首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Therapeutic angiogenesis using angiogenic growth factor is expected to be a new treatment for with patients with critical limb ischemia. The first human clinical trial treating peripheral vascular disease was started in 1994 using vascular endothelial growth factor (VEGF). To date, other potent angiogenic growth factors, such as fibroblast growth factor(FGF) or hepatocyte growth factor(HGF), have been also estimated in clinical trials for peripheral arterial disease. Several results from phase 1 or 2 trials using VEGF, FGF and HGF gene were encouraging. Phase 3 trials are now ongoing and their results are expected.  相似文献   

2.
Hepatocyte growth factor (HGF) exclusively stimulates the growth of endothelial cells without replication of vascular smooth muscle cells, and acts as a survival factor against endothelial cell death. Recently, a novel therapeutic strategy for ischemic diseases using angiogenic growth factors to expedite and/or augment collateral artery development has been proposed. We have previously reported that intra-arterial administration of recombinant HGF induced angiogenesis in a rabbit hindlimb ischemia model. In this study, we examined the feasibility of gene therapy using HGF to treat peripheral arterial disease rather than recombinant therapy, due to its disadvantages. Initially, we examined the transfection of 'naked' human HGF plasmid into a rat hindlimb ischemia model. Intramuscular injection of human HGF plasmid resulted in a significant increase in blood flow as assessed by laser Doppler imaging, accompanied by the detection of human HGF protein. A significant increase in capillary density was found in rats transfected with human HGF as compared with control vector, in a dose-dependent manner (P < 0.01). Importantly, at 5 weeks after transfection, the degree of angiogenesis induced by transfection of HGF plasmid was significantly greater than that caused by a single injection of recombinant HGF. As an approach to human gene therapy, we also employed a rabbit hindlimb ischemia model as a preclinical study. Naked HGF plasmid was intramuscularly injected in the ischemic hindlimb of rabbits, to evaluate its angiogenic activity. Intramuscular injection of HGF plasmid once on day 10 after surgery produced significant augmentation of collateral vessel development on day 30 in the ischemia model, as assessed by angiography (P < 0.01). Serial angiograms revealed progressive linear extension of collateral arteries from the origin stem artery to the distal point of the reconstituted parent vessel in HGF-transfected animals. In addition, a significant increase in blood flow was assessed by a Doppler flow wire and the ratio in blood pressure of the ischemic limb to the normal limb was observed in rabbits transfected with HGF plasmid as compared with rabbits transfected with control vector (P < 0.01). Overall, intramuscular injection of naked human HGF plasmid induced therapeutic angiogenesis in rat and rabbit ischemic hindlimb models, as potential therapy for peripheral arterial disease.  相似文献   

3.
Arteriosclerosis of the extremities is a disease of the blood vessels characterized by hardening and/or narrowing of the arteries that supply the legs and feet. This causes a decrease in blood flow that can injure nerves and other tissues. Therapeutic angiogenesis using angiogenic growth factor is expected to be a new treatment for patients with critical limb ischemia. The first human clinical trial treating peripheral vascular disease was started in 1994 using vascular endothelial growth factor. To date, other potent angiogenic growth factors, such as hepatocyte growth factor(HGF), have been also estimated in clinical trials for peripheral arterial disease. Several results from phase 1 or 2 trials using HGF gene were encouraging. Phase 3 trials are now ongoing and their results are expected.  相似文献   

4.
Arterial obstructive syndromes result in heart disease, stroke and limb loss, disability, and mortality. Currently available therapeutics for patients with these conditions are inadequate or fail in a significant number of patients. The development of novel therapies for severe coronary arterial disease (CAD), peripheral arterial disease (PAD), and cerebral vascular disease (CVD) is a major goal for modern medicine. Molecular and cell-based therapies for arterial obstructive syndromes have the potential to become clinically useful in the near future. Molecular therapy employs angiogenic proteins and genes in order to initiate the development of new blood vessels that by-pass an arterial occlusion. The induction of a collateral artery system is termed therapeutic angiogenesis or neovascularization. Proteins have been delivered either directly into the ischemic area or via a vector encoding an angiogenic gene. Both protein and gene therapies have been associated with promising preclinical and early phase human trial results in patients with PAD as well as CAD. However, to date, efficacy has not been demonstrated in placebo-controlled, large trails. Today's cell-based therapy is focused on stem cells (SCs) for the treatment of patients after acute myocardial infarction (AMI) or for patients with severe left ventricular dysfunction. Stem cells have shown to increase cardiac performance in uncontrolled, early phase human studies. This improvement is believed to have its origin in myogenesis and neovascularization. In the following review, we will cover current state of molecular- and cellular-based treatments for PAD and CAD that have reached the clinical arena.  相似文献   

5.
Therapeutic angiogenesis for ischemic diseases   总被引:2,自引:0,他引:2  
The clinical consequences of peripheral arterial disease include pain on walking, pain at rest and loss of tissue integrity in the distal ischemic limbs. Although development of beneficial drugs and intervention devices do contribute to the treatment of this disease, critical limb ischemia is estimated to develop in 500 to 1,000 individuals per million per year. As angiogenic growth factors can stimulate the development of collateral arteries, a concept called "therapeutic angiogenesis" is now evaluated in the clinical fields. Recent progress in molecular biology has led to the development of gene therapy as a new strategy to treat a variety of cardiovascular diseases using angiogenic growth factors such as vascular endothelial growth factor (VEGF). Therapeutic angiogenesis using angiogenic growth factors is expected to be a new treatment for patients with severe ischemic heart or peripheral arterial disease.  相似文献   

6.
7.
BACKGROUND: The aim of this study was to determine the prevalence of peripheral diseases in diabetics of different age groups, the role of color Doppler in peripheral arterial disease in diabetics, and to compare the prevalence of peripheral arterial disease (PAD) in diabetics taking different therapy modalities. METHODS: In a hospital-based prospective study conducted over 19 months, we screened 100 consecutive type 2 diabetic patients and 50 consecutive nondiabetic patients matched for demographics and ethnicity. History, physical examination and color Doppler results were analyzed. The degree of stenosis in PAD was graded according to Jager's criteria. RESULT: The prevalence of PAD was 8% in controls and 24% in diabetics. There were 60 subjects (60%) greater than 50 years of age in the diabetic population and 36 (72%) subjects in the nondiabetic group. There was male preponderance with 70% of diabetic patients and 60% of nondiabetic patients being male. According to mode of therapy, the prevalence of PAD was found to be 20% in diabetics taking oral hypoglycemic agents and insulin, 27.2% on oral hypoglycemic agents, and 25% on insulin therapy. CONCLUSION: This study suggests that there is a higher prevalence of PAD in diabetics as compared with controls. The prevalence of PAD is directly proportional to the duration of diabetes and age of the person. The prevalence of PAD is not a function of treatment modality. The stenosis associated with PAD in diabetics is generally infrapopliteal.  相似文献   

8.
The prevalence of peripheral arterial disease(PAD) is increasing with reference to the life style related disease. Up to one third of patients are not susceptible to traditional revascularization. Therefore, new strategies are needed to offer these patients a viable therapeutic option. The discovery of endothelial progenitor cells (EPCs) in human peripheral blood advanced the field of cell-based therapeutics for many pathological conditions. Bone-marrow derived stem and progenitor cells have been identified as a potential new therapeutic option to induce angiogenesis. However, the mechanism by which cell therapy improves tissue ischemia remains obscure. The present study showed that angiogenic cytokines, especially IL-1beta, were associated with the response to treatment. It is likely that muscle cells but not implanted cells are a major source of angiogenic cytokines in ischemic limbs, thereby promoting neovascularization in ischemic tissues.  相似文献   

9.
Impairment of cardiac function in ischemic cardiomyopathy has been postulated to be due to the decrease in blood flow and increase in collagen synthesis. Therefore, an approach to alter them directly by means of a growth factor may open up a new therapeutic concept in ischemic cardiomyopathy. From this viewpoint, hepatocyte growth factor (HGF) is a unique growth factor with angiogenic and antifibrotic effects. Thus, we examined the feasibility of gene therapy using HGF plasmid DNA for ischemic cardiomyopathy. Human HGF plasmid DNA at a dose of 0.4 or 4 mg was injected into ischemic myocardium of pigs induced by ameroid constrictor with the NOGA system. At 1 month after injection, the ischemic area was significantly reduced in the HGF group, accompanied by a significant increase in capillary density and regional myocardial perfusion in the ischemic area (P<0.01). In contrast, a significant decrease in fibrotic area was observed in the HGF group, associated with a significant decrease in collagen I, III and TGF-beta synthesis as compared to the control group (P<0.01). Consistently, cardiac function was significantly improved in the 4 mg HGF group as compared to the control group (P<0.05). Overall, the present in vivo experiments demonstrated that intramyocardial injection of human HGF plasmid DNA in ischemic cardiomyopathy resulted in a significant improvement in cardiac function through an increase in blood flow and decrease in fibrosis. These favorable outcomes suggest potential utility to treat patients with ischemic heart disease using HGF gene transfer. Currently, a phase I study using human HGF plasmid DNA is ongoing to test the validity of this concept.  相似文献   

10.
Although clinical trials of stimulation of angiogenesis by transfection of angiogenic growth factors using naked plasmid DNA or adenoviral vector have been successful, there are still unresolved problems for human gene therapy such as low transfection efficiency and safety. From this viewpoint, it is necessary to develop safe and efficient novel nonviral gene transfer methods. As therapeutic ultrasound induces cell membrane permeabilization, ultrasound irradiation might increase the transfection efficiency of naked plasmid DNA into skeletal muscle. Thus, we examined the transfection efficiency of naked plasmid DNA using ultrasound irradiation with echo contrast microbubble (Optison) in vitro and in vivo experiments. First, we examined the feasibility of ultrasound-mediated transfection of naked plasmid DNA into skeletal muscle cells. Luciferase plasmid mixed with or without Optison was transfected into cultured human skeletal muscle cells using ultrasound (1 MHz; 0.4 W(2)) for 30 s. Interestingly, luciferase activity was markedly increased in cells treated with Optison, while little luciferase activity could be detected without Optison (P < 0.01). Electron microscopy demonstrated the transient formation of holes (less than 5 microM) in the cell surface, which could possibly explain the rapid migration of the transgene into the cells. Next, we studied the in vivo transfection efficiency of naked plasmid DNA using ultrasound with Optison into skeletal muscle. Two days after transfection, luciferase activity in skeletal muscle transfected with Optison using ultrasound was significantly increased about 10-fold as compared with plasmid alone. Successful transfection was also confirmed by beta-galactosidase staining. Finally, we examined the feasibility of therapeutic angiogenesis using naked hepatocyte growth factor (HGF) plasmid in a rabbit ischemia model using the ultrasound-Optison method. Five weeks after transfection, the angiographic score and the number of capillary density in rabbits transfected with Optison using ultrasound was significantly increased as compared with HGF plasmid alone (P < 0.01), accompanied by a significant increase in blood flow and blood pressure ratio (P < 0.01). Overall, the ultrasound transfection method with Optison enhanced the transfection efficiency of naked plasmid DNA in vivo as well as in vitro. Transfection of HGF plasmid by the ultrasound-Optison method could be useful for safe clinical gene therapy to treat peripheral arterial disease without a viral vector system.  相似文献   

11.
Therapeutic angiogenesis for the treatment of ischemic disease can be attained through the delivery of recombinant growth factor proteins, through gene transfer or cell transplantation. Gene transfer associated with adenovirus or naked plasmid DNAs has been extensively studied in clinical trials. An investigational product, beperminogene perplasmid, is the naked plasmid DNA encoding the cDNA of human HGF, which has potent angiogenic activity. In several clinical trials, beperminogene perplasmid showed favorable safety and efficacy profile in the treatment of critical limb ischemia. This article reviews the results of pre-clinical and clinical studies of beperminogene perplasmid in the treatment of critical limb ischemia caused by peripheral arterial disease and Buerger’s disease.  相似文献   

12.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SNi). As neurotrophic factors support the survival and enhance the function of dopaminergic neurons, gene therapy using neurotrophic factors has become the center of interest. Thus, we focused on hepatocyte growth factor (HGF) as a neurotrophic and angiogenic growth factor. At 7 days before injection of 6-hydroxydopamine into the SNi, stereotaxic transfection of human HGF or lacZ plasmid was performed into the unilateral striatum of rats. Expression of human HGF in the injected sites could be detected in rats transfected with HGF plasmid DNA, using immunohistochemical staining. Consistently, human immunoreactive HGF protein could be detected at least up to 12 days after transfection. Interestingly, PD rats transfected with lacZ demonstrated amphetamine-induced rotational asymmetry. However, transfection of HGF plasmid DNA resulted in significant inhibition of abnormal rotation up to 24 weeks in a dose-dependent manner. Over 90% of dopaminergic neurons were lost in PD rats transfected with lacZ, whereas over 70% survived in rats transfected with HGF, as assessed by immunohistochemical staining. Overall, the present study demonstrated that overexpression of HGF prevented neuronal death in a PD rat model, providing a potential novel therapy for PD.  相似文献   

13.
Peripheral arterial disease (PAD) is a prevalent, chronic, and progressive atherosclerotic disease process involving the conduit vessels of the extremities. Most patients who present with objective signs of PAD are asymptomatic. These patients are at an increased risk of dying from cardiovascular events. Lipid management is the mainstay of risk-factor modification for patients with cardiovascular disease. Some evidence suggests that hypocholesterolemic drugs may halt the progression of atherosclerotic peripheral vascular disease. More recently, treatment with 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitors have demonstrated improved function in patients with symptomatic peripheral vascular disease. This paper reviews the role of lipid therapy in patients with peripheral arterial disease with focus on functional improvement and symptomatic relief based on the available data.  相似文献   

14.
Whether symptomatic or not, peripheral arterial disease (PAD), atherosclerosis in the arteries of the lower extremities, is a common disorder in the general population. The prevalence increases with age and under the influence of vascular risk factors. The most classic symptomatic expression of PAD is intermittent claudication. However, the majority of patients with PAD is asymptomatic or has leg symptoms other than classic intermittent claudication. Both symptomatic and asymptomatic subjects with PAD have increased mortality rates, mainly due to cardiovascular and cerebrovascular expressions of atherosclerotic disease. This review focuses on the current available medical therapies for PAD, including risk-factor modification and antiplatelet therapies, as well as strategies for symptomatic relief in both patients with intermittent claudication and patients with critical limb ischemia. In general, risk factor modification and antiplatelet therapy is essential in all patients with PAD to prevent systemic atherosclerotic complications. Furthermore, for symptomatic relief exercise therapy is the main intervention while pharmacological treatment should be only complementary. In patients with critical limb ischemia, when revascularization therapy is not possible, an attempt should be made to avoid amputation with conservative treatment using analgesics, vasodilators and/or anticoagulants. In case of an acute onset of critical limb ischemia, thrombolysis is indicated.  相似文献   

15.
Peripheral artery disease is a progressive disease. Primary ischemic leg symptoms are muscle fatigue, discomfort or pain during ambulation, known as intermittent claudication. The most severe manifestation of peripheral artery disease is critical limb ischemia (CLI). The long-term safety of gene therapy in peripheral artery disease remains unclear. This four center peripheral artery disease registry was designed to evaluate the long-term safety of the intramuscular non-viral fibroblast growth factor-1 (NV1FGF), a plasmid-based angiogenic gene for local expression of fibroblast growth factor-1 versus placebo in patients with peripheral artery disease who had been included in five different phase I and II trials. Here we report a 3-year follow-up in patients suffering from CLI or intermittent claudication. There were 93 evaluable patients, 72 of them in Fontaine stage IV (47 NV1FGF versus 25 placebo) and 21 patients in Fontaine stage IIb peripheral artery disease (15 NV1FGF versus 6 placebo). Safety parameters included rates of non-fatal myocardial infarction (MI), stroke, death, cancer, retinopathy and renal dysfunction. At 3 years, in 93 patients included this registry, there was no increase in retinopathy or renal dysfunction associated with delivery of this angiogenic factor. There was also no difference in the number of strokes, MI or deaths, respectively, for NV1FGF versus placebo. In the CLI group, new cancer occurred in two patients in the NV1FGF group. Conclusions that can be drawn from this relatively small patient group are limited because of the number of patients followed and can only be restricted to safety. Yet, data presented may be valuable concerning rates in cancer, retinopathy, MI or strokes following angiogenesis gene therapy in the absence of any long-term data in angiogenesis gene therapy. It may take several years until data from larger patient populations will become available.  相似文献   

16.
Hepatocyte growth factor is a mesenchyme-derived pleiotropic factor that regulates the growth, motility and morphogenesis of various types of cells, and is also a member of the angiogenic growth factors. Hepatocyte growth factor is secreted by vascular endothelial cells and smooth muscle cells, and the hepatocyte growth factor receptor, c-met, was also observed in these vascular cells. Treatment of human aortic endothelial cells with recombinant hepatocyte growth factor resulted in a significant increase in cell proliferation, accompanied by mitogen-activated protein kinase and Akt/protein kinase B phosphorylation. Recently, a novel therapeutic strategy for ischemic diseases using angiogenic growth factors to augment collateral artery development has been proposed. As preclinical study of gene therapy using hepatocyte growth factor to treat peripheral arterial disease, naked hepatocyte growth factor plasmid was intramuscularly injected into the ischemic hind limb of rabbits in order to evaluate its angiogenic activity. Intramuscular injection of hepatocyte growth factor plasmid once on day 10 following surgery, produced significant augmentation of collateral vessel development in the ischemic limb on day 30. In the clinical setting, the authors further investigated the safety and efficacy of hepatocyte growth factor plasmid DNA in patients with critical limb ischemia, in a prospective open-labeled trial. Intramuscular injection of naked plasmid DNA was performed in the ischemic limbs of six patients with critical limb ischemia with arteriosclerosis obliterans (n = 3) or Buerger disease (n = 3) graded as Fontaine III or IV. In the efficacy evaluation, a reduction of pain scale of more than 1 cm on a visual analog pain scale was observed in five out of six patients. An increase in ankle pressure index of more than 0.1 was observed in five out of five patients. The long diameter of eight out of 11 ischemic ulcers in four patients was reduced by more than 25%. Intramuscular injection of naked hepatocyte growth factor plasmid is safe, feasible and can achieve successful improvement of ischemic limbs. Although the present data were obtained to demonstrate safety in a Phase I/early Phase II trial, the initial clinical outcome with hepatocyte growth factor gene transfer seems to indicate its usefulness as sole therapy for critical limb ischemia. Randomized placebo-controlled clinical trials of alternative dosing regimens of gene therapy will be required to define the efficiency of this therapy.  相似文献   

17.
Hepatocyte growth factor is a mesenchyme-derived pleiotropic factor that regulates the growth, motility and morphogenesis of various types of cells, and is also a member of the angiogenic growth factors. Hepatocyte growth factor is secreted by vascular endothelial cells and smooth muscle cells, and the hepatocyte growth factor receptor, c-met, was also observed in these vascular cells. Treatment of human aortic endothelial cells with recombinant hepatocyte growth factor resulted in a significant increase in cell proliferation, accompanied by mitogen-activated protein kinase and Akt/protein kinase B phosphorylation. Recently, a novel therapeutic strategy for ischemic diseases using angiogenic growth factors to augment collateral artery development has been proposed. As preclinical study of gene therapy using hepatocyte growth factor to treat peripheral arterial disease, naked hepatocyte growth factor plasmid was intramuscularly injected into the ischemic hind limb of rabbits in order to evaluate its angiogenic activity. Intramuscular injection of hepatocyte growth factor plasmid once on day 10 following surgery, produced significant augmentation of collateral vessel development in the ischemic limb on day 30. In the clinical setting, the authors further investigated the safety and efficacy of hepatocyte growth factor plasmid DNA in patients with critical limb ischemia, in a prospective open-labeled trial. Intramuscular injection of naked plasmid DNA was performed in the ischemic limbs of six patients with critical limb ischemia with arteriosclerosis obliterans (n = 3) or Buerger disease (n = 3) graded as Fontaine III or IV. In the efficacy evaluation, a reduction of pain scale of more than 1 cm on a visual analog pain scale was observed in five out of six patients. An increase in ankle pressure index of more than 0.1 was observed in five out of five patients. The long diameter of eight out of 11 ischemic ulcers in four patients was reduced by more than 25%. Intramuscular injection of naked hepatocyte growth factor plasmid is safe, feasible and can achieve successful improvement of ischemic limbs. Although the present data were obtained to demonstrate safety in a Phase I/early Phase II trial, the initial clinical outcome with hepatocyte growth factor gene transfer seems to indicate its usefulness as sole therapy for critical limb ischemia. Randomized placebo-controlled clinical trials of alternative dosing regimens of gene therapy will be required to define the efficiency of this therapy.  相似文献   

18.
Traditional indications for invasive treatment in patients with peripheral arterial disease (PAD) have been salvage of a threatened limb or improvement of functional capacity in cases of disabling intermittent claudication, but advances in interventional therapy may be lowering the threshold for these therapies. Percutaneous transluminal angioplasty (PTA), with or without stent placement, is the most common endovascular intervention in patients with occlusive lower extremity PAD. In general, PTA is best suited to cases of short-segment stenosis or large-bore vessels, whereas surgery is best applied to multilevel occlusions involving smaller and more distant vessels. This article reviews endovascular therapy, catheter-based thrombolysis, and surgical revascularization procedures in patients with PAD, with special attention to recommendations from new American College of Cardiology/American Heart Association guidelines.  相似文献   

19.
Currently, no effective pharmacological treatment is available for vascularisation defects in lower limbs. Many patients presenting with persistent pain and ischaemic ulcers are not suitable candidates for surgical or endovascular approaches. Further refinement of the available methods will undoubtedly lead to a more active approach towards treatment of peripheral arterial occlusive disease (PAOD). Recently, therapeutic angiogenesis, in the form of recombinant growth factor administration or gene therapy, has emerged as a novel tool to treat these patients. However, improved gene transfer methods and better understanding of blood vessel formation are required to bring therapeutic angiogenesis to clinical practice. Here we review the clinical problem (PAOD), mechanisms of blood vessel formation (angiogenesis, vasculogenesis and arteriogenesis), experimental evidence and clinical trials for therapeutic angiogenesis in critically ischaemic lower limbs. Also, angiogenic growth factors, including vascular endothelial growth factors (VEGFs) and fibroblast growth factors (FGFs), delivery methods, and vectors for gene transfer in skeletal muscle, are discussed. In addition to vascular growth, gene transfer of growth factors may enhance regeneration, survival, and innervation of ischaemic skeletal muscle. Nitric oxide (NO) appears to be a key mediator in vascular homeostasis and growth, and a reduction in its production by age, hypercholesterolemia or diabetes leads to the impairment of ischaemic disorders.  相似文献   

20.
A new therapeutic approach to treat Alzheimer's disease (AD) is needed, and the use of growth factors is considered to be a candidate. Hepatocyte growth factor (HGF) is a unique multifunctional growth factor, which has the potential effect to exert neurotrophic action and induce angiogenesis. In this study, we examined the effects of overexpression of human HGF plasmid DNA using ultrasound-mediated gene transfer into the brain in an Abeta-infused cognitive dysfunction mouse model. We demonstrated that HGF gene transfer significantly alleviated Abeta-induced cognitive impairment in mice in behavioral tests. These beneficial effects of HGF might be due to (1) significant recovery of the vessel density in the dentate gyrus of the hippocampus, (2) upregulation of BDNF, (3) a significant decrease in oxidative stress and (4) synaptic enhancement. A pharmacological approach including gene therapy to increase the HGF level in combination with anti-Abeta therapy might be a new therapeutic option for the treatment of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号