首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cunic D  Roshan L  Khan FI  Lozano AM  Lang AE  Chen R 《Neurology》2002,58(11):1665-1672
BACKGROUND: Transcranial magnetic stimulation (TMS) studies have found abnormalities in several excitatory and inhibitory circuits in the motor cortex in PD. These include motor evoked potential (MEP) recruitment curve, silent period duration (SP), short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), and long-interval intracortical inhibition (LICI). METHODS: The authors studied the effects of subthalamic nucleus (STN) deep brain stimulation (DBS) on these circuits in 12 patients with PD treated with STN DBS. Data from nine patients who completed the study were analyzed. Patients remained on their usual medications. The stimulators were set at the optimal parameters (ON), half the optimal amplitude (HALF), and switched off (OFF) in random order. RESULTS: The Unified PD Rating Scale motor scores were significantly lower in the ON compared to the HALF and OFF conditions. Resting SICI, studied with paired-pulse TMS at interstimulus interval of 2 ms, was reduced in the OFF and HALF conditions compared to normal subjects. STN stimulation restored SICI to normal levels. STN stimulation had no effect on motor threshold, MEP recruitment curve, SP, active SICI, ICF, and LICI. CONCLUSIONS: Although restoration of short-interval intracortical inhibition by STN stimulation is similar to the effects of dopaminergic drugs, it has no effect on silent period duration and long-interval intracortical inhibition, which are also influenced by dopaminergic drugs. A previous study found that internal globus pallidus (GPi) stimulation reduced SP but did not change SICI. Thus, GPi and STN stimulation may affect different circuits in the motor cortex.  相似文献   

2.
BackgroundContinuous theta burst stimulation (cTBS) suppresses the excitability of motor networks responsible for generating motor evoked potentials (MEPs), and may also modulates the excitability of inhibitory motor networks. However, its effects on intracortical inhibition are modest in comparison to the effects on MEPs. The repeated, spaced, application of cTBS protocols results in more MEP suppression than seen with a single cTBS protocol, but whether this approach is also effective at modulating intracortical inhibition has not been tested.ObjectiveTo determine whether the paired application of cTBS effectively modulates the excitability of intracortical inhibitory motor networks.MethodsSingle and paired-pulse transcranial magnetic stimulation (TMS) were used to assess resting motor threshold (RMT), MEP amplitude, short-interval intracortical inhibition (SICI), and long-interval intracortical inhibition (LICI) before and during two time periods (0–10 and 30–40 min) following application of either a single or paired cTBS protocols.ResultsBoth the single and paired cTBS conditions induced a significant reduction in both MEP amplitudes and the level of SICI. While paired cTBS produced a significantly greater MEP suppression than single cTBS, the effects on SICI were similar. Neither single nor paired cTBS had an effect on RMT or LICI.ConclusionsAlthough the repeated application of cTBS protocols may be effective for enhancing modulation of the MEP-generating excitatory motor networks, these findings suggest that this approach offers little advantage when targeting intracortical inhibitory networks.  相似文献   

3.
《Clinical neurophysiology》2020,131(4):791-798
ObjectiveMotor learning is relevant in chronic stroke for acquiring compensatory strategies to motor control deficits. However, the neurophysiological mechanisms underlying motor skill acquisition with the paretic upper limb have received little systematic investigation. The aim of this study was to assess the modulation of corticomotor excitability and intracortical inhibition within ipsilesional primary motor cortex (M1) during motor skill learning.MethodsTen people at the chronic stage after stroke and twelve healthy controls trained on a sequential visuomotor isometric wrist extension task. Skill was quantified before, immediately after, 24 hours and 7 days post-training. Transcranial magnetic stimulation was used to examine corticomotor excitability and short- and long-interval intracortical inhibition (SICI and LICI) pre- and post-training.ResultsThe patient group exhibited successful skill acquisition and retention, although absolute skill level was lower compared with controls. In contrast to controls, patients’ ipsilesional corticomotor excitability was not modulated during skill acquisition, which may be attributed to excessive ipsilesional LICI relative to controls. SICI decreased after training for both patient and control groups.ConclusionsOur findings indicate distinct inhibitory networks within M1 that may be relevant for motor learning after stroke.SignificanceThese findings have potential clinical relevance for neurorehabilitation adjuvants aimed at augmenting the recovery of motor function.  相似文献   

4.
ObjectiveThe GABA hypothesis of hepatic encephalopathy (HE) proposes an increased cerebral GABA-ergic tone in HE but has not been investigated in vivo in HE-patients yet. Cortical GABA-ergic and glutamatergic neurotransmission in HE-patients were evaluated using transcranial magnetic stimulation.MethodsTwenty-one patients with HE grade 1 and 2 and age matched controls participated in the study. GABA-ergic (short- and long-interval intracortical inhibition (SICI and LICI)) and glutamatergic (intracortical and short-interval intracortical facilitation (ICF and SICF)) excitability of the primary motor cortex (M1) and global corticospinal excitability (motor threshold, motor evoked potential recruitment curve (MEP-RC) were compared between the groups. SICI and ICF were correlated to the critical flicker frequency (CFF) as measure for disease severity.ResultsIn HE-patients, the slope of MEP-RC was significantly shallower compared to healthy controls. SICI was significantly reduced in patients with HE grade 2 compared to healthy controls. In HE-patients, SICI and ICF was significantly correlated to CFF.ConclusionAlthough global corticospinal excitability was reduced in HE-patients, GABA-ergic inhibition was reduced in M1 depending on HE severity. Moreover CFF related alteration of GABAergic and glutamatergic neurotransmission in patients with HE could support the notion of a severity dependent alteration of cortical excitability.SignificanceThe decrease of cortical GABA-ergic tone challenges the classical GABA hypothesis in HE.  相似文献   

5.
ObjectiveInvolvement of pyramidal cells and/or changes in excitability of brain areas remote from an ischemic stroke has been demonstrated. Since in Fabry disease (FD), specific cerebrovascular lesions are present, we thought to investigate motor cortex excitability, using transcranial magnetic stimulation.MethodsResting (RMT) and active (AMT) motor threshold, input–output curve (IN–OUT), central motor conduction time (CMCT), cortical silent period (cSP), short and long interval intracortical inhibition (SICI and LICI), intracortical facilitation (ICF), short interval intracortical facilitation (SICF) and short afferent inhibition (SAI) were measured in the cortical representation of the right first dorsal interosseous muscle in 11 patients with FD and 11 sex- and age matched healthy subjects.ResultsFD patients showed a significant increase of steepness in IN–OUT, ICF and SICF curves. RMT, AMT, CMCT, SICI, LICI and SAI were normal.ConclusionsOur data documented an increased activity of motor cortex glutamatergic excitatory circuits in FD, evident also in patients without brain MRI lesions. Following enzyme replacement treatment, this abnormality was partly reversed.SignificanceWe suggest that our findings are expression of subtle “biochemical brain lesions”, due to an early involvement of neurons and/or astrocytes by the cascade of pathologic events leading to brain damage in FD.  相似文献   

6.
《Clinical neurophysiology》2021,51(5):443-453
ObjectiveTo assess by transcranial magnetic stimulation (TMS) the excitability of various cortical circuits in akinetic-rigid and tremor-dominant subtypes of Parkinson's disease (PD).MethodsThe study included 92 patients with PD according to UK Brain Bank criteria, with akinetic-rigid (n = 64) or tremor-dominant (n = 28) subtype. Cortical excitability study, including resting and active motor thresholds (rMT and aMT), input—output curve of motor evoked potentials, contralateral and ipsilateral silent periods (cSP and iSP), short and long-interval intracortical inhibition (SICI and LICI), and intracortical facilitation (ICF) were measured. The results obtained were compared to a control group of 30 age- and sex-matched healthy subjects.ResultsThe patients in the tremor group had significantly lower rMT and aMT compared to controls and akinetic-rigid patients and significantly shorter iSP duration compared to akinetic-rigid patients, while iSP latency tended to be longer in akinetic-rigid patients compared to controls. There were no significant differences between the two PD subgroups regarding other cortical excitability parameters, including paired-pulse TMS parameters.ConclusionsOnly subtle differences of cortical excitability were found between patients with akinetic-rigid vs. tremor-dominant subtype of PD.SignificanceThe clinical heterogeneity of PD patients probably has an impact on cortical excitability measures, far beyond the akinetic-rigid versus tremor-dominant profile.  相似文献   

7.
BackgroundAlthough functional changes in the activation of the cerebellum in Parkinson's disease (PD) patients have been consistently described, it is still debated whether such altered cerebellar activation is a natural consequence of PD pathophysiology or rather it involves compensatory mechanisms.Objective/HypothesisWe used different forms of cerebellar transcranial magnetic stimulation to evaluate the hypothesis that altered cerebello-cortical interactions can be observed in PD patients and to evaluate the role of dopaminergic treatment.MethodsWe studied the effects of a single cerebellar magnetic pulse over the excitability of the contralateral primary motor cortex tested with motor-evoked potentials (MEPs) (cerebellar-brain inhibition—CBI) in a group of 16 PD patients with (ON) and without dopaminergic treatment (OFF), and in 16 age-matched healthy controls. Moreover, we also tested the effects of cerebellar continuous theta-burst stimulation (cTBS) on MEP amplitude, short intracortical inhibition (SICI) and short intracortical facilitation (SICF) tested in the contralateral M1 in 13 PD patients in ON and OFF and in 16 age-matched healthy controls.ResultsCBI was evident in controls but not in PD patients, even when tested in both ON and OFF conditions. Similarly, cerebellar cTBS reduced MEP amplitude and SICI in controls but not in PD patients under any condition.Conclusion(s)These results demonstrate that PD patients have deficient short-latency and long-lasting cerebellar-thalamocortical inhibitory interactions that cannot be promptly restored by standard dopaminergic medication.  相似文献   

8.
《Brain stimulation》2014,7(5):665-672
BackgroundEffects of age on the assessment of intracortical inhibition with paired-pulse transcranial magnetic stimulation (TMS) have been variable, which may be due to between-study differences in test TMS intensity and test motor evoked potential (MEP) amplitude.ObjectiveTo investigate age-related differences in short- (SICI) and long-interval intracortical inhibition (LICI) across a range of test TMS intensities and test MEP amplitudes.MethodsIn 22 young and 18 older subjects, SICI and LICI were recorded at a range of test TMS intensities (110%–150% of motor threshold) while the first dorsal interosseous (FDI) muscle was at rest, or producing a precision grip of the index finger and thumb. Data were subsequently compared according to the amplitude of the MEP produced by the test alone TMS.ResultsWhen pooled across all test TMS intensities, SICI in resting muscle and LICI in active muscle were similar in young and older adults, whereas SICI in active muscle and LICI in resting muscle were reduced in older adults. Regrouping data based on test MEP amplitude demonstrated similar effects of age for SICI and LICI in resting muscle, whereas more subtle differences between age groups were revealed for SICI and LICI in active muscle.ConclusionsAdvancing age influences GABA-mediated intracortical inhibition, but the outcome is dependent on the experimental conditions. Age-related differences in SICI and LICI were influenced by test TMS intensity and test MEP amplitude, suggesting that these are important considerations when assessing intracortical inhibition in older adults, particularly in an active muscle.  相似文献   

9.
《Clinical neurophysiology》2009,120(6):1204-1212
ObjectivePaired associative stimulation (PAS) is a transcranial magnetic stimulation technique inducing Hebbian-like synaptic plasticity in the human motor cortex (M1). PAS is produced by repetitive pairing of a peripheral nerve shock and a transcranial magnetic stimulus (TMS). Its effect is assessed by a change in size of a motor evoked response (MEP). MEP size results from excitatory and inhibitory influences exerted on cortical pyramidal cells, but no robust effects on inhibitory networks have been demonstrated so far.MethodIn 38 healthy volunteers, we assessed whether a PAS intervention influences three intracortical inhibitory circuits: short (SICI) and long (LICI) intracortical inhibitions reflecting activity of GABAA and GABAB interneurons, respectively, and long afferent inhibition (LAI) reflecting activity of somatosensory inputs.ResultsAfter PAS, MEP sizes, LICI and LAI levels were significantly changed while changes of SICI were inconsistent. The changes in LICI and LAI lasted 45 min after PAS. Their direction depended on the delay between the arrival time of the afferent volley at the cortex and the TMS-induced cortical activation during the PAS.ConclusionsPAS influences inhibitory circuits in M1.SignificancePAS paradigms can demonstrate Hebbian-like plasticity at selected inhibitory networks as well as excitatory networks.  相似文献   

10.
BackgroundThe Expanded Disability Status Scale (EDSS) is the most widely used measure of disability in MS, however because of its limitations surrogate markers of clinical disability progression are of high interest. Transcranial magnetic stimulation (TMS) measures of demyelination and cortical excitability correlate with disability levels in MS.ObjectiveAim of this study was testing whether paired pulse (pp) TMS represents a reliable surrogate marker to measure clinical disability in MS.MethodsppTMS measures of intracortical synaptic transmission such as short interval intracortical inhibition (SICI), long interval intracortical inhibition (LICI), short interval intracortical facilitation (SICF) and intracortical facilitation (ICF) were collected from 74 patients affected by MS. Correlation of EDSS scores with ppTMS measures was analyzed.ResultsEDSS scores correlated with patient’s age, disease duration, Motor Evoked Potentials latency and thresholds and SICF measures but not with age of onset, SICI, ICF and LICI.ConclusionsThese findings support a possible use of SICF and MEP latency as surrogate markers of disability in MS. Further research is warranted to determine the role of SICF in the follow up of disease progression and to validate its use as an endpoint in multiple sclerosis clinical trials.  相似文献   

11.
ObjectiveAlthough many animal and human studies have been performed, the exact mechanisms of action whereby modafinil promotes wakefulness are still not completely understood. We aimed to investigate the functional effects of modafinil on motor cortex excitability in patients with narcolepsy by means of transcranial magnetic stimulation (TMS) techniques.MethodsIn a double-blind and placebo-controlled design, 24 drug-naive narcoleptic patients with cataplexy and 20 control subjects were administered modafinil or placebo over a period of 4 weeks. TMS was performed twice during the awake state before and at the end of treatment; measures of cortical excitability included central motor conduction time, resting motor threshold, short latency intracortical inhibition (SICI) and intracortical facilitation to paired-TMS. TMS measures were correlated with the conventional neurophysiological method of Multiple Sleep Latency Test (MSLT) and the subjective Epworth Sleepiness Scale (ESS).ResultsAs previously reported, motor threshold and SICI were significantly increased in patients with narcolepsy; modafinil reversed this cortical hypoexcitability, but only SICI differences reached statistical significance. The Spearman rank correlation analysis revealed the highest correlation between SICI and the MSLT; a positive correlation was also found between SICI and the ESS, as well as between RMT and both measures of daytime sleepiness.ConclusionsThis represents the first report investigating effects of modafinil on cortical excitability in human narcolepsy. Since SICI is thought to be directly related to GABAA intracortical inhibitory activity, we demonstrated that the dose of modafinil that induces a satisfactory wakefulness-promoting response in narcoleptic patients also causes decrease in GABAergic transmission.  相似文献   

12.
Transcranial magnetic stimulation (TMS) is a useful method to study pharmacological effects on motor cortex excitability. Zolpidem is a selective agonist of the benzodiazepine receptor subtype BZ1 and has a distinct pharmacological profile compared to diazepam. To study the different effects of these two drugs on the cortical inhibitory system, TMS was performed before and after administration of a single oral dose of zolpidem (10 mg) and diazepam (5 mg) in six healthy volunteers. TMS tests included the determination of resting and active motor threshold (MT) and measurements of the amplitudes of motor evoked potentials, intracortical facilitation (ICF), short-latency intracortical inhibition (SICI), and long-latency intracortical inhibition (LICI), and determination of the cortical silent period (CSP). Both drugs were without effect on the active or resting MT and decreased the ICF. Prolongation of the CSP and enhancement of LICI only in the presence of zolpidem point to a specific BZ1-related mechanism underlying the long-lasting component of cortical inhibition. This selective modulation of the CSP and the LICI points to a specific role of BZ1 receptors in the control of inhibitory neuronal loops within the primary motor cortex.  相似文献   

13.
《Brain stimulation》2014,7(4):613-617
BackgroundTrigeminal nerve stimulation (TNS) has recently emerged as a new therapeutic option for patients with drug-resistant epilepsy but its potential mechanisms of action are not known. Since other antiepileptic treatments have been shown to alter cortical excitability, thereby reducing the liability to seizures, it has been suggested that cranial nerve stimulation such as TNS may act in the same way.ObjectiveTo study whether TNS has the potential to alter cortical excitability in healthy subjects.MethodsAn adaptive paired-pulse transcranial magnetic stimulation protocol stimulating the dominant hand motor area was used to measure resting motor threshold (rMT), short-interval intracortical inhibition (SICI), intracortical facilitation (ICF) and long-interval intracortical inhibition (LICI) before, during, and after 40 min of 120 Hz bilateral external continuous trigeminal nerve stimulation. Neuronavigation was used for guidance.ResultsTNS was well tolerated by all subjects. No significant changes were seen in the parameters studied.ConclusionUnlike for example anti-epileptic drugs and the ketogenic diet, trigeminal nerve stimulation does not seem to alter cortical excitability in healthy subjects. This is the first study on cortical excitability in relation to continuous trigeminal nerve stimulation. It still remains to be proven that TNS has the prerequisites to effectively counteract epileptic events in humans.  相似文献   

14.
ObjectiveTo investigate the possible correlations between clinico-radiological features and pathophysiological mechanisms in patients with dystonia secondary to focal brain lesions.MethodsSingle and paired-pulse transcranial magnetic stimulation was used to assess corticospinal excitability in 10 patients (4 females; mean age 61) and a group of normal controls. Active threshold, latency and amplitude of motor evoked potentials (MEPs), silent period (SP) duration and short-interval intracortical inhibition (SICI) were evaluated.ResultsPatients with lesions involving the putamen and caudate presented with dystonic postures at rest. TMS assessment in these subjects showed increased MEP amplitude on the affected side and a bilateral decrease of SP duration and SICI. When the lesion spared the putamen and caudate, mainly involving the thalamus, the clinical picture was dominated by slow repetitive involuntary movements and tremor. In the affected side of these subjects the MEP amplitude was reduced and the MEP threshold was increased.ConclusionsWhen putamen and caudate were lesioned, the patients presented with dystonic postures at rest; furthermore the patients showed changes of corticospinal excitability in comparison to both healthy subjects and other dystonic patients.SignificanceThere are correlations between type of dystonia, site of the lesion and neurophysiological findings.  相似文献   

15.
《Clinical neurophysiology》2021,132(10):2685-2692
ObjectiveMotor cortical (M1) inhibition and facilitation can be studied with short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF). These circuits are altered in Parkinson’s disease (PD). The sensorimotor measure short latency afferent inhibition (SAI) is possibly altered in PD. The aim was to determine if the manner in which these circuits interact with each other is abnormal in PD.MethodsFifteen PD patients were studied at rest in ON and OFF medication states, and were compared to 16 age-matched controls. A triple-stimulus transcranial magnetic stimulation paradigm was used to elicit a circuit of interest in the presence of another circuit.ResultsSICF was increased in PD OFF and PD ON conditions compared to controls. SICI facilitated SICF in controls and PD ON, but not in PD OFF. SICF in the presence of SICI negatively correlated with UPDRS-III scores in OFF and ON medication conditions. SAI showed similar inhibition of SICI in controls, PD OFF and PD ON conditions.ConclusionsThe facilitatory effect of SICI on SICF is absent in PD OFF, but is restored with dopaminergic medication.SignificanceImpaired interaction between M1 circuits is a pathophysiological feature of PD.  相似文献   

16.
《Clinical neurophysiology》2014,125(7):1440-1450
ObjectiveThe aim of the current study was to investigate the effect of increasing test motor evoked potential (MEP) amplitude on short- (SICI) and long-interval intracortical inhibition (LICI) at rest and during activation of the first dorsal interosseous (FDI) muscle.MethodsIn 22 young subjects, a conditioning-test transcranial magnetic stimulation (TMS) paradigm was used to assess SICI and LICI at 5 different test TMS intensities (110–150% motor threshold) in resting and active FDI. In 9 additional subjects, SICI and LICI data were quantified when the test MEP amplitude represented specific proportions of the maximal compound muscle action potential (Mmax) in each subject.ResultsTest TMS intensity influenced SICI and LICI in rest and active FDI muscle. The normalised test MEP amplitude (%Mmax) did not influence SICI at rest, whereas there was a decrease in LICI at rest and an increase in SICI in active FDI with an increased normalised test MEP amplitude (%Mmax).ConclusionsOur results demonstrate differential effects of normalised test MEP amplitude (%Mmax) on SICI and LICI in resting and active FDI muscle.SignificanceEstimation of SICI and LICI under some circumstances may be influenced by the normalised test MEP amplitude in subject populations with different Mmax characteristics.  相似文献   

17.
BackgroundTranscranial magnetic stimulation (TMS) have been frequently used to explore changes in motor cortex excitability in stroke and traumatic brain injury, while the extent of motor cortex reorganization in patients with diffuse non-traumatic brain injury remains largely unknown.Objective/HypothesisIt was hypothesized that the motor cortex excitability would be decreased and would correlate to the severity of brain injury and level of functioning in patients with anoxic, traumatic, and non-traumatic diffuse brain injury.MethodsTMS was applied to primary motor cortices of 19 patients with brain injury (5 traumatic and 14 non-traumatic causes; on average four months after insult), and 9 healthy controls. The test parameters included resting motor threshold (RMT), short intracortical inhibition (SICI), intracortical facilitation (ICF), and short latency afferent inhibition (SAI). Excitability parameters were correlated to the severity of brain injury measured with Glasgow Coma Scale and the level of functioning assessed using the Ranchos Los Amigos Levels of Cognitive Functioning Assessment Scale and Functional Independence Measure.ResultsThe patient group revealed a significantly decreased SICI and SAI compared to healthy controls with the amount of SICI correlated significantly to the severity of brain injury. Other electrophysiological parameters did not differ between the groups and did not exhibit any significant relationship with clinical functional scores.ConclusionsThe present study demonstrated the impairment of the cortical inhibitory circuits in patients with brain injury of traumatic and non-traumatic aetiology. Moreover, the significant correlation was found between the amount of SICI and the severity of brain injury.  相似文献   

18.
OBJECTIVE: Following a previous report [Bestmann et al. Clin Neurophysiol 2004;115:755-64] that pairs of subthreshold pulses of transcranial magnetic stimulation (TMS) can show temporal summation, we explored whether repeated application of pairs of stimulation could produce long-lasting after effects on the excitability of the human motor cortex. METHODS: Twelve healthy subjects received 25 min repetitive paired pulse magnetic stimulation (paired rTMS) given at a frequency of about 0.6 Hz over the left primary motor cortex (500 paired stimuli in total). The interval between the paired stimuli was 3 ms and the intensity of both stimuli was 80% of active motor threshold. The resting and active motor threshold, MEP recruitment curve, short interval intracortical inhibition (SICI) and facilitation, and the duration of the cortical silent period (SP) were tested for the right first interosseous muscle (FDI) before and two times after the end of 25 min paired rTMS. RESULTS: Prolonged subthreshold paired rTMS produced a significant decrease in excitability in the corticospinal projection to FDI: resting motor threshold was significantly increased and MEP recruitment was significantly decreased, SICI was significantly increased at 2 and 4 ms and the SP was significantly increased in duration. CONCLUSIONS: Prolonged low frequency paired rTMS at subthreshold intensity can modulate cortical excitability by producing inhibitory effects that outlast the period of stimulation.  相似文献   

19.
The cause of Gilles de la Tourette syndrome (GTS), a chronic motor and vocal tic disorder of childhood onset, remains unknown. Abnormalities in basal ganglia-thalamo-cortical circuits presumably play an important role in the pathophysiology underlying the involuntary tics. The use of transcranial magnetic stimulation (TMS), a noninvasive and painless tool to examine the excitability of several different circuits in the human motor cortex has advanced our understanding of the pathophysiology. Motor thresholds are similar in GTS and healthy subjects; in the resting state, recruitment of motor evoked potentials (MEPs) above threshold is more gradual in patients than controls. In contrast, recruitment of MEPs during preactivation is similar in both groups, as is the duration of the cortical silent period. This suggests that the distribution of excitability in the corticospinal system in patients at rest is different to that in healthy individuals. Importantly, correlation analysis showed that reduced levels of excitability at rest relate, in pure GTS patients, to video ratings of complex tics, and hand and finger tics, with less excitability predicting fewer tics. The correlations disappear for measures made during voluntary activation. This suggests that this is an adaptive response to abnormal basal ganglia-motor cortex inputs in an effort to reduce unwanted movements, a notion supported by electroencephalography-coherence studies that show increased cortico-cortical coupling.Compared to the healthy control group, short intracortical inhibition (SICI) thresholds are similar. However, above-threshold SICI recruitment and sensory afferent inhibition (SAI), a paradigm to examine sensory motor integration, are reduced in patients. This is consistent with the suggestion that reduced excitability of cortical inhibition is one factor that contributes to the difficulty that patients have in suppressing involuntary tics. In addition the reduced SAI indicates that impaired intracortical inhibition may not be limited to the motor cortex but also involves circuits linking sensory input and motor output.GTS with attention deficit hyperactivity disorder comorbidity is associated with more extensive changes in the excitability of motor cortex circuits than pure GTS or GTS+obsessive–compulsive disorder. The extent to which various different neuronal circuits are affected may be relevant for the phenotype of Tourette spectrum disorders.  相似文献   

20.
The effects of chronic cocaine dependence on cortical inhibitory/excitatory processes are not well characterized. Employing transcranial magnetic stimulation measures of motor cortical excitability, we have previously reported an elevation of motor threshold (MT) suggesting reduced excitability and an increased long-interval intracortical facilitation (LICF) suggesting increased excitability. In the current study, we used an expanded battery of TMS cortical excitability measures to further examine motor cortex excitability in a larger sample of well-characterized and closely monitored for drug use, abstinent cocaine-dependent subjects (N = 52) and healthy controls (N = 42). Furthermore, coil-to-cortex distance was assessed in a subsample of both groups. We verified that long-interval intracortical facilitation (LICF), possibly representing glutamatergic cortical neurotransmission, was significantly increased in cocaine-dependent patients. Significantly longer cortical silent periods (CSP) and elevated MT were also observed while there was no significant abnormality in long-interval intracortical inhibition (LICI). Increased LICF and CSP duration suggest increased cortical excitability and increased inhibition, respectively, of different neurotransmitter systems in cocaine-dependent patients. Increased MT might reflect an adaptation to those effects of cocaine abuse that enhance cortical excitability. Overall, the data point to the complex nature of chronic cocaine dependence on the balance of cortical inhibitory/excitatory mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号