首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mesenchymal progenitor cells (MPCs) represent an attractive cell population for bone tissue engineering. Their special immunological characteristics suggest that MPCs may be used in allogenic applications. The objective of this study was to compare the regenerative potential of autologous vs. allogenic MPCs in an ovine critical size segmental defect model. Ovine MPCs were isolated from bone marrow aspirates, expanded and cultured with osteogenic medium for 2 weeks before implantation. Autologous and allogenic transplantation was performed using the cell-seeded scaffolds and unloaded scaffolds, while the application of autologous bone grafts served as a control group (n = 6). Bone healing was assessed 12 weeks after surgery by radiology, microcomputed tomography, biomechanical testing and histology. Radiology, biomechanical testing and histology revealed no significant differences in bone formation between the autologous and allogenic groups. Both cell groups showed more bone formation than the scaffold alone, whereas the biomechanical data showed no significant differences between the cell groups and the unloaded scaffolds. The results of the study suggest that scaffold-based bone tissue engineering using allogenic cells offers the potential for an off-the-shelf product. Thus the results of this study serve as an important baseline for translation of the assessed concepts into clinical applications.  相似文献   

2.
Open-porous titanium scaffolds for large segmental bone defects offer advantages like early weight-bearing and limited risk of implant failure. The objective of this experimental study was to determine the biomechanical behavior of novel open-porous titanium scaffolds with mechanical-adapted properties in vivo.Two types of the custom-made, open-porous scaffolds made of Ti6Al4V (Young's modulus: 6–8 GPa and different pore sizes) were implanted into a 20 mm segmental defect in the mid-diaphysis of the metatarsus of sheep, and were stabilized with an osteosynthesis plate. After 12 and 24 weeks postoperatively, torsional testing was performed on the implanted bone and compared to the contralateral non-treated side. Maximum torque, maximum angle, torsional stiffness, fracture energy, shear modulus and shear stress were investigated. Furthermore, bone mineral density (BMD) of the newly formed bone was determined.Mechanical loading capabilities for both scaffolds were similar and about 50% after 12 weeks (e.g., max. torque of approximately 20 Nm). A further increase after 24 weeks was found for most of the investigated parameters. Results for torsional stiffness and shear modulus as well as bone formation depended on the type of scaffold. Increased BMD after 24 weeks was found for one scaffold type but remained constant for the other one.The present data showed the capability of mechanically adapted open-porous titanium scaffolds to function as bone scaffolds for large segmental defects and the influence of the scaffold's stiffness. A further increase in the biomechanical stability can be assumed for longer observation periods of greater than six months.  相似文献   

3.
This is the first reported study to prepare highly porous baghdadite (Ca3ZrSi2O9) scaffolds with and without surface modification and investigate their ability to repair critical-sized bone defects in a rabbit radius under normal load. The modification was carried out to improve the mechanical properties of the baghdadite scaffolds (particularly to address their brittleness) by coating their surfaces with a thin layer (~400 nm) of polycaprolactone (PCL)/bioactive glass nanoparticles (nBGs). The β-tricalcium phosphate/hydroxyapatite (TCP/HA) scaffolds with and without modification were used as the control groups. All of the tested scaffolds had an open and interconnected porous structure with a porosity of ~85% and average pore size of 500 μm. The scaffolds (six per scaffold type and size of 4 mm × 4 mm × 15 mm) were implanted (press-fit) into the rabbit radial segmental defects for 12 weeks. Micro-computed tomography and histological evaluations were used to determine bone ingrowth, bone quality, and implant integration after 12 weeks of healing. Extensive new bone formation with complete bridging of the radial defect was evident with the baghdadite scaffolds (modified/unmodified) at the periphery and in close proximity to the ceramics within the pores, in contrast to TCP/HA scaffolds (modified/unmodified), where bone tended to grow between the ulna adjacent to the implant edge. Although the modification of the baghdadite scaffolds significantly improved their mechanical properties, it did not show any significant effect on in vivo bone formation. Our findings suggest that baghdadite scaffolds with and without modification can serve as a potential material to repair critical sized bone defects.  相似文献   

4.
There is a need to develop synthetic scaffolds to repair large defects in load-bearing bones. Bioactive glasses have attractive properties as a scaffold material for bone repair, but data on their mechanical properties are limited. The objective of the present study was to comprehensively evaluate the mechanical properties of strong porous scaffolds of silicate 13-93 bioactive glass fabricated by robocasting. As-fabricated scaffolds with a grid-like microstructure (porosity 47%, filament diameter 330 μm, pore width 300 μm) were tested in compressive and flexural loading to determine their strength, elastic modulus, Weibull modulus, fatigue resistance, and fracture toughness. Scaffolds were also tested in compression after they were immersed in simulated body fluid (SBF) in vitro or implanted in a rat subcutaneous model in vivo. As fabricated, the scaffolds had a strength of 86 ± 9 MPa, elastic modulus of 13 ± 2 GPa, and a Weibull modulus of 12 when tested in compression. In flexural loading the strength, elastic modulus, and Weibull modulus were 11 ± 3 MPa, 13 ± 2 GPa, and 6, respectively. In compression, the as-fabricated scaffolds had a mean fatigue life of ~106 cycles when tested in air at room temperature or in phosphate-buffered saline at 37 °C under cyclic stresses of 1–10 or 2–20 MPa. The compressive strength of the scaffolds decreased markedly during the first 2 weeks of immersion in SBF or implantation in vivo, but more slowly thereafter. The brittle mechanical response of the scaffolds in vitro changed to an elasto-plastic response after implantation for longer than 2–4 weeks in vivo. In addition to providing critically needed data for designing bioactive glass scaffolds, the results are promising for the application of these strong porous scaffolds in loaded bone repair.  相似文献   

5.
6.
During the past two decades, research on ceramic scaffolds for bone regeneration has progressed rapidly; however, currently available porous scaffolds remain unsuitable for load-bearing applications. The key to success is to apply microstructural design strategies to develop ceramic scaffolds with mechanical properties approaching those of bone. Here we report on the development of a unique microstructurally designed ceramic scaffold, strontium–hardystonite–gahnite (Sr–HT–gahnite), with 85% porosity, 500 μm pore size, a competitive compressive strength of 4.1 ± 0.3 MPa and a compressive modulus of 170 ± 20 MPa. The in vitro biocompatibility of the scaffolds was studied using primary human bone-derived cells. The ability of Sr–HT–gahnite scaffolds to repair critical-sized bone defects was also investigated in a rabbit radius under normal load, with β-tricalcium phosphate/hydroxyapatite scaffolds used in the control group. Studies with primary human osteoblast cultures confirmed the bioactivity of these scaffolds, and regeneration of rabbit radial critical defects demonstrated that this material induces new bone defect bridging, with clear evidence of regeneration of original radial architecture and bone marrow environment.  相似文献   

7.
The repair of large bone defects, such as segmental defects in the long bones of the limbs, is a challenging clinical problem. Our recent work has shown the ability to create porous scaffolds of silicate 13-93 bioactive glass by robocasting which have compressive strengths comparable to human cortical bone. The objective of this study was to evaluate the capacity of those strong porous scaffolds with a grid-like microstructure (porosity = 50%; filament width = 330 μm; pore width = 300 μm) to regenerate bone in a rat calvarial defect model. Six weeks post-implantation, the amount of new bone formed within the implants was evaluated using histomorphometric analysis. The amount of new bone formed in implants composed of the as-fabricated scaffolds was 32% of the available pore space (area). Pretreating the as-fabricated scaffolds in an aqueous phosphate solution for 1, 3 and 6 days to convert a surface layer to hydroxyapatite prior to implantation enhanced new bone formation to 46%, 57% and 45%, respectively. New bone formation in scaffolds pretreated for 1, 3 and 6 days and loaded with bone morphogenetic protein-2 (BMP-2) (1 μg per defect) was 65%, 61% and 64%, respectively. The results show that converting a surface layer of the glass to hydroxyapatite or loading the surface-treated scaffolds with BMP-2 can significantly improve the capacity of 13-93 bioactive glass scaffolds to regenerate bone in an osseous defect. Based on their mechanical properties evaluated previously and their capacity to regenerate bone found in this study, these 13-93 bioactive glass scaffolds, pretreated or loaded with BMP-2, are promising in structural bone repair.  相似文献   

8.
An ideal scaffold provides an interface for cell adhesion and maintains enough biomechanical support during tissue regeneration. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffolds with pore sizes ranging from 100 to 500 μm and porosity ~90% were prepared by the particulate-leaching method, and then modified by the introduction of polyacrylamide (PAM) on the inner surface of scaffolds using in situ UV polymerization, with the aim of enhancing the biological and mechanical properties of the PHBV scaffolds. The modified PHBV scaffolds had interconnected pores with porosity of 75.4–78.6% and pore sizes at peak volume from 20 to 50 μm. The compressive load and modulus were up to 62.45 N and 1.06 MPa, respectively. The water swelling percentage (WSP) of the modified PHBV scaffolds increased notably compared with that of the PHBV scaffolds, with the maximum WSP at 537%. Sheep bone mesenchymal stem cells (BMSC) were cultured on the PHBV and modified PHBV. The hydrophilic PAM chains did not influence BMSC viability or proliferation index, but the initial cell adhesion at 1 h of culture was enhanced significantly. Framing PHBV scaffold along with gel-like PAM chains inside is a novel model of inner surface modification for PHBV scaffolds, which shows potential in tissue engineering applications.  相似文献   

9.
Treatment of defects in joint cartilage aims to re-establish normal joint function. In vitro experiments have shown that the application of synthetic scaffolds is a promising alternative to existing therapeutic options. A sheep study was conducted to test the suitability of microporous pure β-tricalcium phosphate (TCP) ceramics as tissue engineering scaffolds for the repair of osteochondral defects. Cylindrical plugs of microporous β-TCP (diameter: 7 mm; length: 25 mm; porosity: 43.5 ± 2.4%; pore diameter: ~5 μm) with interconnecting pores were used. Scaffolds were seeded with autologous chondrocytes in vitro and cultured for 4 weeks. A drill hole (diameter 7 mm) was placed in both medial femoral condyles of sheep. For the left knee the defect was filled with a TCP plug and for the right knee the defect was left empty. After 6, 12, 26 and 52 weeks, seven animals from each group were killed and studied. The samples were examined employing histological, histomorphometric and immunohistological methods as well as various imaging techniques (X-ray, microcomputer tomography and scanning electron microscopy). After explantation the cartilage defects were first assessed macroscopically. There were no signs of infection or inflammation. Histological grading scales were used for assessment of bony integration and cartilage repair. An increasing degradation (81% after 52 weeks) of the ceramic with concomitant bone formation was observed. The original structure of cancellous bone was almost completely restored. After 26 and 52 weeks, collagen II-positive hyaline cartilage was detected in several samples. New subchondral bone had formed. The formation of cartilage began at the outer edge and proceeded to the middle. According to the O’Driscoll score, values corresponding to healthy cartilage were not reached after 1 year. Integration of the newly formed cartilage tissue into the surrounding native cartilage was found. The formation of biomechanical stable cartilage began at the edge and progressed towards the centre of the defect. After 1 year this process was still not completed. Microporous β-TCP scaffolds seeded with chondrocytes are suitable for the treatment of osteochondral defects.  相似文献   

10.
As a synthetic polypeptide water-soluble poly(l-glutamic acid) (PLGA) was designed to fabricate scaffolds for cartilage tissue engineering. Chitosan (CHI) has been employed as a physical cross-linking component in the construction of scaffolds. PLGA/CHI scaffolds act as sponges with a swelling ratio of 760 ± 45% (mass%), showing promising biocompatibility and biodegradation. Autologous adipose-derived stem cells (ASCs) were expanded and seeded on PLGA/CHI scaffolds, ASC/scaffold constructs were then subjected to chondrogenic induction in vitro for 2 weeks. The results showed that PLGA/CHI scaffolds could effectively support ASC adherence, proliferation and chondrogenic differentiation. The ASCs/scaffold constructs were then transplanted to repair full thickness articular cartilage defects (4 mm in diameter, to the depth of subchondral bone) created in rabbit femur trochlea. Histological observations found that articular defects were covered with newly formed cartilage 6 weeks post-implantation. After 12 weeks the regenerated cartilage had integrated well with the surrounding native cartilage and subchondral bone. Toluidine blue and immunohistochemical staining confirmed similar accumulation of glycosaminoglycans and type II collagen in engineered cartilage as in native cartilage 12 weeks post-implantation. The result was further supported by quantitative analysis of extracellular matrix deposition. The compressive modulus of the engineered cartilage increased significantly from 30% of that of normal cartilage at 6 weeks to 83% at 12 weeks. Cyto-nanoindentation also showed analogous biomechanical behavior of the engineered cartilage to that of native cartilage. The results of the present study thus demonstrate the potentiality of PLGA/CHI scaffolds in cartilage tissue engineering.  相似文献   

11.
There is a need for synthetic bone graft substitutes to repair large bone defects resulting from trauma, malignancy and congenital diseases. Bioactive glass has attractive properties as a scaffold material but factors that influence its ability to regenerate bone in vivo are not well understood. In the present work, the ability of strong porous scaffolds of 13-93 bioactive glass with an oriented microstructure to regenerate bone was evaluated in vivo using a rat calvarial defect model. Scaffolds with an oriented microstructure of columnar pores (porosity = 50%; pore diameter = 50?150 μm) showed mostly osteoconductive bone regeneration, and new bone formation, normalized to the available pore area (volume) of the scaffolds, increased from 37% at 12 weeks to 55% at 24 weeks. Scaffolds of the same glass with a trabecular microstructure (porosity = 80%; pore width = 100?500 μm), used as the positive control, showed bone regeneration in the pores of 25% and 46% at 12 and 24 weeks, respectively. The brittle mechanical response of the as-fabricated scaffolds changed markedly to an elastoplastic response in vivo at both implantation times. These results indicate that both groups of 13-93 bioactive glass scaffolds could potentially be used to repair large bone defects, but scaffolds with the oriented microstructure could also be considered for the repair of loaded bone.  相似文献   

12.
Polyvinylpyrrolidone–iodine (Povidone-iodine, PVP-I) is widely used as an antiseptic agent for lavation during joint surgery; however, the biological effects of PVP–I on cells from joint tissue are unknown. This study examined the biocompatibility and biological effects of PVP–I on cells from joint tissue, with the aim of optimizing cell-scaffold based joint repair. Cells from joint tissue, including cartilage derived progenitor cells (CPC), subchondral bone derived osteoblast and bone marrow derived mesenchymal stem cells (BM-MSC) were isolated. The concentration-dependent effects of PVP–I on cell proliferation, migration and differentiation were evaluated. Additionally, the efficacy and mechanism of a PVP–I loaded bilayer collagen scaffold for osteochondral defect repair was investigated in a rabbit model. A micromolar concentration of PVP–I was found not to affect cell proliferation, CPC migration or extracellular matrix production. Interestingly, micromolar concentrations of PVP–I promote osteogenic differentiation of BM-MSC, as evidenced by up-regulation of RUNX2 and Osteocalcin gene expression, as well as increased mineralization on the three-dimensional scaffold. PVP–I treatment of collagen scaffolds significantly increased fibronectin binding onto the scaffold surface and collagen type I protein synthesis of cultured BM-MSC. Implantation of PVP–I treated collagen scaffolds into rabbit osteochondral defect significantly enhanced subchondral bone regeneration at 6 weeks post-surgery compared with the scaffold alone (subchondral bone histological score of 8.80 ± 1.64 vs. 3.8 ± 2.19, p < 0.05). The biocompatibility and pro-osteogenic activity of PVP–I on the cells from joint tissue and the enhanced subchondral bone formation in PVP–I treated scaffolds would thus indicate the potential of PVP–I for osteochondral defect repair.  相似文献   

13.
《Acta biomaterialia》2014,10(12):4983-4995
Inflammatory factor overexpression is the major cause of cartilage and osteochondral damage. Resveratrol (Res) is known for its anti-inflammatory, antioxidant and immunmodulatory properties. However, these effects are hampered by its water insolubility and rapid metabolism in vivo. To optimize its therapeutic efficacy in this study, Res was grafted to polyacrylic acid (PAA, 1000 Da) to obtain a macromolecular drug, PAA-Res, which was then incorporated into atelocollagen (Coll) hydrogels to fabricate anti-inflammatory cell-free (Coll/Res) scaffolds with improved mechanical strengths. The Coll/Res scaffolds demonstrated the ability to capture diphenylpicrylhydrazyl free radicals. Both pure Coll and Coll/Res scaffolds could maintain their original shape for 6 weeks in phosphate buffered saline. The scaffolds were degraded by collagenase over several days, and the degradation rate was slowed down by Res loading. The Coll and Coll/Res scaffolds with excellent cytocompatibility were shown to promote the proliferation and maintain the normal phenotype of the seeded chondrocytes and bone marrow stromal stem cells (BMSCs). In addition, the Coll/Res scaffold exhibited the capacity to protect the chondrocytes and BMSCs against reactive oxygen species. The acellular Coll/Res scaffolds were transplanted into the rabbit osteochondral defects. After implantation for 2, 4 and 6 weeks, the samples were retrieved for quantitative real-time polymerase chain reaction, and the inflammatory related genes interleukin-1β, matrix metalloproteinases-13, COX-2 and bone and cartilage related genes SOX-9, aggrecan, Coll II and Coll I were determined. Compared with the untreated defects, the inflammatory related genes were down-regulated and those bone and cartilage related genes were up-regulated by filling the defect with an anti-inflammatory scaffold. After 12 weeks, the osteochondral defects were completely repaired by the Coll/Res scaffold, and the neo-cartilage integrated well with its surrounding tissue and subchondral bone. Immunohistochemical and glycosaminoglycan staining confirmed the distribution of Coll II and glycosaminoglycans in the regenerated cartilage. The anti-inflammatory acellular Coll/Res scaffolds are convenient to administer in vivo, holding a greater potential for future clinical applications.  相似文献   

14.
Novel multi-functional P(3HB) microsphere/45S5 Bioglass®-based composite scaffolds exhibiting potential for drug delivery were developed for bone tissue engineering. 45S5 Bioglass®-based glass–ceramic scaffolds of high interconnected porosity produced using the foam-replication technique were coated with biodegradable microspheres (size < 2 μm) made from poly(3-hydroxybutyrate), P(3HB), produced using Bacillus cereus SPV. A solid-in-oil-in-water emulsion solvent extraction/evaporation technique was used to produce these P(3HB) microspheres. A simple slurry-dipping method, using a 1 wt.% suspension of P(3HB) microspheres in water, dispersed by an ultrasonic bath, was used to coat the scaffold, producing a uniform microsphere coating throughout the three-dimensional scaffold structure. Compressive strength tests confirmed that the microsphere coating slightly enhanced the scaffold mechanical strength. It was also confirmed that the microsphere coating did not inhibit the bioactivity of the scaffold when immersed in simulated body fluid (SBF) for up to 4 weeks. The hydroxyapatite (HA) growth rate on P(3HB) microsphere-coated 45S5 Bioglass® composite scaffolds was very similar to that on the uncoated control sample, qualitatively indicating similar bioactivity. However, the surface topography of the HA surface layer was affected as shown by results obtained from white light interferometry. The roughness of the surface was much higher for the P(3HB) microsphere-coated scaffolds than for the uncoated samples, after 7 days in SBF. This feature would facilitate cell attachment and proliferation. Finally, gentamycin was successfully encapsulated into the P(3HB) microspheres to demonstrate the drug delivery capability of the scaffolds. Gentamycin release kinetics was determined using liquid chromatography–mass spectrometry. The release of the drug from the coated composite scaffolds was slow and controlled when compared to the observed fast and relatively uncontrolled drug release from the bone scaffold (without microsphere coating). Thus, this unique multifunctional bioactive composite scaffold has the potential to enhance cell attachment and to provide controlled delivery of relevant drugs for bone tissue engineering.  相似文献   

15.
The intention of this study was to establish a new critical size animal model that represents clinically relevant situations with osteoporotic bone status and internally fixated metaphyseal defect fractures in which biomaterials for the enhancement of fracture healing in osteoporotic fracture defects can be studied. Twenty-eight rats were ovariectomized (OVX) and treated with a calcium-, phosphorus-, vitamin D3-, soy- and phytoestrogen-free diet. After 3 months Dual-energy X-ray absorptiometry measurements showed statistically significant reductions in bone mineral density of the spine of ?25.9% and of the femur of ?21.3% of the OVX rats compared with controls, confirming osteoporosis in the OVX rats. The OVX rats then underwent either 3 or 5 mm wedge-shaped osteotomy of the distal metaphyseal area of the femur that was internally stabilized with a T-shaped mini-plate. After 42 days biomechanical testing yielded completely unstable conditions in the 5 mm defect femora (bending stiffness 0 N mm?2) and a bending stiffness of 12,500 N mm?2 in the 3 mm defects, which showed the beginning of fracture consolidation. Micro-computed tomography showed statistically significant more new bone formation in the 3 mm defects (4.83 ± 0.37 mm2), with bridging of the initial fracture defect area, compared with the 5 mm defects (2.68 ± 0.34 mm2), in which no bridging of the initial defect was found. These results were confirmed by histology. In conclusion, the 5 mm defect can be considered as a critical size defect model in which biomaterials can be tested.  相似文献   

16.
It is well established that scaffolds for applications in bone tissue engineering require interconnected pores on the order of 100 μm for bone in growth and nutrient and waste transport. As a result, most studies have focused on scaffold macroporosity (>100 μm). More recently researchers have investigated the role of microporosity in calcium phosphate -based scaffolds. Osteointegration into macropores improves when scaffold rods or struts contain micropores, typically defined as pores less than ~50 μm. We recently demonstrated multiscale osteointegration, or growth into both macropores and intra-red micropores (<10 μm), of biphasic calcium phosphate (BCP) scaffolds. The combined effect of BMP-2, a potent osteoinductive growth factor, and multiscale porosity has yet to be investigated. In this study we implanted BCP scaffolds into porcine mandibular defects for 3, 6, 12 and 24 weeks and evaluated the effect of BMP-2 on multiscale osteointegration. The results showed that given this in vivo model BMP-2 influences osteointegration at the microscale, but not at the macroscale, but not at the macroscale. Cell density was higher in the rod micropores for scaffolds containing BMP-2 compared with controls at all time points, but BMP-2 was not required for bone formation in micropores. In contrast, there was essentially no difference in the fraction of bone in macropores for scaffolds with BMP-2 compared with controls. Additionally, bone in macropores seemed to have reached steady-state by 3 weeks. Multiscale osteointegration results in bone-scaffold composites that are fully osteointegrated, with no ‘dead space’. These composites are likely to contain a continuous cell network as well as the potential for enhanced load transfer and improved mechanical properties.  相似文献   

17.
A novel (scalable) electrospinning process was developed to fabricate bio-inspired multiscale three-dimensional scaffolds endowed with a controlled multimodal distribution of fiber diameters and geared towards soft tissue engineering. The resulting materials finely mingle nano- and microscale fibers together, rather than simply juxtaposing them, as is commonly found in the literature. A detailed proof of concept study was conducted on a simpler bimodal poly(ε-caprolactone) (PCL) scaffold with modes of fiber distribution at 600 nm and 3.3 μm. Three conventional unimodal scaffolds with mean diameters of 300 nm and 2.6 and 5.2 μm, respectively, were used as controls to evaluate the new materials. Characterization of the microstructure (i.e. porosity, fiber distribution and pore structure) and mechanical properties (i.e. stiffness, strength and failure mode) indicated that the multimodal scaffold had superior mechanical properties (Young’s modulus ~40 MPa and strength ~1 MPa) in comparison with the controls, despite the large porosity (~90% on average). A biological assessment was conducted with bone marrow stromal cell type (mesenchymal stem cells, mTERT-MSCs). While the new material compared favorably with the controls with respect to cell viability (on the outer surface), it outperformed them in terms of cell colonization within the scaffold. The latter result, which could neither be practically achieved in the controls nor expected based on current models of pore size distribution, demonstrated the greater openness of the pore structure of the bimodal material, which remarkably did not come at the expense of its mechanical properties. Furthermore, nanofibers were seen to form a nanoweb bridging across neighboring microfibers, which boosted cell motility and survival. Lastly, standard adipogenic and osteogenic differentiation tests served to demonstrate that the new scaffold did not hinder the multilineage potential of stem cells.  相似文献   

18.
A room temperature camphene-based freeze-casting method was used to fabricate hydroxyapatite/tricalcium phosphate (HA/TCP) ceramic scaffolds. By varying the solid loading of the mixture and the freezing temperature, a range of structures with different pore sizes and strength characteristics were achieved. The macropore size of the HA/TCP bioceramics was in the range of 100–200 μm, 40–80 μm and less than 40 μm at solid loadings of 10, 20 and 30 vol.%, respectively. The initial level of solid loading played a primary role in the resulting porosity of the scaffolds. The porosity decreased from 72.5 to 31.4 vol.% when the solid loading was increased from 10 to 30 vol.%. This resulted in an increase in the compressive strength from 2.3 to 36.4 MPa. The temperature gradient, rather than the percentage porosity, influenced the pore size distribution. The compressive strength increased from 1.95 to 2.98 MPa when samples were prepared at 4 °C as opposed to 30 °C. The results indicated that it was possible to manufacture porous HA/TCP bioceramics, with compressive strengths comparable to cancellous bone, using the freeze-casting manufacturing technique, which could be of significant clinical interest.  相似文献   

19.
Borate bioactive glasses are biocompatible and enhance new bone formation, but the effect of their microstructure on bone regeneration has received little attention. In this study scaffolds of borate bioactive glass (1393B3) with three different microstructures (trabecular, fibrous, and oriented) were compared for their capacity to regenerate bone in a rat calvarial defect model. 12 weeks post-implantation the amount of new bone, mineralization, and blood vessel area in the scaffolds were evaluated using histomorphometric analysis and scanning electron microscopy. The amount of new bone formed was 33%, 23%, and 15%, respectively, of the total defect area for the trabecular, oriented, and fibrous microstructures. In comparison, the percent new bone formed in implants composed of silicate 45S5 bioactive glass particles (250–300 μm) was 19%. Doping the borate glass with copper (0.4 wt.% CuO) had little effect on bone regeneration in the trabecular and oriented scaffolds, but significantly enhanced bone regeneration in the fibrous scaffolds (from 15 to 33%). The scaffolds were completely converted to hydroxyapatite within the 12 week implantation. The amount of hydroxyapatite formed, 22%, 35%, and 48%, respectively, for the trabecular, oriented, and fibrous scaffolds, increased with increasing volume fraction of glass in the as-fabricated scaffold. Blood vessels infiltrated into all the scaffolds, but the trabecular scaffolds had a higher average blood vessel area compared with the oriented and fibrous scaffolds. While all three scaffold microstructures were effective in supporting bone regeneration, the trabecular scaffolds supported more bone formation and may be more promising in bone repair.  相似文献   

20.
Hydroxyapatite (HA) whisker-reinforced polyetherketoneketone (PEKK) bone ingrowth scaffolds were prepared and characterized. High levels of porosity (75–90%) and HA whisker reinforcement (0–40 vol.%) were attained using a powder processing approach to mix the HA whiskers, PEKK powder and a NaCl porogen, followed by compression molding at 350–375 °C and particle leaching to remove the porogen. The scaffold architecture and microstructure exhibited characteristics known to be favorable for osteointegration. Scaffold porosity was interconnected with a mean pore size in the range 200–300 μm as measured by micro-computed tomography. HA whiskers were embedded within and exposed on the surface of scaffold struts, producing a microscale surface topography, shown by von Kossa staining and scanning electron microscopy. Therefore, HA whisker-reinforced PEKK bone ingrowth scaffolds may be advantageous for orthopedic implant fixation, including interbody spinal fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号