首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
McEvers K  Elrefaei M  Norris P  Deeks S  Martin J  Lu Y  Cao H 《Vaccine》2005,23(32):4128-4135
T cell-based HIV vaccine candidates have focused on eliciting both CD4- and CD8-mediated responses. One challenge in vaccine development is the successful introduction and presentation of exogenous antigen to elicit an immune response. Modified bacterial toxins have been studied extensively as intracellular delivery agents because of their unique capability to translocate antigen across the cell membrane without affecting cell viability. Modified anthrax toxin lethal factor (LFn) fusion protein is able to effectively induce anti-HIV cytotoxic T lymphocytes in the absence of protective antigen (PA) and is being evaluated as a vaccine candidate. Here we describe, for the first time, the processing and presentation of LFn fusion proteins by the MHC Class II pathway. The ability of LFn--HIV to induce both CD8- and CD4-mediated responses may have relevance in current approaches to vaccine design. Furthermore, the translocation and presentation of antigens occurs in the absence of PA, which proposes a modified molecular mechanism of antigen presentation by the anthrax toxin model. Additionally, we found that LFn--HIV is specific and sensitive in detecting HIV-specific CD4(+) and CD8(+) T cell responses in T cell assays, further broadening the value of this antigen delivery system as a useful immunologic tool.  相似文献   

2.
《Vaccine》2018,36(4):484-490
Norovirus (NoV) is the main cause of acute gastroenteritis worldwide across all age groups. Current NoV vaccine candidates are based on non-infectious highly immunogenic virus-like particles (VLPs) produced in cell cultures in vitro. As NoVs infecting human population are highly divergent, it is proposed that the vaccine should contain at least two different NoV genotypes, potentially affecting the immunogenicity of each other. We investigated the immunogenicity of NoV GII.4 VLPs administered by intramuscular (IM) or intradermal (ID) injections to BALB/c mice either alone or co-delivered with genogroup I (GI) and other genogroup GII VLPs. Serum NoV-specific IgG binding antibody titers and antibody functionality in terms of avidity and blocking potential were assessed. Furthermore, the specificity and functional avidity of CD4+ and CD8+ T cell responses were analyzed using synthetic peptides previously identified to contain NoV VP1 P2 domain-specific H-2d epitopes. The results showed that IM and ID immunization induced comparable GII.4-specific antibodies and T cell responses. Similar magnitude and functionality of antibodies and interferon-gamma producing T cells were developed using monovalent GII.4 VLPs or different genotype combinations. For the first time, degranulation assay using multicolor flow cytometry showed that NoV GII.4-specific CD8+ T cells had cytotoxic T lymphocyte phenotype. To conclude, our results demonstrate that there is no immunological interference even if up to five different NoV VLP genotypes were co-administered at the same time. Furthermore, no inhibition of NoV-specific antibody functionality or the magnitude, specificity and affinity of T cell responses was observed in any of the immunized animals, observations relevant for the development of a multivalent NoV VLP vaccine.  相似文献   

3.
Vaccines that elicit robust CD8+ T cell responses are desirable for protection against infectious diseases and cancers. However, most vaccine adjuvants fail to elicit robust CD8+ T cell responses without inflammation and associated toxicity. We recently reported that self-assembling peptides that form nanofibers in physiological buffers elicited strong adjuvant-free and antigen-specific antibody responses in mice. However, whether or not such nanofibers likewise can elicit strong CD8+ T cell responses is unknown. Here, we demonstrate that the self-assembling peptide Q11 conjugated to a CD8+ T cell epitope of ovalbumin (Q11-OVA), elicits strong antigen-specific primary and recall responses, and in a vaccination regimen protects against subsequent infection. Importantly, we show that these antigenic peptide nanofibers do not persist as an inflammatory antigen depot at the injection site. Our results demonstrate for the first time that self-assembling peptides may be useful as carriers for vaccines where CD8+ T cell-mediated protection is needed.  相似文献   

4.
Shah HB  Joshi SK  Lang ML 《Vaccine》2011,29(49):9132-9136
CD1d-binding glycolipids exert potent adjuvant effects on T-dependent Ab responses. The mechanisms include cognate interaction between CD1d-expressing B cells and TCR-expressing Type I CD1d-restricted natural killer T cells (NKTs). However, the critical NKT-derived factors that stimulate B cells are poorly understood. We tested the hypothesis that CD1d-driven CD40L expression by NKT cells influences humoral immunity. Bone marrow chimeras with CD40L+/+ or CD40L−/− NKT cells were immunized with Ag plus CD1d ligand before measuring Ab responses. CD40L−/− NKT cells stimulated higher endpoint Ab titers than controls expressing CD40L. In contrast, immunization of CD40L−/− mice revealed that CD40L−/− NKT cells could not provide B cell help when Th cells lacked CD40L. We report that CD40L−/− NKT cells can provide help for Ab production and do so cooperatively with CD40L+/+ Th cells. We suggest that the manner in which NKT cells provide B cell help is distinct from that of Th cells.  相似文献   

5.
The ideal vaccine to protect against toxoplasmosis in humans would include antigens that elicit a protective T helper cell type 1 immune response, and generate long-lived IFN-γ-producing CD8+ T cells. Herein, we utilized a predictive algorithm to identify candidate HLA-A02 supertype epitopes from Toxoplasma gondii proteins. Thirteen peptides elicited production of IFN-γ from PBMC of HLA-A02 supertype persons seropositive for T. gondii infection but not from seronegative controls. These peptides displayed high-affinity binding to HLA-A02 proteins. Immunization of HLA-A*0201 transgenic mice with these pooled peptides, with a universal CD4+ epitope peptide called PADRE, formulated with adjuvant GLA-SE, induced CD8+ T cell IFN-γ production and protected against parasite challenge. Peptides identified in this study provide candidates for inclusion in immunosense epitope-based vaccines.  相似文献   

6.
It is commonly believed that delivery of antigen into the class I antigen presentation pathway is a limiting factor in the clinical translation of DNA vaccines. This is of particular concern in the context of cancer vaccine development as many immunodominant peptides derived from self tumor antigens are not processed and presented efficiently. To address this limitation, we have engineered completely assembled peptide/MHC class I complexes whereby all three components (class I heavy chain, β2m, and peptide) are attached by flexible linkers and expressed as a single polypeptide (single chain trimers or SCT). In this study, we tested the efficacy of progressive generations of SCT DNA vaccines engineered to (1) enhance peptide binding, (2) enhance interaction with the CD8 coreceptor, and/or (3) activate CD4+ helper T cells. Disulfide trap SCT (dtSCT) have been engineered to improve peptide binding, with mutations designed to create a disulfide bond between the class I heavy chain and the peptide linker. dtSCT DNA vaccines dramatically enhance the immune response to model low affinity antigens as measured by ELISPOT analysis and tumor challenge. SCT engineered to enhance interaction with the CD8 coreceptor have a higher affinity for the TCR/CD8 complex, and are associated with more robust CD8+ T cell responses following vaccination. Finally, SCT constructs that coexpress a universal helper epitope PADRE, dramatically enhance CD8+ T cell responses. Taken together, our data demonstrate that dtSCT DNA vaccines coexpressing a universal CD4 epitope are highly effective in generating immune responses to poorly processed and presented cancer antigens.  相似文献   

7.
Yan M  Roehrl MH  Basar E  Wang JY 《Vaccine》2008,26(7):947-955
Protective antigen (PA) is a central component of anthrax toxin and a major antigen in anthrax vaccines. However, the use of native PA as a vaccine is not optimal. If administered to people who have been freshly exposed to anthrax, PA may actually aid in anthrax toxin formation and thus may pose a serious safety concern for postexposure vaccination applications. A non-functional PA mutant may be a much safer alternative. To identify an improved anthrax vaccine antigen, we examined four non-functional mutants of PA, each being impaired in a critical step of the cellular intoxication pathway of PA. These mutants were Rec(-) (unable to bind PA-receptors), SSSR (resistant to activation by furin), Oligo(-) (unable to form oligomers), and DNI (Dominant Negative Inhibitory, unable to form endosomal transmembrane pores). When tested in mice and after three doses of immunization, all four mutants were highly potent in eliciting PA-specific, toxin-neutralizing antibodies, with immunogenicity increasing in the order of PA相似文献   

8.
Liu Y  Luo X  Yang C  Yu S  Xu H 《Vaccine》2011,29(34):5778-5784
Synthetic oligodeoxynucleotides containing unmethylated CpG-dinucleotides (CpG-ODNs) are immunostimulatory in a broad spectrum of species. Extensive studies provide evidence that CpG-ODNs are effective as immunotherapeutics and vaccine adjuvants in various clinical settings. Three major classes of immunostimulatory CpG-ODNs are well characterized according to their in vitro activities and chemical compositions. However, it remains largely unclear whether and how these differences translate in vivo and in particular when used as vaccine adjuvants. In the present study, a panel of CpG-ODNs, including four representative sequences respectively from each class, was used to characterize their adjuvant activities in mice. The results demonstrated that three CpG-ODN classes can differentially affect antigen-specific humoral and cellular immune responses. Specifically, the B- and C-class CpG-ODNs induce a potent Th1-biased immunity with comparable antibody levels as well as CD4+ and CD8+ T cell responses. In contrast, although the A-class CpG-ODNs can weakly enhance antibody titers and CD8+ T cell response regarding cytotoxic activity, they are not able to change the IgG1/IgG2a ratio or elicit antigen-specific, IFN-γ-secreting CD4+ and CD8+ T cells. Consistent with this, three CpG-ODN classes provide differential antigen-specific protection against Listeria monocytogenes, an intracellular bacterial infection. In conclusion, our study provides not only better knowledge about the adjuvant activities of three CpG-ODN classes but also implications for the rational design of CpG-ODN adjuvants.  相似文献   

9.
The objective of this study was to compare immune responses induced in BALB/c mice following immunization with pcDNA-GPV-VP2 DNA by gene gun bombardment (6 μg) or by intramuscular (im) injection (100 μg) with the responses to live attenuated vaccine by im injection (100 μl). pcDNA3.1 (+) and physiological saline were used as controls. Peripheral blood samples were collected at 3, 7, 14, 21, 28, 35, 49, 63, 77 and 105 d after immunization. T lymphocyte proliferation was analyzed by MTT assay and enumeration of CD4+, and CD8+ T cell populations in peripheral blood was performed by flow cytometric analysis. Indirect ELISA was used to detect IgG levels. Cellular and humoral responses were induced by pcDNA-GPV-VP2 DNA and live virus vaccines. No differences were observed in T cell proliferation and CD8+ T cell responses induced by the genetic vaccine regardless of the route of delivery. However, CD4+ T cell responses and humoral immunity were enhanced in following gene gun immunization compared with im injection of the genetic vaccine. Cellular and humoral immunity was enhanced in following gene gun delivery of the genetic vaccine compared with the live attenuated vaccine. In conclusion, the pcDNA-GPV-VP2 DNA vaccine induced enhanced cellular and humoral immunity compared with that induced by the live attenuated vaccine.  相似文献   

10.
《Vaccine》2016,34(50):6276-6284
To date, we still lack an ideal strategy for designing envelope glycoprotein (Env) vaccines to elicit potent protective antibodies against HIV-1 infection. Since the human hepatitis B virus surface antigen (HBsAg) is representative of effective vaccines that can induce ideal humoral immune responses, knowledge of how it elicits antibody responses and T helper cells would be an useful reference for HIV vaccine development. We compared the characteristics of the HIV-1 Env gp120 trimer and HBsAg in antibody elicitation and induction of T follicular helper (Tfh) and memory B cells in immunized Balb/c mice. Using the strategy of protein prime-protein boost, we found that HIV-1 gp120 induced slower recall antibody responses but redundant non-specific IgG responses at early time after boosting compared to HBsAg. The higher frequency of PD-1hiCD4+ T cells and Tfh cells that appeared at the early time point after gp120 boosting is likely to limit the development of memory B cells, memory T cells, and specific antibody recall responses. These findings regarding the different features of HIV envelope and HBsAg in T helper cell responses may provide a direction to improve HIV envelope immunogenicity.  相似文献   

11.
Gaur R  Gupta PK  Banerjea AC  Singh Y 《Vaccine》2002,20(21-22):2836-2839
Anthrax toxin consists of three proteins: protective antigen (PA), lethal factor (LF) and edema factor (EF). PA in combination with LF (lethal toxin) is lethal to mammalian cells and is the major component of human anthrax vaccine. Immunization with PA elicits the production of neutralizing antibodies that form a major component of the protective immunity against anthrax. Recent reports have shown that neutralizing antibody titres can serve as a reliable surrogate marker for protection against anthrax. In the present study, the use of non-invasive routes such as bare skin and nose for immunization with PA on its protective immune response was investigated. Mice were inoculated intranasally (i.n.), subcutaneously (s.c.) or through the skin on days 0, 15 and 28 with purified PA. Intranasal and subcutaneous immunization with PA resulted in high IgG ELISA titers. The predominant subclass in each group was IgG1. High titres of IgA were observed only in i.n. immunized mice. In a cytotoxicity assay these sera protected J774A.1 cells from lethal toxin challenge. The results suggest that non-invasive nasal immunization may be useful in improving vaccination strategies against anthrax.  相似文献   

12.
《Vaccine》2017,35(20):2617-2621
The RSV vaccine field suffered a major set-back when children were vaccinated with a formalin-inactivated RSV vaccine (FI-RSV). Unexpectedly, the vaccinated children fared worse than unvaccinated children when they were naturally infected with RSV. Mouse models were then developed that implicated the CD4+ T helper cell population as a contributor to adverse events. Today, the T cell is viewed with much caution in the RSV field, and its induction by vaccination is sometimes discouraged. Here we re-emphasize the beneficial role of the CD4+ T cell. Experiments were performed with RSV-infected nude mice that received CD4+ T cells by adoptive transfer. Data demonstrated that CD4+ T cells were necessary for the induction of mucosal and systemic RSV-specific antibodies, for the establishment of RSV-specific IgG and IgA antibody secreting cells in the upper and lower respiratory tract, and for RSV clearance.  相似文献   

13.
Plasmodium vivax Merozoite Surface Protein-9 (PvMSP-9) is a malaria vaccine candidate naturally immunogenic in humans and able to induce high antibody titers in animals when delivered as a recombinant protein. Recently, we identified the sequence EAAPENAEPVHENA (PvMSP9E795-A808) as the main linear B-cell epitope in naturally exposed individuals. However, the potential of PvMSP9E795-A808 as an immunogen in experimental animal models remained unexplored. Here we assess the immunogenicity of PvMSP9E795-A808 using synthetic peptides. The peptides tested in BALB/c mice include two repeats of the sequence EAAPENAEPVHENA tested alone (peptide RII), or linked to an autologous (PvMSP9 peptide pL; pLRII) or heterologous (p2 tetanus toxin universal T cell epitope; TTRII) T cell epitope. Immune responses were evaluated by ELISA, FLUOROSPOT, and indirect immunofluorescence. We show that all of the peptide constructs tested were immunogenic eliciting specific IgG antibodies at different levels, with a prevalence of IgG1 and IgG2. Animals immunized with synthetic peptides containing T cell epitopes (pLRII or TTRII) had more efficient antibody responses that resulted in higher antibody titers able to recognize the native protein by immunofluorescence. Relevantly, the frequency of IFN-γ secreting SFC elicited by immunization with TTRII synthetic peptide was comparable to that reported to the PvMSP9-Nt recombinant protein. Taken together, our study indicates that PvMSP9E795-A808 is highly immunogenic in mice and further studies to evaluate its value as promising vaccine target are warranted. Moreover, our study supports the critical role of CD4 T cell epitopes to enhance humoral responses induced by subunit based vaccines.  相似文献   

14.
The T-regulatory (T-reg) cells restrict the T-cell functions in various viral infections including influenza infection. However little is known about the effect of T-regs in influenza vaccination. Herein, we found that immunization of BALB/c mice with a prototype of UV-inactivated influenza PR8/A/34 virus vaccine expanded the CD4+Foxp3+ T-reg pool and fostered the development of virus-specific CD4+Foxp3+ T-reg cells. Increasing the size of Foxp3+ T-reg pool did not alter the primary PR8-specific B-cell response, but it did suppress the primary and memory PR8-specific T helper responses induced by vaccination. In contrast, the vaccination-induced T helper cell response was augmented in the absence of CD4+Foxp3+ T-reg cells. Since CD4 T helper cells contribute to anti-influenza protection, therapeutic “quenching” of T-reg function prior to vaccination may enhance the efficacy of influenza vaccination.  相似文献   

15.
The currently licensed anthrax vaccine has several limitations and its efficacy has been proven only in adults. Effective immunization of newborns and infants requires adequate stimulation of their immune system, which is competent but not fully activated. We explored the use of the licensed live attenuated S. Typhi vaccine strain Ty21a expressing Bacillus anthracis protective antigen [Ty21a(PA)] followed PA-alum as a strategy for immunizing the pediatric population. Newborn mice primed with a single dose of Ty21a(PA) exhibited high frequencies of mucosal IgA-secreting B cells and IFN-γ-secreting T cells during the neonatal period, none of which was detected in newborns immunized with a single dose of PA-alum. Priming with Ty21a(PA) followed by PA-boost resulted in high levels of PA-specific IgG, toxin neutralizing and opsonophagocytic antibodies and increased frequency of bone marrow IgG plasma cells and memory B cells compared with repeated immunization with PA-alum alone. Robust B and T cell responses developed even in the presence of maternal antibodies. The prime-boost protected against systemic and respiratory infection. Mucosal priming with a safe and effective S. Typhi-based anthrax vaccine followed by PA-boost could serve as a practical and effective prophylactic approach to prevent anthrax early in life.  相似文献   

16.
Cytotoxic CD8+ T lymphocytes (CTLs) play an important role in antiviral immunity. Several human HLA-A*0201 restricted CTL epitopes of severe acute respiratory syndrome (SARS) spike (S) protein have been identified in HLA-A*0201 transgenic (Tg) mice, but the mechanisms and properties of immune responses are still not well understood. In this study, HLA-A*0201 Tg mice were primed intramuscularly with SARS S DNA and boosted subcutaneously with HLA-A*0201 restricted peptides. The lymphocytes from draining lymph nodes, spleens and lungs were stimulated with the cognate peptides. Three different methods (ELISA, ELISPOT and FACS) were used to evaluate the immune responses during short and long periods of time after immunization. Results showed that peptide-specific CD8+ T cells secreted IFN-γ, TNF-α and IL-2 and expressed CD107a/b on cell surface. IFN-γ+CD8+ T cells and CD107a/b+CD8+ T cells distributed throughout the lymphoid and non-lymphoid tissues, but the frequency of peptide-specific CD8+ T cells was higher in lungs than in spleens and lymph nodes. The phenotype of the CD8+ T cells was characterized based on the expression of IFN-γ. Most of the HLA-A*0201 restricted peptide-specific CD8+ T cells represented a memory subset with CD45RBhigh and CD62Llow. Taken together, these data demonstrate that immunization with SARS S DNA and HLA-A*0201 restricted peptides can elicit antigen-specific CD8+ T cell immune responses which may have a significant implication in the long-term protection. We provide novel information in cellular immune responses of SARS S antigen-specific CD8+ T cells, which are important in the development of vaccine against SARS-CoV infection.  相似文献   

17.
Praziquantel (PZQ), which is used to treat all forms of schistosomiasis, has been shown to induce strong T cell activities and decrease T regulatory cell levels. In our study, we investigated whether PZQ may be used as an adjuvant for a hepatitis B surface antigen (HBsAg) DNA vaccine (pcD-S2) in eliciting strong humoral and cellular responses. Our data demonstrate that PZQ as an adjuvant increased T cell proliferation and an HBsAg-specific antibody response that was characterized by a higher ratio of IgG2a/IgG1. Moreover, a higher level of IFN-γ in CD4+ and CD8+ T cells were elicited. In addition, a significantly antigen-specific cytotoxic T lymphocyte response was also observed. The expression of TGF-β can be induced by HBsAg, while PZQ as an adjuvant can inhibit the expression of TGF-β and TGF-β/Smad2,3 signaling. The frequency of CD4+CD25+Foxp3+ Treg cells was reduced. Importantly, the regulatory function of CD4+CD25+ Treg cells was correspondingly impaired. Together, these results suggest that PZQ can enhance humoral and cellular responses to HBsAg DNA vaccination through inhibition TGF-β/Smad2,3 signaling.  相似文献   

18.
《Vaccine》2017,35(4):536-543
We have shown that the live-attenuated HSV-1 VC2 vaccine strain with mutations in glycoprotein K (gK) and the membrane protein UL20 is unable to establish latency in vaccinated animals and produces a robust immune response capable of completely protecting mice against lethal vaginal HSV-1 or HSV-2 infections. To better understand the immune response generated by vaccination with VC2, we tested its ability to elicit immune responses in rhesus macaques. Vaccinated animals showed no signs of disease and developed increasing HSV-1 and HSV-2 reactive IgG1 after two booster vaccinations, while IgG subtypes IgG2 and IgG3 remained at low to undetectable levels. All vaccinated animals produced high levels of cross protective neutralizing antibodies. Flow cytometry analysis of cells isolated from draining lymph nodes showed that VC2 vaccination stimulated significant increases in plasmablast (CD27highCD38high) and mature memory (CD21IgM) B cells. T cell analysis on cells isolated from draining lymph node biopsies demonstrated a statistically significant increase in proliferating (Ki67+) follicular T helper cells and regulatory CXCR5+ CD8+ cytotoxic T cells. Analysis of plasma isolated two weeks post vaccination showed significant increases in circulating CXCL13 indicating increased germinal center activity. Cells isolated from vaginal biopsy samples collected over the course of the study exhibited vaccination-dependent increases in proliferating (Ki67+) CD4+ and CD8+ T cell populations. These results suggest that intramuscular vaccination with the live-attenuated HSV-1 VC2 vaccine strain can stimulate robust IgG1 antibody responses that persist for >250 days post vaccination. In addition, vaccination lead to the maturation of B cells into plasmablast and mature memory B cells, the expansion of follicular T helper cells, and affects in the mucosal immune responses. These data suggest that the HSV VC2 vaccine induces potent immune responses that could help define correlates of protection towards developing an efficacious HSV-1/HSV-2 vaccine in humans.  相似文献   

19.
Optimized DNA expression vectors encoding the native HIV-1 Gag or a fusion of Gag with the lysosomal membrane associated protein 1 (LAMP) were compared for immunogenicity upon intramuscular DNA delivery in rhesus macaques. Both vaccines elicited CD4+ T-cell responses, but with significant differences in the phenotype of the Gag-specific cells: the native Gag induced CD4+ responses with a phenotype of central memory-like T cells (CD28+ CD45RA), whereas the LAMP/Gag chimera induced CD4+ responses with effector memory phenotype (CD28 CD45RA). Antigen-specific T cells producing both IFN-γ and TNFα were found in the animals receiving the native Gag, whereas the LAMP/Gag chimera induced humoral responses faster. These results demonstrate that modification of intracellular Gag trafficking results in the induction of distinct immune responses. Combinations of DNA vectors encoding both forms of antigen may be more potent in eliciting anti-HIV-1 immunity.  相似文献   

20.
Efforts to develop a subunit vaccine against genital herpes have been hampered by lack of knowledge of the protective antigens of HSV-2, the causative agent of the disease. Vaccines based either on selected antigens or attenuated live virus approaches have not demonstrated meaningful clinical activity. We present here results of a therapeutic vaccine candidate, HerpV (formerly called AG-707), consisting of 32 HSV-2 peptides derived from 22 HSV-2 proteins, complexed non-covalently to the HSP70 chaperone and formulated with QS-21 saponin adjuvant. HerpV is observed to be immunogenic, generating CD4+ and CD8+ T cell responses in three mouse strains including HLA-A2 transgenic mice. Optimal T cell stimulation was dependent on the synergistic adjuvant properties of QS-21 with hsp70. The vaccine provided significant protection from viral challenge in a mouse prophylaxis model and showed signals of activity in a guinea pig therapeutic model of existing infection. Peripheral blood mononuclear cells from human HSV-2+ subjects also showed reactivity in vitro to a subset of individual peptides and to the pool of all 32 peptides. Recombinant human Hsc70 complexed with the 32 peptides also stimulated the expansion of CD8+ T cells from HSV-2+ subjects in vitro. These studies demonstrate that HerpV is a promising immunotherapy candidate for genital herpes, and provide a foundation for evaluating HerpV in human HSV-2+ subjects with the intent of eliciting CD4+ and CD8+ T cell responses to a broad array of viral antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号