首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
郭涛 《现代医药卫生》2013,29(8):1189-1191
丝素蛋白是一种天然高分子纤维蛋白,具有无毒、良好的生物相容性以及一定的可降解性等优点。随着生物化学和分子生物学向生命科学各领域的广泛渗透,丝素蛋白研究也逐渐向分子水平发展,由此产生了丝素蛋白及其合成物作为生物医学材料的新研究领域,而且已取得一系列的基础研究成果,显示了丝素蛋白作为生物医用材料的应用潜力。  相似文献   

2.
氧化石墨烯是一种石墨烯的含氧衍生物,作为新型碳纳米材料,氧化石墨烯具有高载药能力、高度可修饰性及独特的光学性质等特性,在药物传递、生物成像及光热治疗等方面表现出了巨大的应用潜力。然而,随着氧化石墨烯在生物医学领域的广泛研究,其生物相容性问题成为了其进入临床应用的主要障碍。基于此,本文系统综述了氧化石墨烯在体外和体内的生物相容性,以及表面修饰如何影响其在体内外的毒性。通过分析氧化石墨烯的理化性质、使用剂量和表面修饰等对细胞和实验动物毒性的影响,为开发高效、安全的新型纳米载体提供参考。  相似文献   

3.
王苗苗  孙雪  韩倩倩 《中国药事》2020,34(8):897-900
丝素蛋白作为一种高分子纤维蛋白,具有良好的力学性能、生物相容性、可生物降解性。随着生物医用材料的不断发展,丝素蛋白的应用潜力也随之脱颖而出,成为了近几年逐渐发展的新型生物医用材料。丝素蛋白独特的可加工特性,使得丝素蛋白可根据用途加工成不同的形态材料,应用于组织修复领域。本文也将从丝素蛋白近几年来在组织修复领域的应用进展进行综述。  相似文献   

4.
摘要:近年来,可生物降解材料在生物医学领域的研究取得了突破进展。来源于海洋的可生物降解材料有很好的生物相容性和多样的生物活性,可作为药物的缓控释载体,在组织工程学中可以作为组织替代物和多孔支架,应用十分广泛。本文着重介绍了多糖和蛋白质两大类海洋来源可生物降解材料的物理、化学、生物特性和降解性能,总结了它们在生物医学领域的应用。  相似文献   

5.
纳米生物医学是生物医药领域中最具有应用前景的方向之一,无机纳米材料由于其优良的物理、化学特性、稳定的化学性质以及高生物相容性,在众多的纳米材料中脱颖而出。作为一种低成本的无机纳米材料,铋基纳米材料由于具有带隙可调、低毒性、易于功能化、较大X射线衰减系数、较高光热转换效率和长循环半衰期等优势,在癌症诊断和治疗方面具有种种潜在的用途和广阔的应用前景。本文综述了铋基纳米材料在肿瘤诊断、治疗和生物安全性方面的最新研究进展,为新一代铋基纳米药物系统的设计和开发提供理论依据和开发思路。  相似文献   

6.
丝素蛋白是一种天然可降解高分子聚合物,具有稳定无毒、价廉易得及无炎症反应等特点,表现出良好的可降解性和生物相容性,在生物医药领域常作为生物组织工程与药物递送载体的材料广泛应用。本综述介绍了丝素蛋白的结构与组成,以及其体内外生物降解特性与生物相容性研究方法与结果的国内外最新进展,以期为丝素蛋白的进一步深入研究与应用提供参考。  相似文献   

7.
医用聚乳酸及其共聚物的应用进展   总被引:1,自引:0,他引:1  
聚乳酸(Polyactides,PLA)及其共聚物是一类可生物降解的高分子聚合材料,不仅具有优良的机械性能、化学稳定性,还具备良好的生物相容性、可吸收性以及可降解性。近些年来,这类高分子聚合材料以其优良的特性从众多人工合成的材料中脱颖而出,已被广泛用于医院临床及实验室组织填充、细胞培养工程以及缓释药物载体,特别在免疫学、抗肿瘤、骨缺损修复及眼部疾病治疗等许多领域发挥着不可替代的作用。现将其在医学中的应用作一综述。  相似文献   

8.
碳纳米管的生物相容性   总被引:2,自引:0,他引:2  
碳纳米管(CNT)是一种非常有序、高纵横比的碳同素异形体,包括单壁碳纳米管(SWCNT)和多壁碳纳米管(MWCNT)。它的特性使其在生物医学领域得到广泛应用,包括生物传感器、药物和疫苗传递,以及特殊生物材料的制备。本文总结了现有碳生物材料性能,概述了纳米毒理学研究内容,探讨了CNT细胞毒性和生物相容性。  相似文献   

9.
目的通过对已报道的阳离子脂质材料的结构及其应用的综述,为该类基因转染载体的合理设计和进一步应用提供借鉴。方法对已有的各种阳离子脂质材料的结构及基因转染特性进行分析,并探讨其对基因转染的影响。结果阳离子脂质材料在基因转染中有着巨大的应用潜力,特定的脂质材料结构赋予其在基因转染中不同的效能。结论对阳离子脂质材料结构特征的综合分析,为进一步合理构建新的高效阳离子脂质体基因递送载体提供了思路。  相似文献   

10.
目的:综述生物可降解聚合物在医药领域中的应用及研究进展。方法:通过文献检索和查阅资料总结生物可降解聚合物的特性及临床应用。结果:理想的生物可降解聚合物应具有良好生物相容性、良好的生物降解性、降解时间和药物释放速率可调性;无毒性、不引起炎症和突变反应;释药体系的安全性高,制备工艺简单,无污染等。结论:经过临床研究表明,生物可降解聚合物在医药学上的应用给治疗技术带来了巨大的进步,生物可降解聚合物在体内不会残留,已用于许多医药领域,如癌症治疗、免疫培养、基因载体、制造纳米材料、研制人工器官、医疗器械、药物控释、辅料等方面;及人体修复用材料、医用胶黏剂、人工皮肤(伤口覆膜)、引导性组织再生材料、新型的可降解注射药物传递系统、药物控释系统、基因治疗载体、纳米药物载体、中药澄清剂、药剂的辅料,生物可降解聚合物还可用于人造泪液、隐形眼镜清洗液、合成生化试剂,眼药水基剂等。  相似文献   

11.
ABSTRACT

Introduction: Cellulose nanocrystals (CNCs) are bio-based nanomaterials typically derived from the acid hydrolysis of the most abundant natural polymer, cellulose. These nanomaterials have garnered significant interest due to their unique properties, such as uniform rod-like shape, high surface area, high strength, liquid crystalline behavior, tailored surface chemistry, biocompatibility, biodegradability, sustainability and non-toxic carbohydrate-based nature.

Areas covered: The recent developments in the use of unmodified and modified CNCs as versatile nanoplatforms for emerging biomedical applications such as drug delivery systems, enzyme/protein immobilization scaffolds, bioimaging, biosensing and tissue engineering are highlighted. A brief discussion of the biological and toxicity properties of CNCs is also presented.

Expert opinion: While a number of recent studies have indicated that CNCs are promising nanomaterials for biomedical applications, there is a substantial amount of work that still remains to be done before realizing the full therapeutic potential of CNCs. Major effort should be focused on detailed in vitro and in vivo studies of modified CNCs constructs in order to better understand the integration of CNCs in the biological systems.  相似文献   

12.
Polymers are ubiquitous components of products manufactured for medical and pharmaceutical applications. Widely used commodity polymers were the first polymers to be utilised in biomedical applications. These polymers were not developed with biocompatibility established at the onset and many speciality polymers have been developed in recent years to begin to meet the multifaceted demands for medical development, the optimisation of structure-property correlations and ultimately, clinical use. In the broader area of materials research, combinatorial or high throughput strategies used for drug development are recognised to have potential for discovery and process development. Much of the application of combinatorial chemistry in drugs research has been dependent on the use of polymeric reagents, substrates and supports. The chemistry of the reactions on polymers in solid and liquid phases have also played a major role in combinatorial drugs research. There is considerable interest in combinatorial materials research and this review outlines how this research may be applied for biomedical polymer development.  相似文献   

13.
Hydrogels for pharmaceutical and biomedical applications   总被引:3,自引:0,他引:3  
Hydrogels are crosslinked hydrophilic polymer structures that can imbibe large amounts of water or biological fluids. Hydrogels are one of the upcoming classes of polymer-based systems that embrace numerous biomedical and pharmaceutical applications. This review discusses various parameters of hydrogels such as surface properties, water content and swelling behavior, effect of nature of polymer, ionic content, and thermodynamics, all of which can influence the biomedical usage of hydrogels. Meanwhile, intelligent or environment-sensitive hydrogels and bioadhesive hydrogels continue to be important materials for medical applications; therefore, a part of this review is devoted to some of their important classes. Hydrogels are extensively used for various biomedical applications--tissue engineering, molecular imprinting, wound dressings materials, immunoisolation, drug delivery, etc. Thus, this review aims to throw light on the numerous applications that hydrogels have in the biomedical arena.  相似文献   

14.
Chitosan-based systems for molecular imaging   总被引:1,自引:0,他引:1  
Molecular imaging enables the non-invasive assessment of biological and biochemical processes in living subjects. Such technologies therefore have the potential to enhance our understanding of disease and drug activity during preclinical and clinical drug development. Molecular imaging allows a repetitive and non-invasive study of the same living subject using identical or alternative biological imaging assays at different time points, thus harnessing the statistical power of longitudinal studies, and reducing the number of animals required and cost. Chitosan is a hydrophilic and non-antigenic biopolymer and has a low toxicity toward mammalian cells. Hence, it has great potential as a biomaterial because of its excellent biocompatibility. Conjugated to additional materials, chitosan composites result in a new class of biomaterials that possess mechanical, physicochemical and functional properties, which have potential for use in advanced biomedical imaging applications. The present review will discuss the strengths, limitations and challenges of molecular imaging as well as applications of chitosan nanoparticles in the field of molecular imaging.  相似文献   

15.
Chitosan is a partially deacetylated polymer obtained from the alkaline deacetylation of chitin, which is a glucose-based, unbranched polysaccharide that occurs widely in nature as the principal component of exoskeletons of crustaceans and insects, as well as of the cell walls of some bacteria and fungi. Chitosan exhibits a variety of physicochemical and biological properties resulting in numerous applications in fields such as waste water treatment, agriculture, fabric and textiles, cosmetics, nutritional enhancement and food processing. In addition to its lack of toxicity and allergenicity, its biocompatibility, biodegradability and bioactivity make it a very attractive substance for diverse applications as a biomaterial in the pharmaceutical and medical fields. This review takes a closer look at the biomedical applications of chitosan microspheres. Based on recent research and existing products, some new and potential future approaches in this fascinating area are discussed.  相似文献   

16.
Chitosan is a partially deacetylated polymer obtained from the alkaline deacetylation of chitin, which is a glucose-based, unbranched polysaccharide that occurs widely in nature as the principal component of exoskeletons of crustaceans and insects, as well as of the cell walls of some bacteria and fungi. Chitosan exhibits a variety of physicochemical and biological properties resulting in numerous applications in fields such as waste water treatment, agriculture, fabric and textiles, cosmetics, nutritional enhancement and food processing. In addition to its lack of toxicity and allergenicity, its biocompatibility, biodegradability and bioactivity make it a very attractive substance for diverse applications as a biomaterial in the pharmaceutical and medical fields. This review takes a closer look at the biomedical applications of chitosan microspheres. Based on recent research and existing products, some new and potential future approaches in this fascinating area are discussed.  相似文献   

17.
Poly(methyl methacrylate) (PMMA) is one of the most widely explored biomedical materials because of its biocompatibility, and recent publications have shown an increasing interest in its applications as a drug carrier. PMMA-based particulate carriers (PMMA(P)) can be prepared either by polymerization methods or from pre-formed polymer-based techniques. Potential biomedical application of these particles includes their use as adjuvant for vaccines and carrier of many drugs as antibiotics and antioxidants via different routes of administration. Release of drugs from PMMA(P) occurs typically in a biphasic way with an incomplete drug release. To improve release profiles, recent strategies are focusing on increasing polymer hydrophilicity by synthesizing functionalized PMMA microspheres or by formulating PMMA composites with hydrophilic polymers. This review examines the current status of preparation techniques, drug release kinetics, biomedical applications and toxicity of these nano/micro PMMA-based particulate carriers.  相似文献   

18.
海藻酸衍生物作为一种性能优异的高分子生物材料被广泛应用于生物医药领域。本文描述了藻酸衍生物材料的特征优势、结构和性质之间的比较。着重从伤口敷料、组织工程、药物缓释和细胞微囊化四个方面对近几年藻酸衍生物材料在生物医药领域的研发与应用进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号