首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical therapy with multiple doses of antibiotics is one of modalities for treatment of periodontal diseases. However, treatments using multiple doses of antibiotics carry risks of generating resistant strains and misbalancing the resident body flora. We present an approach via immunization targeting an outer membrane protein FomA of Fusobacterium nucleatum (F. nucleatum), a central bridging organism in the architecture of oral biofilms. Neutralization of FomA considerably abrogated the enhancement of bacterial co-aggregation, biofilms and production of volatile sulfur compounds mediated by an inter-species interaction of F. nucleatum with Porphyromonas gingivalis (P. gingivalis). Vaccination targeting FomA also conferred a protective effect against co-infection-induced gum inflammation. Here, we advance a novel infectious mechanism by which F. nucleatum co-opts P. gingivalis to exacerbate gum infections. FomA is highlighted as a potential target for development of new therapeutics against periodontal infection and halitosis in humans.  相似文献   

2.
Helicobacter suis causes gastric lesions in pigs and humans. This study aimed to evaluate the protective efficacy of immunization with combinations of the H. suis urease subunit B (UreB) and γ-glutamyl transpeptidase (GGT), both recombinantly expressed in Escherichia coli (rUreB and rGGT, respectively). Mice were intranasally immunized with rUreB, rGGT or a combination of both proteins, administered simultaneously or sequentially. Control groups consisted of non-immunized and non-challenged mice (negative controls), sham-immunized and H. suis-challenged mice (sham-immunized controls), and finally, H. suis whole-cell lysate-immunized and H. suis challenged mice. Cholera toxin was used as mucosal adjuvant. All immunizations induced a significant reduction of gastric H. suis colonization, which was least pronounced in the groups immunized with rGGT and rUreB only. Consecutive immunization with rGGT followed by rUreB and immunization with the bivalent vaccine improved the protective efficacy compared to immunization with single proteins, with a complete clearance of infection observed in 50% of the animals. Immunization with whole-cell lysate induced a similar reduction of gastric bacterial colonization compared to rGGT and rUreB in combinations. Gastric lesions, however, were less pronounced in mice immunized with combinations of rUreB and rGGT compared to mice immunized with whole-cell lysate. In conclusion, vaccination with a combination of rGGT and rUreB protected mice against a subsequent H. suis infection and was not associated with severe post-vaccination gastric inflammation, indicating that it may be a promising method for control of H. suis infections.  相似文献   

3.
Mazloomi E  Jazani NH  Shahabi S 《Vaccine》2012,30(16):2640-2646

Objective

To determine the efficacy of the mixture of propranolol (PRP), a beta-adrenergic receptor antagonist, and alum, as a new adjuvant, in the induction of humoral and cellular immunity in response to heat-killed Salmonella typhimurium (S. typhimurium) (HKST) as a model vaccine.

Methods

BALB/c mice were divided into five groups. Mice in the experimental groups received either the HKST vaccine alone or in combination with the adjuvant alum, PRP or the alum–PRP mixture. Mice in the negative control group received phosphate-buffered saline. All mice were immunized two times on days 0 and 14. Two weeks after the last immunization, immune responses to S. typhimurium were assessed.

Results

Administration of the alum–PRP mixture as an adjuvant increased the ability of the HKST vaccine to enhance lymphocyte proliferation, shifted the immune response towards a T-helper (Th) 1 pattern and increased S. typhimurium specific IgG, IgG2a and IgG1. This resulted in improved protective immunity against S. typhimurium.

Conclusion

Administration of the alum–PRP mixture as an adjuvant in combination with the HKST vaccine, can enhance both humoral and cellular immunity and shift the immune responses to a Th1 pattern.  相似文献   

4.
Fransicella tularensis, the causative agent of tularemia, is in the top category (Category A) of potential agents of bioterrorism. To develop a safer vaccine against aerosolized F. tularensis, we have employed an attenuated Listeria monocytogenes, which shares with F. tularensis an intracellular and extraphagosomal lifestyle, as a delivery vehicle for F. tularensis antigens. We constructed recombinant L. monocytogenes (rLm) vaccines stably expressing seven F. tularensis proteins including IglC (rLm/iglC), and tested their immunogenicity and protective efficacy against lethal F. tularensis challenge in mice. Mice immunized intradermally with rLm/iglC developed significant cellular immune responses to F. tularensis IglC as evidenced by lymphocyte proliferation and CD4+ and CD8+ T-cell intracellular expression of interferon gamma. Moreover, mice immunized with rLm/iglC were protected against lethal challenge with F. tularensis LVS administered by the intranasal route, a route chosen to mimic airborne infection, and, most importantly, against aerosol challenge with the highly virulent Type A F. tularensis SchuS4 strain.  相似文献   

5.
Listeria monocytogenes (Lm) holds promise as a neonatal vaccine vehicle. Here we show that Lm immunized neonatal mice reached maximal Ag-specific CD8+ T cell expansion after only a single immunization, while adults required two doses. Ag-specific CD4+ T cell expansion in both age groups required a boost to reach its peak. Neither functional avidity, sensitivity, nor the TCR-Vβ repertoire of the Ag-specific T cells differed between mice immunized as neonates or adults. Lastly, neonatal immunization did not decrease protection or preclude a booster response. Overall, our data provide further evidence in support of immunization at birth as a feasible public health strategy to combat early life infections.  相似文献   

6.
We have developed virulence-attenuated strains of Listeria monocytogenes (Lm) that can be used as safe yet effective vaccine carriers for neonatal vaccination. Here we compare the vaccine efficacy of Lm based vaccine carrier candidates after only a single immunization in murine neonates and adults: Lm Δ(trpS actA) based strains that express and secrete multiple copies of the model antigen ovalbumin (OVA) either under the control of a phagosomal (Phly) or cytosolic (PactA)-driven listerial promoter. While both strains induced high levels of antigen-specific primary and secondary CD8 and CD4 T cell responses, both neonatal and adult mice immunized with the phagosomal driven strain were significantly better protected against wildtype Lm challenge as compared to the naïve control group than mice immunized with the cytosolic driven strains. Interestingly, only neonatal mice immunized with the phagosomal driven strains generated high IgG antibody responses against OVA. Our phagosomal driven Lm-based vaccine platform presents the broadest (cellular & humoral response) and most efficient (highly protective) vaccine platform for neonatal vaccination yet described.  相似文献   

7.
Cheng C  Jain P  Bettahi I  Pal S  Tifrea D  de la Maza LM 《Vaccine》2011,29(38):6641-6649
Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterial pathogen in the World and there is an urgent need for a vaccine to prevent these infections. To determine what type of adjuvant can better enhance the immunogenicity of a Chlamydia vaccine, we formulated the recombinant major outer membrane protein (Ct-rMOMP) with several ligands for Toll-like receptors (TLR) and the nucleotide-binding oligomerization domain (NOD) including Pam2CSK4 (TLR2/TLR6), Poly (I:C) (TLR3), monophosphoryl lipid A (TLR4), flagellin (TLR5), imiquimod R837 (TLR7), imidazoquinoline R848 (TRL7/8), CpG-1826 (TLR9), M-Tri-DAP (NOD1/NOD2) and muramyldipeptide (NOD2). Groups of female BALB/c mice were immunized intramuscularly (i.m.) three times with the Ct-rMOMP and each one of those adjuvants. Four weeks after the last immunization the mice were challenged intranasally (i.n.) with 104C. trachomatis mouse pneumonitis (MoPn) inclusion forming units (IFU). As negative antigen control, mice were immunized with the Neisseria gonorrhoeae recombinant porin B (Ng-rPorB) and the same adjuvants. As a positive vaccine control, mice were inoculated i.n. with 104 IFU of MoPn. The humoral and cell mediated immune responses were determined the day before the challenge. Following the challenge the mice were weighed daily and, at 10 days post-challenge (p.c.), they were euthanized, their lungs weighted and the number of IFU in the lungs counted. As determined by the IgG2a/IgG1 ratio in the sera, mice immunized with Ct-rMOMP + Pam2CSK4 showed a strong Th2 biased humoral immune response. Furthermore, these mice developed a robust cellular immune response with high Chlamydia-specific T cell proliferation and levels of IFN-γ production. In addition, based on changes in body weight, weight of the lungs and number of IFU recovered from the lungs, the mice immunized with Ct-rMOMP + Pam2CSK4, were better protected against the i.n. challenge than any group of mice immunized with Ct-rMOMP and the other adjuvants. In conclusion, Pam2CSK4 should be evaluated as a candidate adjuvant for a C. trachomatis vaccine.  相似文献   

8.
In the present study, we investigated the role of Toll-like receptors (TLRs) in host responses to the saliva-binding region (SBR) of Streptococcus mutans expressed by a recombinant, attenuated Salmonella vaccine. C57BL/6 wild type (wt), TLR2−/−, TLR4−/− and MyD88−/− mice were immunized by the intranasal route on days 0, 18 and boosted on day 98 with Salmonella typhimurium BRD 509 containing a plasmid encoding SBR. Serum and saliva samples were collected throughout the experiment and assessed for antibody activity by ELISA. Evidence is provided that the induction of a serum IgG2a (Th1-type) anti-SBR antibody response involved TLR2 signaling, whereas the anti-Salmonella response involved signaling through TLR4. The adaptor molecule MyD88 was not essential for the induction of a primary Th1-type response to SBR or Salmonella, but was necessary for a secondary response to SBR. Furthermore, the absence of TLR2, TLR4 or MyD88 resulted in enhanced Th2-type serum IgG1 anti-SBR and anti-Salmonella responses. Mucosal IgA responses to SBR were TLR2-, TLR4- and MyD88-dependent, while IgA responses to Salmonella were TLR4- and MyD88-dependent.  相似文献   

9.
Evaluation of vaccine efficacy for protection against colonisation (VEcol) with Streptococcus pneumoniae and other bacterial pathogens is often based on a cross-sectional study design, in which only one nasopharyngeal sample is obtained per study subject. Here we investigate the feasibility of this study design by investigating a number of practical design problems. Specific questions are related to the timing of colonisation measurement with respect to the time of vaccination, the adjustment for the within-host replacement of vaccine-type colonisation by the non-vaccine type pneumococci, and the impact of multiple serotype colonisation on VEcol estimation. We also discuss the issue of choosing the control vaccine, including comparison of two active pneumococcal vaccines, as well as the sample size and the statistical power of colonisation endpoint trials. In addition, the statistical design with the specific aim to include information about VEcol in the licensure process of new pneumococcal vaccine products is discussed.  相似文献   

10.
Cheng C  Pal S  Bettahi I  Oxford KL  Barry PA  de la Maza LM 《Vaccine》2011,29(18):3456-3464
To determine the ability of a vaccine formulated with the genital Chlamydia trachomatis, serovar F, native major outer membrane protein (Ct-F-nMOMP), to induce systemic and mucosal immune responses, rhesus macaques (Macaca mulatta) were immunized three times by the intramuscular (i.m.) and subcutaneous (s.c.) routes using CpG-2395 and Montanide ISA 720 VG, as adjuvants. As controls, another group of M. mulatta was immunized with ovalbumin instead of Ct-F-nMOMP using the same formulation and routes. High levels of Chlamydia-specific IgG and IgA antibodies were detected in plasma, vaginal washes, tears, saliva, and stools from the Ct-F-nMOMP immunized animals. Also, high neutralizing antibody titers were detected in the plasma from these animals. Monkeys immunized with ovalbumin had no detectable Chlamydia-specific antibodies. Furthermore, as measured by a lymphoproliferative assay, significant Chlamydia-specific cell-mediated immune responses were detected in the peripheral blood mononuclear cells (PBMC) from the rhesus macaques vaccinated with Ct-F-nMOMP when compared with the animals immunized with ovalbumin. In addition, the levels of two Th1 cytokines, IFN-γ and TNF-α, were significantly higher in the animals immunized with Ct-F-nMOMP when compared with those from the monkeys immunized with ovalbumin. To our knowledge, this is the first time that mucosal and systemic immune responses have been investigated in a nonhuman primate model using a subunit vaccine from a human genital C. trachomatis serovar.  相似文献   

11.
The recombinant 70 kDa heat-shock protein of Mycobacterium avium subspecies paratuberculosis (MAP Hsp70) has been shown to be an immunodominant antigen and a subunit vaccine candidate for bovine paratuberculosis. The aim of the present study was to define MAP Hsp70 specific T cell epitopes in cows immunized with MAP Hsp70 and cows experimentally infected with MAP. Nine peptides were shown to induce proliferation and interferon-γ production by lymphocytes from MAP Hsp70 immunized cattle. From 28 calves experimentally infected with MAP 82% responded to at least one of the 5 most immunodominant peptides, indicating relevance of the epitopes during infection. In these 28 animals 15 different BoLA class II haplotypes were present indicating that the peptides were presented by multiple BoLA class II DRB3 alleles. These findings indicate the potential of the MAP Hsp70 subunit vaccine as a tool to control paratuberculosis in outbred cattle populations.  相似文献   

12.
There is a need to develop protective vaccines against tuberculosis (TB) that elicit full immune responses including mucosal immunity. Here, a live attenuated Salmonellatyphimurium aroA SL7207 vector TB vaccine, namely SL(E6-85B), harboring the Mycobacterium tuberculosis (M. tb) H37Rv ESAT6-Ag85B fusion gene was developed. The experimental data demonstrated that this SL(E6-85B) vaccine, or when it is combined with BCG vaccination, induced the strongest TB Ag-specific mucosal, humoral, and cellular immune responses comprised of increased proliferation of T cells, IFN-gamma expression, granzyme B production, as well as the greatest IFN-gamma production of effector-memory T (TEM) or effector CD8+ T cell responses and exerted high protective efficacy in mice against virulent M. tb H37Rv challenge compared to the other vaccinated groups (mice immunized with SL(Ag85B), a DNA vaccine or BCG only). This strategy may represent a novel promising mucosal vaccine candidate for the prevention of TB which are inexpensive to produce, efficacious, and able to be given orally rather than by injection.  相似文献   

13.
14.
The role of in vivo-induced ApxIV toxin of Actinobacillus pleuropneumoniae in protective immunity was evaluated in pigs by administering it alone or added to a multicomponent recombinant subunit vaccine composed of recombinant ApxI, ApxII, ApxIII toxin, and 42-kDa outer membrane protein (OMP). The pigs were immunized with vaccine I (rApxIVN), vaccine II (rApxI + rApxII + rApxIII + rApxIVN + rOMP), vaccine III (rApxI + rApxII + rApxIII + rOMP), or placebo (phosphate-buffered saline + adjuvant). A. pleuropneumoniae serovar 1 field isolate JMS 06 and serovar 2 field strain FX 01 were used as the challenge strains. Pigs that were immunized with vaccine I or vaccine II all developed high antibody titers against rApxIVN. The antibody titers against rApxI, rApxII, rApxIII, and rOMP in pigs immunized with vaccine II were higher than those in pigs vaccinated with vaccine III. Following the challenge, the pigs immunized with rApxIVN alone showed similar results to the pigs in the control group, such as severe respiratory symptoms and severe lung lesions. Pigs that had been immunized with vaccine II or vaccine III were protected against challenge with A. pleuropneumoniae serovar 1 and serovar 2. The pigs immunized with vaccine II had slighter lung lesions and fewer bacterial recovery than those of pigs immunized with vaccine III. These results indicate that rApxIVN contributes to the production of high level of antibodies directed against the vaccination antigens, and thus confers strong protection against challenges with different serovars of A. pleuropneumoniae.  相似文献   

15.
随着多组学以及高通量测序技术的发展,研究表明消化道菌群紊乱与多癌种的发生发展相关,但是关于上消化道癌及其癌前病变与消化道微生态相关性的研究尚处于起步阶段。具核梭杆菌,口腔共生菌之一,也是一种机会性致病菌,通过促进肿瘤微环境形成进而促进肿瘤进展,可作为新型生物标志物运用于肿瘤的早发现、早诊断和早治疗。本文通过检索中国知网、万方数据知识服务平台、PubMed和Embase数据库,对具核梭杆菌与上消化道癌及其癌前病变的研究现况进行总结,发现癌组织中具核梭杆菌的丰度较癌旁组织高且与不良预后相关,该菌种与癌前病变的研究亟待开展。此外,标本类型、检测方式、菌种亚型、致癌机制等多方向仍然有待探索。  相似文献   

16.
Francisella tularensis, the etiological agent of tularemia, is one of the most infectious bacterial pathogens known. No vaccine is currently approved for public use. Previously, we identified epitopes recognized specifically by T cells obtained from individuals following infection with F. tularensis. Here, we report that a subunit vaccine constructed based upon these epitopes elicited protective immunity in “humanized” HLA class II (DRB1*0401) transgenic mice. Vaccinated mice challenged intratracheally with a lethal dose of F. tularensis (Live Vaccine Strain) exhibited a rapid increase in pro-inflammatory cytokine production and diminished number of organisms in the lungs, and a concurrent increased rate of survival. These results demonstrate the efficacy of an epitope-based tularemia vaccine and suggest that such an approach might be widely applicable to the development of vaccines specific for intracellular bacterial pathogens.  相似文献   

17.
The aim of the study was to evaluate the effectiveness of the whole-cell pertussis vaccine produced locally and routinely used in Poland in the elimination of Bordetella parapertussis strains from the lungs and trachea of a mouse model. We found that the average protective effect against B. parapertussis in the lungs of mice immunized with the whole-cell pertussis vaccine (DTwP) was significantly higher than in animals immunized with the acellular pertussis vaccine (DTaP). The effectiveness of B. parapertussis elimination rates from the lungs of DTwP-immunized mice, depending on the strain used as a challenge, was found to be 1.2-3.0 times or 3.1-7.0 times lower than against Bordetella. pertussis Tohama I or vaccine B. pertussis 606/67 isolates, respectively. Our results show that the locally produced DTwP vaccine is able to protect against B. parapertussis isolates; however, the level of protection and course of B. parapertussis infection in the lungs and trachea seems to be strain specific.  相似文献   

18.
Photobacterium damselae subsp. piscicida (PDP) is the causative agent of fish pasteurellosis, a bacterial disease causing important losses in marine aquaculture. Vaccines against the pathogen can be a way to control the infection and avoid antibiotic treatments. However, a satisfactory protective vaccine against fish pasteurellosis is not commercially available. In this study, a biotechnogical approach based on reverse vaccinology has been used to identify potential vaccine candidates for the development of a recombinant subunit vaccine. Genome sequencing of clones from a genomic cosmid library of PDP and in silico selection of the surface exposed proteins were the initial steps in vaccine candidate identification. From 370 open reading frames (ORF) eight potential antigens were selected, expressed as recombinant proteins and purified. These vaccine candidates were used to generate specific polyclonal antibodies in mice. Each antibody was then screened in vitro by inhibition adherence assay of live PDP on chinook salmon embryo cells (CHSE-214). A lipoprotein, found to be involved in the adherence of the bacterium to epithelial cells and annotated as PDP_0080, was then selected. The recombinant protein was further investigated in fish vaccination and challenge experiments to assess its ability to protect sea bass, Dicentrarchus labrax, against PDP infection. Immunisation with PDP_0080 recombinant protein elicited high specific antibody titres. Furthermore, the survival rate of fish immunized with the 25 μg dose of protein was significantly higher compared to the control group. The results of the study suggest that the PDP_0080 protein could be a promising candidate for the design of a recombinant vaccine against pasteurellosis.  相似文献   

19.
Yersinia enterocolitica is an important human pathogen. Yersiniosis, caused by Y. enterocolitica, has become more prevalent globally in recent years. Prevention of yersiniosis still remains a challenge, and an efficacious and safe vaccine that confers protection against this enteric pathogen needs to be developed. In this study, a novel vaccine based on the bacterial ghost, in combination with mutation of the Y. enterocolitica msbB gene, was developed and the immunopotency of this vaccine was evaluated in mice. Significant levels of IgG1/IgG2a antibodies and IL-4/IFN-γ cytokines were detected after mice were administered this vaccine intragastrically, indicating that a Th1/Th2-mediated mixed immune response was stimulated. Importantly, mutation of the msbB gene efficiently reduced secretion of the proinflammatory cytokines IL-1β, IL-6 and TNF-α, suggesting a reduction in inflammatory reaction caused by lipopolysaccharide. In addition, when challenged with a dose that was 100-fold the minimal lethal dose of the virulent wild strain of Y. enterocolitica, this mutated ghost vaccine was capable of eliciting the same effective protection (80%) in comparison with the non-mutated ghost strain, and the survival time was extended by at least two days. Together, our results demonstrated that this novel ghost bacterial strain could be used as a safe and effective vaccine against Y. enterocolitica.  相似文献   

20.
Leptospirosis is an important zoonotic disease worldwide. Subunit vaccines are an attractive intervention strategy against this disease, but potent, non-toxic adjuvants are necessary components to any effective vaccine. Among various adjuvant candidates, liposomes have garnered recent attention for their capacity as carriers of vaccines. In the present study we prepared novel liposomes using total polar lipids from the nonpathogenic bacterium, Mycobacterium smegmatis (designated smegmosomes). The potential for smegmosomes as a vaccine delivery/adjuvant system was evaluated with novel leptospira protective antigens (Lp0607, Lp1118, Lp1454) and compared with conventional aluminum hydroxide adjuvant (alum) in a hamster model of leptospirosis. Four-week-old hamsters were immunized subcutaneously twice at three weeks intervals and either bled at various time points to evaluate antibody responses, sacrificed to isolate splenocytes for lymphocyte proliferation and cytokine profiles in response to recall antigen, or challenged intraperitoneally with a modified lethal dose (10X MLD50) of virulent Leptospira interrogans serovar Pomona. Our results demonstrate that smegmosomes carrying antigens are better adjuvants than alum as revealed by enhanced and long term antibody response, lymphocyte proliferation and significant enhancement in both Th1 (IFN-γ) and Th2 (IL-4, IL-10) cytokine production. Additionally, smegmosomes were found to induce memory responses that are significantly higher than those of alum. Above all, smegmosomes were observed to impart a significantly higher level of protection than alum as revealed by enhanced survival, reduced histopathological lesions and bacterial load in vital organs. Taken together, the data of the present study suggests that smegmosomes will serve well as a promising delivery vehicle/adjuvant system that can induce both Th1 and Th2 type immune responses and provide a novel tool in development of improved vaccines for leptospirosis and other infectious diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号