首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Vaccine》2017,35(43):5932-5938
ICOS+Treg cells exert important immunosuppressive effects in tumor immunity. We adopt a combination approach of ICOS+Treg cells depletion with tumor cell vaccine to evaluate anti-tumor immunity in mouse prostate cancer model. Streptavidin (SA)-mGM-CSF surface-modified RM-1 cells were prepared as the vaccine and the mouse subcutaneous prostate tumor model was used to evaluate the immunity. Tumor growth, flow cytometry, immunohistochemistry, immunofluorescence and enzyme linked immunosorbent assay (ELISA) were performed to evaluate the therapeutic effects. Our results demonstrated that SA-mGM-CSF vaccine was prepared successfully and tumor growth was inhibited. The tumor size in the combination group was much smaller than that in the vaccine with IgG mAb group. The portions of dendritic cells, CD8+ and CD4+T cells in the mice blood and tumor tissues were increased after treatment with vaccine. There were more immune-suppressing Tregs infiltrated into tumor after treatment with tumor cell vaccine, and ICOS blocking could deplete the infiltrated Tregs, and T lymphocytes increased more dramatically in the combination therapy group. The concentrations of interferon-γ were increased in all vaccine group, the concentrations of Interleukin-10 and Interleukin-4 were much lower in the combination group. Our study demonstrated that ICOS blocking could deplete the tumor-infiltrated ICOS+Treg cells. Combining GM-CSF surface-modified RM-1 cell vaccine with Anti-ICOS antibody could induce better antitumor immunity than a vaccine alone.  相似文献   

2.
Since human papillomavirus (HPV) E6 and E7 are promising tumor antigens, we engineered E6 and E7 antigens to generate an optimal HPV DNA vaccine by codon optimization (Co), fusion of E6 and E7, addition of a tissue plasminogen activator (tpa) signal sequence, addition of CD40 ligand (CD40L) or Fms-like tyrosine kinase-3 ligand (Flt3L). The resulting constructs were investigated in terms of their antitumor activity as well as induction of HPV-specific CD8+ T cell responses. When E6Co and E7Co were fused (E67Co), CD8+ T cell responses specific for E6 or E7 antigen decreased, but the preventive antitumor effect rather improved, demonstrating the importance of broad immunity. Interestingly, Flt3L-fused HPV DNA vaccine exhibited stronger E6- and E7-specific CD8+ T cell responses as well as therapeutic antitumor effect than that of CD40L linked HPV DNA vaccine. Finally, the optimal construct, tFE67Co, was generated by including tpa signal sequence, Flt3L, fusion of E6 and E7, and codon optimization, which induces 23 and 25 times stronger E6- and E7-specific CD8+ T cell responses than those of initial E67 fusion construct. In particular, inclusion of electroporation in intramuscular immunization of tFE67Co further enhances HPV-specific CD8+ T cell responses, leading to complete tumor regression in a therapeutic setting. Thus, our results provide valuable insight on effective HPV DNA vaccine design and suggest that tFE67Co delivered with electroporation may be a promising therapeutic HPV DNA vaccine against cervical cancer.  相似文献   

3.
Heat shock proteins (HSPs) are highly effective and versatile molecules in promoting antitumor immune responses. We tested whether a HSP-based DNA vaccine can induce effective immune response against Mage3, a cancer testis (CT) antigen frequently expressed in many human tumors, thereby controlling the Mage3-expressing tumor. The vaccine was constructed by linking human inducible HSP70 to the C-terminus of a modified Mage3 gene (sMage3) that was attached at its N-terminus with the signal leader sequence of the human RANTES for releasing the expressed fusion protein from the transduced cells. Intramuscular injection of sMage3Hsp DNA induced CD4+/CD8+ T cell and antibody responses. Vaccination with sMage3Hsp DNA was more effective in inhibiting Mage3-expressing TC-1 tumors. When we dissected the antitumor activity of CD4+ and CD8+ T cells by immunizing CD4+ and CD8+ knockout mice with sMage3Hsp DNA, we found that both CD8+ T and CD4+ T cells played a role in control of inoculated tumor, but did not constitute the whole of immune protection in the prophylactic immunization. Instead, depletion of natural killer (NK) cells led to a major loss of antitumor activity in the immunized mice. These results indicate that the HSP-based Mage3 DNA vaccine can more effectively inhibit tumor growth by inducing both the innate immune responses and Mage3-specific adaptive immune responses via the Hsp-associated adjuvant function.  相似文献   

4.
《Vaccine》2017,35(52):7240-7249
In vivo electroporation (EP) has reignited the clinical interest on DNA vaccines as immunotherapeutic approaches to control different types of cancer. EP has been associated with increased immune response potency, but its capacity in influencing immunomodulation remains unclear. Here we evaluated the impact of in vivo EP on the induction of cellular immune responses and therapeutic effects of a DNA vaccine targeting human papillomavirus-induced tumors. Our results demonstrate that association of EP with the conventional intramuscular administration route promoted a more efficient activation of multifunctional and effector memory CD8+ T cells with enhanced cytotoxic activity. Furthermore, EP increased tumor infiltration of CD8+ T cells and avoided tumor recurrences. Finally, our results demonstrated that EP promotes local migration of antigen presenting cells that enhances with vaccine co-delivery. Altogether the present evidences shed further light on the in vivo electroporation action and its impact on the immunogenicity of DNA vaccines.  相似文献   

5.
DNA vaccines contribute to a promising new approach for the generation of cytotoxic T lymphocytes (CTL). DNA vaccines do have several disadvantages, including poor immunogenicity and oncogene expression. We used the natural killer T-cell (NKT) ligand α-galactosylceramide (α-GalCer) as an adjuvant to prime initial DNA vaccination; and used the potent immune-stimulatory tumor antigen-expressing dendritic cells (DCs) as a booster vaccination. A DNA vaccine expressing human papillomavirus (HPV) type 16 E7 (pcDNA3-CRT/E7) was combined with α-GalCer at the prime phase, and generated a higher number of E7-specific CD8+ T-cells in vaccinated mice than vaccine used at boost phase. Therefore, priming with a DNA vaccine in the presence of α-GalCer and boosting with E7-pulsed DC-1 led to a significant enhancement of E7-specific CD8+ effector and memory T-cells as well as significantly improved therapeutic and preventive effects against an E7-expressing tumor model (TC-1) in vaccinated mice. Our findings suggested that the potency of a DNA vaccine combined with α-GalCer could be further enhanced by boosting with an antigen-expressing DC-based vaccine to generate anti-tumor immunity.  相似文献   

6.
Cervical cancer is the leading cause of cancer-related deaths among women worldwide. Current prophylactic vaccines based on HPV (Human papillomavirus) late gene protein L1 are ineffective in therapeutic settings. Therefore, there is an acute need for the development of therapeutic vaccines for HPV associated cancers. The HPV E7 oncoprotein is expressed in cervical cancer and has been associated with the cellular transformation and maintenance of the transformed phenotype. As such, E7 protein represents an ideal target for the development of therapeutic subunit vaccines against cervical cancer. However, the low antigenicity of this protein may require potent adjuvants for therapeutic efficacy. We recently generated a novel chimeric form of the 4-1BBL costimulatory molecule engineered with core streptavidin (SA-4-1BBL) and demonstrated its safe and pleiotropic effects on various cells of the immune system. We herein tested the utility of SA-4-1BBL as the immunomodulatory component of HPV-16 E7 recombinant protein based therapeutic vaccine in the E7 expressing TC-1 tumor as a model of cervical cancer in mice. A single subcutaneous vaccination was effective in eradicating established tumors in approximately 70% of mice. The therapeutic efficacy of the vaccine was associated with robust primary and memory CD4+ and CD8+ T cell responses, Th1 cytokine response, infiltration of CD4+ and CD8+ T cells into the tumor, and enhanced NK cell killing. Importantly, NK cells played an important role in vaccine mediated therapy since their physical depletion compromised vaccine efficacy. Collectively, these data demonstrate the utility of SA-4-1BBL as a new class of multifunctional immunomodulator for the development of therapeutic vaccines against cancer and chronic infections.  相似文献   

7.
Li Y  Subjeck J  Yang G  Repasky E  Wang XY 《Vaccine》2006,24(25):5360-5370
In this study, we explored the protective anti-tumor potency of mouse (self) Hsp70 or Hsp110-based DNA vaccination approach targeting a tumor-associated antigen, human papilloma virus (HPV) type 16 E7 protein. Linkage of E7 to the N-terminus of the mouse Hsp70 not only elicits an E7-specific cytotoxic T cell (CTL) response, but also protects mice against challenge with E7 expressing tumors. CD8+ T-cells are crucial in both priming and effector phases for the induction of tumor immunity, whereas CD4+ T-cells and NK cells do not appear to play a major role. Furthermore, the ATP-binding domain deletion mutant Hsp70(382-641), when fused to E7, was immunologically effective, suggesting that the peptide-binding region, not the ATPase domain of Hsp70, is required for the vaccine activity of the E7-Hsp70 DNA. This study demonstrates that autologous Hsp70 is highly potent in enhancing antigen-specific immune responses. Functional domain mapping and orientation of the E7 and Hsp70 in the fusion gene may have clinical implications for the design and optimization of Hsp70-based DNA vaccines.  相似文献   

8.
Trimble C  Lin CT  Hung CF  Pai S  Juang J  He L  Gillison M  Pardoll D  Wu L  Wu TC 《Vaccine》2003,21(25-26):4036-4042
DNA vaccines have emerged as an attractive approach for antigen-specific cancer immunotherapy. We have previously linked Mycobacterium tuberculosis heat shock protein 70 (HSP70) to human papillomavirus type 16 (HPV-16) E7 in the context of a DNA vaccine. Vaccination with DNA encoding E7/HSP70 has generated a dramatic increase of E7-specific CD8+ T cell precursors and a strong antitumor effect against E7-expressing tumor (TC-1) in vaccinated mice. The success of our strategy has led to two phases I/II clinical trial proposals in patients with HPV-16 associated high-grade squamous intraepithelial lesion (HSIL) of the cervix and in patients with advanced HPV-associated head and neck squamous cell carcinoma (HNSCC). To translate our HPV DNA vaccines into the clinical domain, the efficacy of pNGVL4a-Sig/E7(detox)/HSP70 DNA vaccine and of various routes of administrations were assessed in mice. Our results indicated that pNGVL4a-Sig/E7(detox)/HSP70 DNA vaccine administered via gene gun generated the highest number of E7-specific CD8+ T cells. In addition, DNA vaccination via gene gun required the least dose to generate similar or slightly better antitumor effects compared to needle intramuscular (i.m.) and biojector administrations. Thus, our data suggest that DNA vaccination via gene gun represents the most potent regimen for DNA administration.  相似文献   

9.
DNA vaccines have emerged as a potential alternative to current strategies to control cancer for their safety, stability and ease of preparation. We have previously demonstrated that a DNA vaccine encoding calreticulin (CRT) linked to human papillomavirus type 16 (HPV-16) E7 antigen (CRT/E7) can generate significant E7-specific immune responses and antitumor effects in vaccinated mice, thus enhancing DNA vaccine potency. Another strategy to improve DNA vaccine potency is by enhancing the level of expression of the antigen encoded in the vaccine. DNA methylation has been shown to lead to silencing of the genes that would affect the expression of the encoded antigen of the DNA vaccines. In the current study, we reasoned that CRT/E7 DNA vaccination combined with demethylating agent, 5-aza-2′-deoxycytidine (DAC) would lead to upregulation of CRT/E7 expression, resulting in improved DNA vaccine potency. We found that pre-treatment with DAC led to increased CRT/E7 DNA expression, leading to enhanced E7-specific CD8+ T cell immune responses as well as the antitumor effects generated by the CRT/E7 DNA vaccine. Thus, our data suggest that combination of CRT/E7 DNA vaccination with DAC treatment may represent a potentially promising approach to control HPV-associated malignancies. The clinical implications of this study are discussed.  相似文献   

10.
《Vaccine》2018,36(37):5591-5599
The aim of this study was to develop and test an optimal vaccination strategy against bovine viral diarrhea virus (BVDV) based on the E2 glycoprotein of the BJ1305 strain. To achieve higher E2-specific antibody titers and to broaden the cellular immune response, a plasmid encoding the E2 protein (pcDNA3.1-E2) was constructed and a purified recombinant E2 protein was generated. The E2 protein was emulsified in the adjuvant ISA 61 VG prior to administration. We immunized mice three times with pcDNA3.1-E2 or the recombinant E2 protein or primed twice with pcDNA3.1-E2 and boosted once with the E2 protein. To evaluate the protection against BVDV conferred by the vaccines, the mice were challenged with BVDV strain Oregon C24V after the third immunization. Although all immunized mice developed humoral and cellular immune responses, the E2-specific antibody titers in the DNA prime–protein boost group were significantly higher than those elicited by either the DNA or the protein vaccine. In addition, vaccination with the E2 DNA vaccine induced higher percentages of CD4+IFN-γ+ T cells and CD8+IFN-γ+ T cells among total CD3+ T cells than the other regimens. The predominant antibody subclass in the vaccinated mice was IgG1. Serum tumor necrosis factor alpha (TNF-α) levels in the DNA prime–protein boost group were significantly higher after the third immunization than in the other groups. Moreover, the mice treated with the DNA prime–protein boost vaccination regimen acquired protection against BVDV challenge, as shown by a significant reduction of viremia, only minor pathological changes, and a lower viral antigen burden than in the control and solo vaccinated mice. These results demonstrate the potential advantage of a DNA prime–protein boost vaccination approach over a solo vaccination for the prevention of BVDV. The ability of this vaccine strategy to control and eradicate BVD in herds warrants further investigation.  相似文献   

11.
Bovine paratuberculosis is a highly prevalent chronic infection of the small intestine in cattle, caused by Mycobacterium avium subspecies paratuberculosis (MAP). In earlier studies we showed the protective effect of Hsp70/DDA subunit vaccination against paratuberculosis. In the current study we set out to measure primary immune responses generated at the site of Hsp70 vaccination. Lymph vessel cannulation was performed to obtain efferent lymph from the prescapular lymph node draining the neck area where the vaccine was applied. Hsp70 vaccination induced a significant increase of CD21+ B cells in efferent lymph, accounting for up to 40% of efferent cells post-vaccination. Proliferation (Ki67+) within the CD21+ B cell and CD4+ T cell populations peaked between day 3 and day 5 post-vaccination. From day 7, Hsp70-specific antibody secreting cells (ASCs) could be detected in efferent lymph. Hsp70-specific antibodies, mainly of the IgG1 isotype, were also detected from this time point onwards. However, post-vaccination IFN-γ production in efferent lymph was non-sustained. In conclusion, Hsp70-vaccination induces only limited Th1 type immune responsiveness as reflected in efferent lymph draining the vaccination site. This is in line with our previous observations in peripheral blood. The main primary immunological outcome of the Hsp70/DDA subunit vaccination is B cell activation and abundant Hsp70-specific IgG1 production. This warrants the question whether Hsp70-specific antibodies contribute to the observed protective effect of Hsp70 vaccination in calves.  相似文献   

12.
Chicken HSP70 DNA vaccine inhibits tumor growth in a canine cancer model   总被引:1,自引:0,他引:1  
Immunization with xenogeneic DNA is a promising cancer treatment to overcome tolerance to self-antigens. Heat shock protein 70 (HSP70) is over-expressed in various kinds of tumors and is believed to be involved in tumor progression. This study tested a xenogeneic chicken HSP70 (chHSP70) DNA vaccine in an experimental canine transmissible venereal tumor (CTVT) model. Three vaccination strategies were compared: the first (PE) was designed to evaluate the prophylactic efficacy of chHSP70 DNA vaccination by delivering the vaccine before tumor inoculation in a prime boost setting, the second (T) was designed to evaluate the therapeutic efficacy of the same prime boost vaccine by vaccinating the dogs after tumor inoculation; the third (PT) was similar to the first strategy (PE), with the exception that the electroporation booster injection was replaced with a transdermal needle-free injection. Tumor growth was notably inhibited only in the PE dogs, in which the vaccination program triggered tumor regression significantly sooner than in control dogs (NT). The CD4+ subpopulation of tumor-infiltrating lymphocytes and canine HSP70 (caHSP70)-specific IFN-γ-secreting lymphocytes were significantly increased during tumor regression in the PE dogs as compared to control dogs, demonstrating that specific tolerance to caHSP70 has been overcome. In contrast, no benefit of the therapeutic strategy (T) could be noticed and the (PT) strategy only led to partial control of tumor growth. In summary, antitumor prophylactic activity was demonstrated using the chHSP70 DNA vaccine including a boost via electroporation. Our data stressed the importance of DNA electroporation as a booster to get the full benefit of DNA vaccination but also of cancer immunotherapy initiation as early as possible. Xenogeneic chHSP70 DNA vaccination including an electroporation boost is a potential vaccine to HSP70-expressing tumors, although further research is still required to better understand true clinical potential.  相似文献   

13.
Sin JI 《Vaccine》2011,29(24):4125-4131
The function of MyD88 signals for induction of adaptive immunity is still controversial. Here we investigate using a human papillomavirus (HPV) 16 E7 DNA vaccine on MyD88 knock out mouse model whether MyD88 signals are required for induction of Ag-specific antibody and cellular responses, as well as antitumor resistance. When injected intramuscularly with E7 DNA vaccines, MyD88 deficient mice displayed antitumor protective responses to tumor cell challenges while having far lower responses than wild type mice. A similar finding was observed in antitumor therapeutic models by intramuscular-electroporation of E7 DNA vaccines. E7 DNA vaccines induced Ag-specific humoral and CD8+ CTL responses in MyD88 deficient mice. However, the levels were much less than those of wild type mice. These data suggest that the immune stimulatory sequence of E7 DNA vaccines and its signaling through MyD88 are not absolutely essential for induction of adaptive immune responses. However, MyD88 deficient mice co-delivered with MyD88 cDNA plus E7 DNA vaccines showed a recovery of Ag-specific IgG and CTL responses, and antitumor immunity to the levels of wild type mice, highlighting the importance of MyD88 signals for augmenting an adaptive immune response. Thus, these data clearly show that MyD88 signals are required only for more efficient induction of Ag-specific humoral and antitumor CD8+ CTL responses in this model.  相似文献   

14.
Chagas disease is a major public health problem, with about 10 million infected people, and DNA vaccines are a promising alternative for the control of Trypanosoma cruzi, the causing agent of the disease. We tested here a new DNA vaccine encoding a combination of two leading parasite antigens, TSA-1 and Tc24, for the prevention and therapy of T. cruzi infection. Immunized Balb/c mice challenged by T. cruzi presented a significantly lower parasitemia and inflammatory cell density in the heart compared to control mice. Similarly, the therapeutic administration of the DNA vaccine was able to significantly reduce the parasitemia and inflammatory reaction in acutely infected Balb/c and C57BL/6 mice, and reduced cardiac tissue inflammation in chronically infected ICR mice. Therapeutic vaccination induced a marked increase in parasite-specific IFNγ producing CD4+ and CD8+ T cells in the spleen as well as an increase in CD4+ and CD8+ T cells in the infected cardiac tissue. In addition, some effect of the DNA vaccine could still be observed in CD4-knockout C57BL/6 mice, which presented a lower parasitemia and inflammatory cell density, but not in CD8-deficient mice, in which the vaccine had no effect. These results indicate that the activation of CD8+ T cells plays a major role in the control of the infection by the therapeutic DNA vaccine, and to a somewhat lesser extent CD4+ T cells. This observation opens interesting perspectives for the potentiation of this DNA vaccine candidate by including additional CD8+ T cell antigens/epitopes in future vaccine formulations.  相似文献   

15.
DNA vaccines are an attractive approach to eliciting antigen-specific immunity. Intracellular targeting of tumor antigens through its linkage to immunostimulatory molecules such as calreticulin (CRT) can improve antigen processing and presentation through the MHC class I pathway and increase cytotoxic CD8+ T cell production. However, even with these enhancements, the efficacy of such immunotherapeutic strategies is dependent on the identification of an effective route and method of DNA administration. Electroporation and gene gun-mediated particle delivery are leading methods of DNA vaccine delivery that can generate protective and therapeutic levels of immune responses in experimental models. In this study, we perform a head-to-head comparison of three methods of vaccination – conventional intramuscular injection, electroporation-mediated intramuscular delivery, and epidermal gene gun-mediated particle delivery – in the ability to generate antigen-specific cytotoxic CD8+ T cell responses as well as anti-tumor immune responses against an HPV-16 E7 expressing tumor cell line using the pNGVL4a-CRT/E7(detox) DNA vaccine. Vaccination via electroporation generated the highest number of E7-specific cytotoxic CD8+ T cells, which correlated to improved outcomes in the treatment of growing tumors. In addition, we demonstrate that electroporation results in significantly higher levels of circulating protein compared to gene gun or intramuscular vaccination, which likely enhances calreticulin's role as a local tumor anti-angiogenesis agent. We conclude that electroporation is a promising method for delivery of HPV DNA vaccines and should be considered for DNA vaccine delivery in human clinical trials.  相似文献   

16.
Freshly defrosted vaccines generate promising antitumor immunity by raising both robust CD8 and CD4 responses with a TC1/Th1-dominant cytokine profile. However, prolonged (overnight) defrosted Sindbis virus-E7/HSP70 priming and Vaccinia-E7/HSP70 booster in mouse model only elicited 20% long-term tumor-free survival in comparison with the fresh vaccines. The present study is to search the possible cause of its potency loss, and to evaluate the ability of pcDNA-E7/HSP70 DNA vaccination via gene gun in restoring the efficacy of E7-specific immune responses and antitumor properties. We used prolonged defrosted SINrep5-E7/HSP70 prime and defrostedVac-E7/HSP70 boost subcutaneously, and administered intradermally cluster (3-day interval) gene gun plasmid E7–HSP70DNA vaccine twice, and evaluated its ability to generate antigen-specific cytotoxic CD8+ T-cell responses using flow cytometry as well as antitumor responses using animal positron-emission tomography (PET) imaging. The prolonged defrosted vaccines showed a significant reduction in the infectivity and a significant decrease of CD8+ and CD4+ T-cells immune responses. Administration of cluster gene gun plasmid E7–HSP70DNA twice was also found to lead to restoration of immunity that elicits a full recovery of the antitumor efficacy of the prolonged defrosted vaccines. Our study suggested that adding cluster gene gun plasmid E7–HSP70DNA vaccine twice offered a simple solution in restoring the efficacy of the prime-boost vaccination with viral vectors and has potentially significant clinical applications.  相似文献   

17.
《Vaccine》2021,39(39):5589-5599
Bacteria biohybrid-based vaccine delivery systems, which integrate a vaccine carrier with live non-pathogenic bacteria, are hypothesized to have improved immunostimulating potential. The aim of this study was to develop oral bacteria biohybrid-based vaccines to treat a mouse model of colorectal cancer. E. coli were combined with tumor antigen- and adjuvant-containing emulsions or liposomes. Emulsion and liposome biohybrid vaccines demonstrated in vitro and in vivo therapeutic potential. Bacteria biohybrid vaccines significantly increased the expression of CD40+, CD80+ and CD86+ on murine bone marrow-derived dendritic cells. Mice vaccinated with emulsion biohybrid vaccines had an increased CD8+ T cell infiltration into tumors and developed three-fold smaller tumors compared to the mice that received emulsion vaccine without E. coli.  相似文献   

18.
Regulatory T-cells are increasingly important in vaccine strategies. In a Flu-vaccination model the role of CD4+CD25+Foxp3+ regulatory T-cells (Tregs) and the immune modulation by orally supplied prebiotic oligosaccharides consisting of scGOS/lcFOS/pAOS, were assessed using anti-CD25 (PC61) mediated depletion studies. As expected, in C57BL/6J mice the Flu-vaccination resulted in significantly (p < 0.001) increased DTH responses when receiving scGOS/lcFOS/pAOS. In addition, increased T-bet expression of activated CD4+ T-cells was detected compared to placebo. In vivo depletion of CD25+ Tregs significantly (p < 0.05) increased basal DTH responses, indicating the suppressive function of these CD25+ Tregs normally present. Surprisingly, in vivo Tregs depletion diminished scGOS/lcFOS/pAOS induced immune modulation completely to control levels (p < 0.05). Although no difference in number, percentage or activation of Tregs could be determined after scGOS/lcFOS/pAOS supplementation, changes in Treg function still remains to be investigated. In conclusion, CD25+ Tregs have an important role in modulated Flu-vaccine responses induced by scGOS/lcFOS/pAOS.  相似文献   

19.
《Vaccine》2017,35(11):1509-1516
GTL001 is a bivalent therapeutic vaccine containing human papillomavirus (HPV) 16 and HPV18 E7 proteins inserted in the Bordetella pertussis adenylate cyclase (CyaA) vector intended to prevent cervical cancer in HPV-infected women with normal cervical cytology or mild abnormalities. To be effective, therapeutic cervical cancer vaccines should induce both a T cell-mediated effector response against HPV-infected cells and a robust CD8+ T-cell memory response to prevent potential later infection. We examined the ability of GTL001 and related bivalent CyaA-based vaccines to induce, in parallel, effector and memory CD8+ T-cell responses to both vaccine antigens. Intradermal vaccination of C57BL/6 mice with GTL001 adjuvanted with a TLR3 agonist (polyinosinic-polycytidylic acid) or a TLR7 agonist (topical 5% imiquimod cream) induced strong HPV16 E7-specific T-cell responses capable of eradicating HPV16 E7-expressing tumors. Tumor-free mice also had antigen-specific memory T-cell responses that protected them against a subsequent challenge with HPV18 E7-expressing tumor cells. In addition, vaccination with bivalent vaccines containing CyaA-HPV16 E7 and CyaA fused to a tumor-associated antigen (melanoma-specific antigen A3, MAGEA3) or to a non-viral, non-tumor antigen (ovalbumin) eradicated HPV16 E7-expressing tumors and protected against a later challenge with MAGEA3- and ovalbumin-expressing tumor cells, respectively. These results show that CyaA-based bivalent vaccines such as GTL001 can induce both therapeutic and prophylactic anti-tumor T-cell responses. The CyaA platform can be adapted to different antigens and adjuvants, and therefore may be useful for developing other therapeutic vaccines.  相似文献   

20.
Dengue is a global public health concern and this is aggravated by a lack of vaccines or antiviral therapies. Despite the well-known role of CD8+ T cells in the immunopathogenesis of Dengue virus (DENV), only recent studies have highlighted the importance of this arm of the immune response in protection against the disease. Thus, the majority of DENV vaccine candidates are designed to achieve protective titers of neutralizing antibodies, with less regard for cellular responses. Here, we used a mouse model to investigate CD8+ T cell and humoral responses to a set of potential DENV vaccines based on recombinant modified vaccinia virus Ankara (rMVA). To enable this study, we identified two CD8+ T cell epitopes in the DENV-3 E protein in C57BL/6 mice. Using these we found that all the rMVA vaccines elicited DENV-specific CD8+ T cells that were cytotoxic in vivo and polyfunctional in vitro. Moreover, vaccines expressing the E protein with an intact signal peptide sequence elicited more DENV-specific CD8+ T cells than those expressing E proteins in the cytoplasm. Significantly, it was these same ER-targeted E protein vaccines that elicited antibody responses. Our results support the further development of rMVA vaccines expressing DENV E proteins and add to the tools available for dengue vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号