MEP onset latencies were significantly shorter when examined in relaxed muscles but were unchanged under preactivation. We hypothesize that postoperatively TMS pulses induced small currents in scalp leads underneath the TMS coil connecting the external stimulator with STN electrodes leading to inadvertent stimulation of fast-conducting descending neural elements in the vicinity of the STN, thereby producing submotor threshold descending volleys. These "conditioning" volleys probably preactivated spinal motor neurons leading to earlier suprathreshold activation by the multiple corticospinal volleys produced by TMS of the motor cortex. These TMS effects need to be considered when interpreting results of excitability measurements in PD patients after implantation of STN electrodes.  相似文献   

14.
OBJECTIVE/BACKGROUND: Patients with medically refractory Parkinson's disease (PD) obtain significant clinical benefit from subthalamic nucleus (STN) stimulation. The degree to which a successful outcome relates to the anatomic location of the stimulating electrode has not yet been clearly established. Many studies have attempted to correlate the clinical result with the electrode location using postoperative magnetic resonance imaging (MRI) and there have been a few that used autopsy-determined locations. In this report, we describe long-term clinical follow-up in a patient with autopsy-determined electrode tip anatomic location. METHODS: A 67-year-old patient with a 27-year history of idiopathic PD complicated by disabling motor fluctuations and dopaminergic dyskinesias underwent bilateral STN deep brain stimulation (DBS). He was prospectively followed in a long-term clinical protocol until his death 40 months after electrode placement. Postoperative magnetic resonance (MR) imaging and postmortem studies of this patient's brain were performed to localize DBS tip locations. RESULTS: STN stimulation produced improvement of the patient's motor fluctuations, dyskinesias and clinical motor performance, especially appendicular tremors, rigidity and bradykinesia. MRI showed the electrode tips to be within 2 mm of the intended target. Postmortem brain analysis identified the right DBS tip location at the dorsomedial edge of the STN, with the left electrode in the vicinity (but not within) the STN. Chronic DBS elicited minor reactive changes were confined to the immediate vicinity of the electrode tracks. The pathological analysis demonstrated numerous cortical Lewy bodies and degenerative encephalopathy, establishing the diagnosis of transitional type diffuse Lewy body disease (DLBD) rather than simple PD. CONCLUSION: This patient obtained clinical benefit from STN stimulation typical of that seen for most PD patients. Both the MR analysis and the autopsy demonstrated electrode placement at or outside the boundaries of the STN, suggesting that that clinical efficacy may not depend on electrode location within the central region of the STN.  相似文献   

15.
《Neuromodulation》2023,26(2):333-339
BackgroundDeep brain stimulation (DBS) of the subthalamic nucleus (STN) is a highly effective surgical treatment for patients with advanced Parkinson disease (PD). Combining 7.0-Tesla (7T) T2- and diffusion-weighted imaging (DWI) sequences allows for selective segmenting of the motor part of the STN and, thus, for possible optimization of DBS.Materials and Methods7T T2 and DWI sequences were obtained, and probabilistic segmentation of motor, associative, and limbic STN segments was performed. Left- and right-sided motor outcome (Movement Disorders Society Unified Parkinson’s Disease Rating Scale) scores were used for evaluating the correspondence between the active electrode contacts in selectively segmented STN and the clinical DBS effect. The Bejjani line was reviewed for crossing of segments.ResultsA total of 50 STNs were segmented in 25 patients and proved highly feasible. Although the highest density of motor connections was situated in the dorsolateral STN for all patients, the exact partitioning of segments differed considerably. For all the active electrode contacts situated within the predominantly motor-connected segment of the STN, the average hemi-body Unified Parkinson’s Disease Rating Scale motor improvement was 80%; outside this segment, it was 52% (p < 0.01). The Bejjani line was situated in the motor segment for 32 STNs.ConclusionThe implementation of 7T T2 and DWI segmentation of the STN in DBS for PD is feasible and offers insight into the location of the motor segment. Segmentation-guided electrode placement is likely to further improve motor response in DBS for PD. However, commercially available DBS software for postprocessing imaging would greatly facilitate widespread implementation.  相似文献   

16.
Studies describing subthalamic (STN) local field potentials (LFPs) recorded during deep brain stimulation (DBS) in patients with Parkinson's disease (PD), within the first month after DBS electrode implant, show that DBS modulates specific STN oscillations: whereas low-frequency (LF) oscillations (2-7Hz) increase, beta oscillations (8-30Hz) variably decrease. No data show whether LFPs remain stable for longer than one month after DBS surgery. Having long-term information is essential especially for use as a long-term feedback control signal for adaptive DBS systems. To evaluate how STN activity behaves years after prolonged chronic stimulation in PD we studied STN LFPs at rest without DBS and during ongoing DBS, in 11 parkinsonian patients 7years (7.54±1.04) after STN electrode implantation for DBS (hyperchronic group) and in 16 patients 3days after STN electrode implantation (acute group). STN LF and beta-band LFPs recorded at rest at 7years contained almost the same information as those recorded at 3days. STN recordings showed similar LFP responses to DBS in the acute and hyperchronic stages: whereas during ongoing DBS the LF power band increased for the whole population, beta activity decreased only in nuclei with significant beta activity at baseline. The LF/beta power ratio in all nuclei changed in both study groups, suggesting that this variable might be an even more informative marker of PD than the single LF and beta bands. Because STN LFP activity patterns and STN LFP responses to DBS stay almost unchanged for years after DBS electrode implantation they should provide a consistent feedback control signal for adaptive DBS.  相似文献   

17.
The optimal stimulation site in subthalamic deep brain stimulation (STN-DBS) was evaluated by correlation of the stereotactic position of the stimulation electrode with the electrophysiologically specified dorsal STN border. In a series of 25 electrodes, best clinical results with least energy consumption were found in contacts located in the dorsolateral border zone, whereas contacts within the subthalamic white matter, e.g., zona incerta, were significantly less effective. We suggest that the dorsolateral STN border should be covered by STN-DBS.  相似文献   

18.
The synchronized beta‐band oscillations in the basal ganglia‐cortical networks in Parkinson's disease (PD) may be responsible for PD motor symptoms or an epiphenomenon of dopamine loss. We investigated the causal role of beta‐band activity in PD motor symptoms by testing the effects of beta‐frequency subthalamic nucleus deep‐brain stimulation (STN DBS) on the blink reflex excitability, amplitude, and plasticity in normal rats. Delivering 16 Hz STN DBS produced the same increase in blink reflex excitability and impairment in blink reflex plasticity in normal rats as occurs in rats with 6‐hydroxydopamine lesions and patients with PD. These deficits were not an artifact of STN DBS because, when these normal rats received 130 Hz STN DBS, their blink characteristics were the same as without STN DBS. To demonstrate that the blink reflex disturbances with 16 Hz STN DBS were frequency specific, we tested the same rats with 7 Hz STN DBS, a theta‐band frequency typical of dystonia. In contrast to beta stimulation, 7 Hz STN DBS exaggerated the blink reflex plasticity as occurs in focal dystonia. Thus, without destroying dopamine neurons or blocking dopamine receptors, frequency‐specific STN DBS can be used to create PD‐like or dystonic‐like symptoms in a normal rat.  相似文献   

19.
Positive therapeutic response without adverse side effects to subthalamic nucleus deep brain stimulation (STN DBS) for Parkinson's disease (PD) depends to a large extent on electrode location within the STN. The sensorimotor region of the STN (seemingly the preferred location for STN DBS) lies dorsolaterally, in a region also marked by distinct beta (13–30 Hz) oscillations in the parkinsonian state. In this study, we present a real‐time method to accurately demarcate subterritories of the STN during surgery, based on microelectrode recordings (MERs) and a Hidden Markov Model (HMM). Fifty‐six MER trajectories were used, obtained from 21 PD patients who underwent bilateral STN DBS implantation surgery. Root mean square (RMS) and power spectral density (PSD) of the MERs were used to train and test an HMM in identifying the dorsolateral oscillatory region (DLOR) and nonoscillatory subterritories within the STN. The HMM demarcations were compared to the decisions of a human expert. The HMM identified STN‐entry, the ventral boundary of the DLOR, and STN‐exit with an error of ?0.09 ± 0.35, ?0.27 ± 0.58, and ?0.20 ± 0.33 mm, respectively (mean ± standard deviation), and with detection reliability (error < 1 mm) of 95, 86, and 91%, respectively. The HMM was successful despite a very coarse clustering method and was robust to parameter variation. Thus, using an HMM in conjunction with RMS and PSD measures of intraoperative MER can provide improved refinement of STN entry and exit in comparison with previously reported automatic methods, and introduces a novel (intra‐STN) detection of a distinct DLOR‐ventral boundary. © 2009 Movement Disorder Society  相似文献   

20.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is increasingly used to treat advanced Parkinson's disease (PD). The optimal method for targeting the STN before implanting the definitive DBS electrode is still a matter of debates. Beside methods of direct visualization of the nucleus based on stereotactic magnetic resonance imaging (MRI), the most often used technique for targeting STN consists in recording single-cell activity along exploratory tracks of 10-15mm in length, centered on the theoretical or MRI-defined target coordinates. Single-unit recordings with a microelectrode present various drawbacks. They are time-consuming if correctly performed and a single-cell precision is probably superfluous, taking into account the size of the implanted electrode. In this study, we present an original method of recording and quantification of a multi-unit signal recorded intraoperatively with a semi-microelectrode for targeting the STN. Twelve patients with advanced PD have been included and assessed clinically before and one year after bilateral STN-DBS electrode implantation guided by multi-unit electrophysiological recordings. After one year of chronic stimulation, all patients showed a marked clinical improvement. The motor score of the unified Parkinson's disease rating scale decreased by more than 57% and the required levodopa-equivalent daily dose by 59.5% in on-stimulation off-medication condition compared to off-stimulation off-medication condition. The accuracy of STN-DBS lead placement was confirmed on postoperative computed tomography (CT) scans, which were fused to preoperative T2-weighted MRI. The boundaries of the STN were easily determined by an increase in multi-unit signal amplitude, which was observed on average from 0.492mm below the rostral border of the STN down to 0.325mm above its caudal border. Signal amplitude significantly increased at the both rostral and caudal STN margins (P<0.05) and the level of neuronal activity easily distinguished inside from outside the nucleus. This study showed that STN boundaries could be adequately determined on the basis of intraoperative multi-unit recording with a semi-microelectrode. The accuracy of our method used for positioning DBS electrodes into the STN was confirmed both on CT-MRI fusion images and on the rate of therapeutic efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号