首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prostate segmentation aids in prostate volume estimation, multi-modal image registration, and to create patient specific anatomical models for surgical planning and image guided biopsies. However, manual segmentation is time consuming and suffers from inter-and intra-observer variabilities. Low contrast images of trans rectal ultrasound and presence of imaging artifacts like speckle, micro-calcifications, and shadow regions hinder computer aided automatic or semi-automatic prostate segmentation. In this paper, we propose a prostate segmentation approach based on building multiple mean parametric models derived from principal component analysis of shape and posterior probabilities in a multi-resolution framework. The model parameters are then modified with the prior knowledge of the optimization space to achieve optimal prostate segmentation. In contrast to traditional statistical models of shape and intensity priors, we use posterior probabilities of the prostate region determined from random forest classification to build our appearance model, initialize and propagate our model. Furthermore, multiple mean models derived from spectral clustering of combined shape and appearance parameters are applied in parallel to improve segmentation accuracies. The proposed method achieves mean Dice similarity coefficient value of 0.91 ± 0.09 for 126 images containing 40 images from the apex, 40 images from the base and 46 images from central regions in a leave-one-patient-out validation framework. The mean segmentation time of the procedure is 0.67 ± 0.02 s.  相似文献   

2.
This paper presents a novel model based segmentation technique for quantification of left ventricular (LV) function from sparse single-beat 3D echocardiographic data acquired with a fast rotating ultrasound (FRU) transducer. This transducer captures cardiac anatomy in a sparse set of radially sampled, curved cross-sections within a single cardiac cycle. The method employs a 3D Active Shape Model of the left ventricle (LV) in combination with local appearance models as prior knowledge to steer the segmentation. A set of local appearance patches generate the model update points for fitting the model to the LV in the curved FRU cross-sections. Updates are then propagated over the dense 3D model mesh to overcome correspondence problems due to the data sparsity, whereas the 3D Active Shape Model serves to retain the plausibility of the generated shape.Leave-one-out cross-validation was carried out on single-beat FRU data from 28 patients suffering from various cardiac pathologies. Detection succeeded in 24 cases, and failed in 4 cases due to large dropouts in echo signal. For the successful 24 cases, detection yielded Point to Point errors of 3.1 ± 1.1 mm, Point to Surface errors of 1.7 ± 0.9 mm and an EF error of 7.3 ± 4.9%. Comparison of fitting on single-beat versus denser multi-beat data showed a similar performance for both types of data irrespective of frame angles of the intersections. Robustness tests with respect to different model initializations showed acceptable performance for initial positions within a range of 26 mm for displacement and 12° for orientation. Furthermore, a comparison study between the proposed method and global LV function measured from MR studies of the same patients showed an underestimation of volumes estimated from echocardiographic data compared to MR derived volumes, similar to other results reported in literature. All experiments demonstrate that the proposed method combines robustness with respect to initialization with an acceptable accuracy, while using sparse single-beat FRU data.  相似文献   

3.
For many orthopaedic, neurological, and oncological applications, an exact segmentation of the vertebral column including an identification of each vertebra is essential. However, although bony structures show high contrast in CT images, the segmentation and labelling of individual vertebrae is challenging.In this paper, we present a comprehensive solution for automatically detecting, identifying, and segmenting vertebrae in CT images. A framework has been designed that takes an arbitrary CT image, e.g., head-neck, thorax, lumbar, or whole spine, as input and provides a segmentation in form of labelled triangulated vertebra surface models. In order to obtain a robust processing chain, profound prior knowledge is applied through the use of various kinds of models covering shape, gradient, and appearance information. The framework has been tested on 64 CT images even including pathologies. In 56 cases, it was successfully applied resulting in a final mean point-to-surface segmentation error of 1.12 ± 1.04 mm.One key issue is a reliable identification of vertebrae. For a single vertebra, we achieve an identification success of more than 70%. Increasing the number of available vertebrae leads to an increase in the identification rate reaching 100% if 16 or more vertebrae are shown in the image.  相似文献   

4.

Purpose

For patients with myocardial infarction (MI), delayed enhancement (DE) cardiovascular magnetic resonance imaging (MRI) is a sensitive and well-validated technique for the detection and visualization of MI. The myocardium viability assessment with DE MRI is important in diagnosis and treatment management, where myocardium segmentation is a prerequisite. However, few academic works have focused on automated myocardium segmentation from DE images. In this study, we aim to develop an automatic myocardium segmentation algorithm that targets DE images.

Methods

We propose a segmentation framework based on both prior shape knowledge and image intensity. Instead of the strong request of the pre-segmentation of cine MRI in the same session, we use the sparse representation method to model the myocardium shape. Data from the Cardiac MR Left Ventricle Segmentation Challenge (2009) are used to build the shape template repository. The method of guided random walks is used to integrate the shape model and intensity information. An iterative approach is used to gradually improve the results.

Results

The proposed method was tested on the DE MRI data from 30 MI patients. The proposed method achieved Dice similarity coefficients (DSC) of 74.60?±?7.79% with 201 shape templates and 73.56?±?6.32% with 56 shape templates, which were close to the inter-observer difference (73.94?±?5.12%). To test the generalization of the proposed method to routine clinical images, the DE images of 10 successive new patients were collected, which were unseen during the method development and parameter tuning, and a DSC of 76.02?±?7.43% was achieved.

Conclusion

The authors propose a novel approach for the segmentation of myocardium from DE MRI by using the sparse representation-based shape model and guided random walks. The sparse representation method effectively models the prior shape with a small number of shape templates, and the proposed method has the potential to achieve clinically relevant results.
  相似文献   

5.
Automated delineation of anatomical structures in chest radiographs is difficult due to superimposition of multiple structures. In this work an automated technique to segment the clavicles in posterior-anterior chest radiographs is presented in which three methods are combined. Pixel classification is applied in two stages and separately for the interior, the border and the head of the clavicle. This is used as input for active shape model segmentation. Finally dynamic programming is employed with an optimized cost function that combines appearance information of the interior of the clavicle, the border, the head and shape information derived from the active shape model. The method is compared with a number of previously described methods and with independent human observers on a large database. This database contains both normal and abnormal images and will be made publicly available. The mean contour distance of the proposed method on 249 test images is 1.1 ± 1.6 mm and the intersection over union is 0.86 ± 0.10.  相似文献   

6.

Purpose

Cochlear implantation is a safe and effective surgical procedure to restore hearing in deaf patients. However, the level of restoration achieved may vary due to differences in anatomy, implant type and surgical access. In order to reduce the variability of the surgical outcomes, we previously proposed the use of a high-resolution model built from \(\mu \hbox {CT}\) images and then adapted to patient-specific clinical CT scans. As the accuracy of the model is dependent on the precision of the original segmentation, it is extremely important to have accurate \(\mu \hbox {CT}\) segmentation algorithms.

Methods

We propose a new framework for cochlea segmentation in ex vivo \(\mu \hbox {CT}\) images using random walks where a distance-based shape prior is combined with a region term estimated by a Gaussian mixture model. The prior is also weighted by a confidence map to adjust its influence according to the strength of the image contour. Random walks is performed iteratively, and the prior mask is aligned in every iteration.

Results

We tested the proposed approach in ten \(\mu \hbox {CT}\) data sets and compared it with other random walks-based segmentation techniques such as guided random walks (Eslami et al. in Med Image Anal 17(2):236–253, 2013) and constrained random walks (Li et al. in Advances in image and video technology. Springer, Berlin, pp 215–226, 2012). Our approach demonstrated higher accuracy results due to the probability density model constituted by the region term and shape prior information weighed by a confidence map.

Conclusion

The weighted combination of the distance-based shape prior with a region term into random walks provides accurate segmentations of the cochlea. The experiments suggest that the proposed approach is robust for cochlea segmentation.
  相似文献   

7.
8.
The hippocampus has been the primary region of interest in the preoperative imaging investigations of mesial temporal lobe epilepsy (mTLE). Hippocampal imaging and electroencephalographic features may be sufficient in several cases to declare the epileptogenic focus. In particular, hippocampal atrophy, as appreciated on T1-weighted (T1W) magnetic resonance (MR) images, may suggest a mesial temporal sclerosis. Qualitative visual assessment of hippocampal volume, however, is influenced by head position in the magnet and the amount of atrophy in different parts of the hippocampus. An entropy-based segmentation algorithm for subcortical brain structures (LocalInfo) was developed and supplemented by both a new multiple atlas strategy and a free-form deformation step to capture structural variability. Manually segmented T1-weighted magnetic resonance (MR) images of 10 non-epileptic subjects were used as atlases for the proposed automatic segmentation protocol which was applied to a cohort of 46 mTLE patients. The segmentation and lateralization accuracies of the proposed technique were compared with those of two other available programs, HAMMER and FreeSurfer, in addition to the manual method. The Dice coefficient for the proposed method was 11% (p < 10?5) and 14% (p < 10?4) higher in comparison with the HAMMER and FreeSurfer, respectively. Mean and Hausdorff distances in the proposed method were also 14% (p < 0.2) and 26% (p < 10?3) lower in comparison with HAMMER and 8% (p < 0.8) and 48% (p < 10?5) lower in comparison with FreeSurfer, respectively. LocalInfo proved to have higher concordance (87%) with the manual segmentation method than either HAMMER (85%) or FreeSurfer (83%). The accuracy of lateralization by volumetry in this study with LocalInfo was 74% compared to 78% with the manual segmentation method. LocalInfo yields a closer approximation to that of manual segmentation and may therefore prove to be more reliable than currently published automatic segmentation algorithms.  相似文献   

9.
Resolution in Magnetic Resonance (MR) is limited by diverse physical, technological and economical considerations. In conventional medical practice, resolution enhancement is usually performed with bicubic or B-spline interpolations, strongly affecting the accuracy of subsequent processing steps such as segmentation or registration. This paper presents a sparse-based super-resolution method, adapted for easily including prior knowledge, which couples up high and low frequency information so that a high-resolution version of a low-resolution brain MR image is generated. The proposed approach includes a whole-image multi-scale edge analysis and a dimensionality reduction scheme, which results in a remarkable improvement of the computational speed and accuracy, taking nearly 26 min to generate a complete 3D high-resolution reconstruction. The method was validated by comparing interpolated and reconstructed versions of 29 MR brain volumes with the original images, acquired in a 3T scanner, obtaining a reduction of 70% in the root mean squared error, an increment of 10.3 dB in the peak signal-to-noise ratio, and an agreement of 85% in the binary gray matter segmentations. The proposed method is shown to outperform a recent state-of-the-art algorithm, suggesting a substantial impact in voxel-based morphometry studies.  相似文献   

10.
Retinal imaging provides a non-invasive opportunity for the diagnosis of several medical pathologies. The automatic segmentation of the vessel tree is an important pre-processing step which facilitates subsequent automatic processes that contribute to such diagnosis.We introduce a novel method for the automatic segmentation of vessel trees in retinal fundus images. We propose a filter that selectively responds to vessels and that we call B-COSFIRE with B standing for bar which is an abstraction for a vessel. It is based on the existing COSFIRE (Combination Of Shifted Filter Responses) approach. A B-COSFIRE filter achieves orientation selectivity by computing the weighted geometric mean of the output of a pool of Difference-of-Gaussians filters, whose supports are aligned in a collinear manner. It achieves rotation invariance efficiently by simple shifting operations. The proposed filter is versatile as its selectivity is determined from any given vessel-like prototype pattern in an automatic configuration process. We configure two B-COSFIRE filters, namely symmetric and asymmetric, that are selective for bars and bar-endings, respectively. We achieve vessel segmentation by summing up the responses of the two rotation-invariant B-COSFIRE filters followed by thresholding.The results that we achieve on three publicly available data sets (DRIVE: Se = 0.7655, Sp = 0.9704; STARE: Se = 0.7716, Sp = 0.9701; CHASE_DB1: Se = 0.7585, Sp = 0.9587) are higher than many of the state-of-the-art methods. The proposed segmentation approach is also very efficient with a time complexity that is significantly lower than existing methods.  相似文献   

11.
Magnetic resonance (MR) imaging is often used to characterize and quantify multiple sclerosis (MS) lesions in the brain and spinal cord. The number and volume of lesions have been used to evaluate MS disease burden, to track the progression of the disease and to evaluate the effect of new pharmaceuticals in clinical trials. Accurate identification of MS lesions in MR images is extremely difficult due to variability in lesion location, size and shape in addition to anatomical variability between subjects. Since manual segmentation requires expert knowledge, is time consuming and is subject to intra- and inter-expert variability, many methods have been proposed to automatically segment lesions.The objective of this study was to carry out a systematic review of the literature to evaluate the state of the art in automated multiple sclerosis lesion segmentation. From 1240 hits found initially with PubMed and Google scholar, our selection criteria identified 80 papers that described an automatic lesion segmentation procedure applied to MS. Only 47 of these included quantitative validation with at least one realistic image. In this paper, we describe the complexity of lesion segmentation, classify the automatic MS lesion segmentation methods found, and review the validation methods applied in each of the papers reviewed. Although many segmentation solutions have been proposed, including some with promising results using MRI data obtained on small groups of patients, no single method is widely employed due to performance issues related to the high variability of MS lesion appearance and differences in image acquisition. The challenge remains to provide segmentation techniques that work in all cases regardless of the type of MS, duration of the disease, or MRI protocol, and this within a comprehensive, standardized validation framework. MS lesion segmentation remains an open problem.  相似文献   

12.
A collaborative framework was initiated to establish a community resource of ground truth segmentations from cardiac MRI. Multi-site, multi-vendor cardiac MRI datasets comprising 95 patients (73 men, 22 women; mean age 62.73 ± 11.24 years) with coronary artery disease and prior myocardial infarction, were randomly selected from data made available by the Cardiac Atlas Project (Fonseca et al., 2011). Three semi- and two fully-automated raters segmented the left ventricular myocardium from short-axis cardiac MR images as part of a challenge introduced at the STACOM 2011 MICCAI workshop (Suinesiaputra et al., 2012). Consensus myocardium images were generated based on the Expectation–Maximization principle implemented by the STAPLE algorithm (Warfield et al., 2004). The mean sensitivity, specificity, positive predictive and negative predictive values ranged between 0.63 and 0.85, 0.60 and 0.98, 0.56 and 0.94, and 0.83 and 0.92, respectively, against the STAPLE consensus. Spatial and temporal agreement varied in different amounts for each rater. STAPLE produced high quality consensus images if the region of interest was limited to the area of discrepancy between raters. To maintain the quality of the consensus, an objective measure based on the candidate automated rater performance distribution is proposed. The consensus segmentation based on a combination of manual and automated raters were more consistent than any particular rater, even those with manual input. The consensus is expected to improve with the addition of new automated contributions. This resource is open for future contributions, and is available as a test bed for the evaluation of new segmentation algorithms, through the Cardiac Atlas Project (www.cardiacatlas.org).  相似文献   

13.
《Medical image analysis》2015,20(1):164-175
Given the potential importance of marginal artery localization in automated registration in computed tomography colonography (CTC), we have devised a semi-automated method of marginal vessel detection employing sequential Monte Carlo tracking (also known as particle filtering tracking) by multiple cue fusion based on intensity, vesselness, organ detection, and minimum spanning tree information for poorly enhanced vessel segments. We then employed a random forest algorithm for intelligent cue fusion and decision making which achieved high sensitivity and robustness. After applying a vessel pruning procedure to the tracking results, we achieved statistically significantly improved precision compared to a baseline Hessian detection method (2.7% versus 75.2%, p < 0.001). This method also showed statistically significantly improved recall rate compared to a 2-cue baseline method using fewer vessel cues (30.7% versus 67.7%, p < 0.001). These results demonstrate that marginal artery localization on CTC is feasible by combining a discriminative classifier (i.e., random forest) with a sequential Monte Carlo tracking mechanism. In so doing, we present the effective application of an anatomical probability map to vessel pruning as well as a supplementary spatial coordinate system for colonic segmentation and registration when this task has been confounded by colon lumen collapse.  相似文献   

14.
Analyses of the human tongue motion as captured from 2D dynamic ultrasound data often requires segmentation of the mid-sagittal tongue contours. However, semi-automatic extraction of the tongue shape presents practical challenges. We approach this segmentation problem by proposing a novel higher-order Markov random field energy minimization framework. For efficient energy minimization, we propose two novel schemes to sample the solution space efficiently. To cope with the unpredictable tongue motion dynamics, we also propose to temporally adapt regularization based on contextual information. Unlike previous methods, we employ the latest optimization techniques to solve the tracking problem under one unified framework. Our method was validated on a set of 63 clinical data sequences, which allowed for comparative analyses with three other competing methods. Experimental results demonstrate that our method can segment sequences containing over 500 frames with mean accuracy of 3 mm, approaching the accuracy of manual segmentations created by trained clinical observers.  相似文献   

15.
Anatomical and functional information of cardiac vasculature is a key component in the field of interventional cardiology. With the technology of C-arm CT it is possible to reconstruct static intraprocedural 3D images from angiographic projection data. Current approaches attempt to add the temporal dimension (4D). In the assumption of periodic heart motion, ECG-gating techniques can be used. However, arrhythmic heart signals and slight breathing motion are degrading image quality frequently.To overcome those problems, we present a reconstruction method based on a 4D time-continuous B-spline motion field. The temporal component of the motion field is parameterized by the acquisition time and does not assume a periodic heart motion. The analytic dynamic FDK-reconstruction formula is used directly for the motion estimation and image reconstruction.In a physical phantom experiment two vessels of size 3.1 mm and 2.3 mm were reconstructed using the proposed method and an algorithm with periodicity assumption. For a periodic motion both methods obtained an error of 0.1 mm. For a non-periodic motion the proposed method was superior, obtaining an error of 0.3 mm/0.2 mm in comparison to 1.2 mm/1.0 mm for the algorithm with periodicity assumption. For a clinical test case of a left coronary artery it could be further shown that the method is capable to produce diameter measurements with an absolute error of 0.1 mm compared to state-of-the-art measurement tools from orthogonal coronary angiography. Further, it is shown for three different clinical cases (left/right coronary artery, coronary sinus) that the proposed method is able to handle a large variability of vascular structures and motion patterns. The complete algorithm is hardware-accelerated using the GPU requiring a computation time of less than 3 min for typical clinical scenarios.  相似文献   

16.
Wei Gao  Hongtu Zhu  Weili Lin 《NeuroImage》2009,44(3):729-741
An optimization approach for diffusion tensor imaging (DTI) technique is proposed, aiming to improve the estimates of tensors, fractional anisotropy (FA), and fiber directions. With the simulated annealing algorithm, the proposed approach simultaneously optimizes imaging parameters (gradient duration/separation, read-out time, and TE), b-values, and diffusion gradient directions either with or without incorporating prior knowledge of tensor fields. In addition, the method through which tensors are estimated, least squares in our study, was also considered in the optimization procedures. Monte-Carlo simulations were performed for three different scenarios of prior fiber distributions including fibers orientated in 1 (CONE1) and 3 (CONE3) cone areas (50 tensors orderly oriented within a diverging angle of 20° in each cone) and a uniform fiber distribution (UNIF). In addition, three imaging acquisition schemes together with different signal-to-noise ratios were tested, including M/N = 1/6, 2/12, and 5/30 for each prior fiber distribution where M and N were the number of b = 0 and b > 0 images, respectively. Our results show that the optimal b-value ranges between 0.7 and 1.0 × 109 s/m2 for UNIF. However, the optimal b-value ranges become both higher and wider for CONE1 and CONE3 than that of UNIF. In addition, the biases and standard deviations (SD) of tensors, and SD of FA are substantially reduced and the accuracy of fiber directional estimates is improved using the proposed approach particularly in CONE1 when compared with the conventional approaches. Together, the proposed unified optimization approach may offer a direct and simultaneous means to optimize DTI experiments.  相似文献   

17.
Segmentation of medical images can be achieved with the help of model-based algorithms. Reliable boundary detection is a crucial component to obtain robust and accurate segmentation results and to enable full automation. This is especially important if the anatomy being segmented is too variable to initialize a mean shape model such that all surface regions are close to the desired contours. Several boundary detection algorithms are widely used in the literature. Most use some trained image appearance model to characterize and detect the desired boundaries. Although parameters of the boundary detection can vary over the model surface and are trained on images, their performance (i.e., accuracy and reliability of boundary detection) can only be assessed as an integral part of the entire segmentation algorithm. In particular, assessment of boundary detection cannot be done locally and independently on model parameterization and internal energies controlling geometric model properties.In this paper, we propose a new method for the local assessment of boundary detection called Simulated Search. This method takes any boundary detection function and evaluates its performance for a single model landmark in terms of an estimated geometric boundary detection error. In consequence, boundary detection can be optimized per landmark during model training. We demonstrate the success of the method for cardiac image segmentation. In particular we show that the Simulated Search improves the capture range and the accuracy of the boundary detection compared to a traditional training scheme. We also illustrate how the Simulated Search can be used to identify suitable classes of features when addressing a new segmentation task. Finally, we show that the Simulated Search enables multi-modal heart segmentation using a single algorithmic framework. On computed tomography and magnetic resonance images, average segmentation errors (surface-to-surface distances) for the four chambers and the trunks of the large vessels are in the order of 0.8 mm. For 3D rotational X-ray angiography images of the left atrium and pulmonary veins, the average error is 1.3 mm. In all modalities, the locally optimized boundary detection enables fully automatic segmentation.  相似文献   

18.
19.
Examinations of the spinal column with both, Magnetic Resonance (MR) imaging and Computed Tomography (CT), often require a precise three-dimensional positioning, angulation and labeling of the spinal disks and the vertebrae. A fully automatic and robust approach is a prerequisite for an automated scan alignment as well as for the segmentation and analysis of spinal disks and vertebral bodies in Computer Aided Diagnosis (CAD) applications. In this article, we present a novel method that combines Marginal Space Learning (MSL), a recently introduced concept for efficient discriminative object detection, with a generative anatomical network that incorporates relative pose information for the detection of multiple objects. It is used to simultaneously detect and label the spinal disks. While a novel iterative version of MSL is used to quickly generate candidate detections comprising position, orientation, and scale of the disks with high sensitivity, the anatomical network selects the most likely candidates using a learned prior on the individual nine dimensional transformation spaces. Finally, we propose an optional case-adaptive segmentation approach that allows to segment the spinal disks and vertebrae in MR and CT respectively. Since the proposed approaches are learning-based, they can be trained for MR or CT alike. Experimental results based on 42 MR and 30 CT volumes show that our system not only achieves superior accuracy but also is among the fastest systems of its kind in the literature. On the MR data set the spinal disks of a whole spine are detected in 11.5 s on average with 98.6% sensitivity and 0.073 false positive detections per volume. On the CT data a comparable sensitivity of 98.0% with 0.267 false positives is achieved. Detected disks are localized with an average position error of 2.4 mm/3.2 mm and angular error of 3.9°/4.5° in MR/CT, which is close to the employed hypothesis resolution of 2.1 mm and 3.3°.  相似文献   

20.
The vestibular system is the sensory organ responsible for perceiving head rotational movements and maintaining postural balance of human body. The objectives of this study are to propose an innovative computational technique capable of automatically segmenting the vestibular system and to analyze its geometrical features from high resolution T2-weighted MR images. In this study, the proposed technique was used to test the hypothesis that the morphoanatomy of vestibular system in adolescent idiopathic scoliosis (AIS) patients is different from healthy control subjects. The findings could contribute significantly to the understanding of the etiopathogenesis of AIS. The segmentation pipeline consisted of extraction of region of interest, image pre-processing, K-means clustering, and surface smoothing. The geometry of this high-genus labyrinth structure was analyzed through automatic partition into genus-0 units and approximation using the best-fit circle and plane for each unit. The metrics of the best-fit planes and circles were taken as shape measures. The proposed technique was applied on a cohort of 20 right-thoracic AIS patients (mean age 14.7 years old) and 20 age-matched healthy girls. The intermediate results were validated by subjective scoring. The result showed that the distance between centers of lateral and superior canals and the angle with vertex at the center of posterior canal were significantly smaller in AIS than in healthy controls in the left-side vestibular system with p = 0.0264 and p = 0.0200 respectively, but not in the right-side counterparts. The detected morphoanatomical changes are likely to be associated with subclinical postural, vestibular and proprioceptive dysfunctions reported frequently in AIS. This study has demonstrated that the proposed method could be applied in MRI-based morphoanatomy studies of vestibular system clinically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号