首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xu QA  Yu F  Fan MW  Bian Z  Chen Z  Peng B  Jia R  Guo JH 《Vaccine》2007,25(7):1191-1195
We have previously reported that a targeted anti-caries DNA plasmid pGJA-P/VAX which was constructed against the antigenic determinants of Streptococcus mutans (S. mutans) successfully induced antibody responses in mice and monkeys. The present study explored the protective efficacy of pGJA-P/VAX against cariogenic bacterial challenge. Groups of rats were orally challenged with S. mutans or Streptococcus sobrinus (S. sobrinus) and then immunized with pGJA-P/VAX or the vector pVAX1 intranasally. Serum IgG and salivary IgA antibody levels were assessed by an enzyme-linked immunosorbent assay and caries activity was evaluated by the Keyes method. The results showed that specific salivary IgA antibody responses were induced following intranasal vaccination with pGJA-P/VAX. Moreover, immunization with pGJA-P/VAX resulted in significantly reduced enamel and dentinal caries lesions in rats after S. mutans infection and significantly reduced enamel caries lesions after S. sobrinus infection. Thus, pGJA-P/VAX was not only protective toward S. mutans infection, but also provided cross-strain protection against S. sobrinus infection in rats.  相似文献   

2.
Early life vaccination is necessary to protect young children from dental caries. Our group had previously reported that a plasmid DNA vaccine pGJA-P/VAX against the glucosyltransferase (GTF) enzyme and cell surface antigen AgI/II (PAc) of Streptococcus mutans (S. mutans) elicited a specific and protective immunity in adult experimental animal models. In this report, early life immunization with the same plasmid was studied following intranasal (i.n.) and intramuscular (i.m.) delivery in murine models. The potential of inducing mucosal and systemic immune responses to special antigens was measured by ELISA. In addition, cytokine production and protection effectiveness against dental caries formation were also investigated. In the i.n. route, rats were primed when they were 5 days old, and boosted after 10 and 20 days with either plasmid pGJA-P/VAX–bupivacaine complexes, or pGJA-P/VAX alone, or empty vector. The pGJA-P/VAX–bupivacaine combination was able to mount the immune responses characterized by increased antibody levels of specific salivary IgA and serum IgG, preferential IFN-γ production and significant reduction in the dental caries lesions. In the i.m. route, rats were vaccinated with either pGJA-P/VAX alone or empty vector with the same immunization schedule as the i.n. route. Plasmid pGJA-P/VAX alone induced a significant increase in the serum IgG and IFN-γ production. However, it was not effective in eliciting specific salivary IgA and in decreasing the dental caries formation. All these findings indicate the feasibility of immunity with a targeted fusion DNA vaccine to a young immune system.  相似文献   

3.
Jia R  Guo JH  Fan MW  Bian Z  Chen Z  Fan B  Yu F  Xu QA 《Vaccine》2006,24(24):5192-5200
Enhancement of mucosal and systemic immune responses is still a challenge for the application of DNA vaccine. Here, we show anti-caries DNA vaccines, pGJA-P and pGJA-P/VAX, encoding Streptococcus mutans antigens fused to cytotoxic T lymphocyte antigen-4 (CTLA4), which binds to B7 molecule expressed on the surfaces of antigen-presenting cells. Rabbits and monkeys were immunized via intranasal or intramuscular routes. The fusion vaccine induced accelerated and increased specific antibody responses in serum and saliva compared with non-fusion DNA vaccine in rabbits. Significant specific serum IgG and salivary IgA levels could be detected in fusion vaccine-immunized monkeys. Therefore, this study demonstrates that fusing antigens to CTLA4 results in enhancing immune efficacy and strongly suggests that it may represent a promising approach to prevent dental caries or other mucosal infectious diseases. These findings also suggest that CTLA4 fusion anti-caries DNA vaccine may be effective immunogen in primates.  相似文献   

4.
Protective immune responses in shrimp induced by DNA vaccines against white spot syndrome virus (WSSV) with intramuscular injection have been reported in recent reports. In this study, we investigated the utilities of attenuated Salmonella enterica serovar Typhimurium (Salmonella typhimurium) as a bactofection vehicle for the oral delivery of a DNA vaccine plasmid to crayfish (Cambarus clarkii). The DNA vaccine plasmid pcDNA3.1-VP28, encoding viral envelope protein VP28, was transformed to an attenuated S. typhimurium strain SV4089 and the resulting recombinant bacteria named SV/pcDNA3.1-VP28 were used to orally immunize crayfish with coated feed. Successful delivery of the DNA vaccine plasmid was shown by the isolation of recombinant bacteria SV/pcDNA3.1-VP28 from the vaccinated crayfish. The distribution analysis of plasmid pcDNA3.1-VP28 in different tissues revealed the effective release of DNA vaccine plasmid into crayfish. RT-PCR and immunoflurescence results confirmed the expression of protein VP28 in the vaccinated crayfish. Challenge experiments with WSSV at 7, 15, 25 days post-vaccination demonstrated significant protection in immunized crayfish with relative survival rate 83.3%, 66.7% and 56.7%, respectively. Studies on stability and safety of SV/pcDNA3.1-VP28 showed the recombinant bacteria could exist in crayfish at least 7 days but not more than 10 days and without any observable harm to the host. Our study here demonstrates, for the first time, the ability of attenuated Salmonella as a live vector to orally deliver a DNA vaccine against WSSV into the arthropod crayfish and provides a new way to design more practical strategies for the control of WSSV and other invertebrate pathogens.  相似文献   

5.
DNA vaccination with plasmid has conventionally involved vectors designed for transient expression of antigens in injected tissues. Next generation plasmids are being developed for site-directed integration of transgenes into safe sites in host genomes and may provide an innovative approach for stable and sustained expression of antigens for vaccination. The goal of this study was to evaluate in vivo antigen expression and the generation of cell mediated immunity in mice injected with a non-integrating plasmid compared to a plasmid with integrating potential. Hyperactive piggyBac transposase-based integrating vectors (pmhyGENIE-3) contained a transgene encoding either eGFP (pmhyGENIE-3-eGFP) or luciferase (pmhyGENIE-3-GL3), and were compared to transposase-deficient plasmids with the same transgene and DNA backbone. Both non-integrating and integrating plasmids were equivalent at day 1 for protein expression at the site of injection. While protein expression from the non-integrating plasmid was lost by day 14, the pmhyGENIE-3 was found to exhibit sustained protein expression up to 28 days post-injection. Vaccination with pmhyGENIE-3-eGFP resulted in a robust CD8+ T cell response that was three-fold higher than that of non-integrating plasmid vaccinations. Additionally we observed in splenocyte restimulation experiments that only the vaccination with pmhyGENIE-3-eGFP was characterized by IFNγ producing CD8+ T cells. Overall, these findings suggest that plasmids designed to direct integration of transgenes into the host genome are a promising approach for designing DNA vaccines. Robust cell mediated CD8+ T cell responses generated using integrating plasmids may provide effective, sustained protection against intracellular pathogens or tumor antigens.  相似文献   

6.
Ashok MS  Rangarajan PN 《Vaccine》2002,20(11-12):1563-1570
We report the construction of chimeric DNA vaccine vectors in which secretory signal sequence derived from tissue plasminogen activator (TPA) was fused to the full length (pCMVTE) or 398 amino terminal amino acids (pCMVTdeltaE) of Japanese encephalitis virus (JEV) envelope (E) protein. Transfection studies indicate that E protein expressed from pCMVTdeltaE-transfected cells but not pCMVTE-transfected cells is secreted into the culture medium. Analysis of the potency of various DNA vaccine constructs in a murine intracerebral (i.c.) JEV challenge model indicates that pCMVTdeltaE confers the highest level (71%) of protection. Immunization with pCMVTdeltaE induces a mixed Th1 and Th2 T helper cell response while immunization with plasmids encoding nonsecretory forms of E protein induces a Th1 T helper response. Only low levels (<1:20) of virus neutralizing antibody titres were observed in DNA vaccinated mice which did not increase further after i.c. JEV challenge. Thus, immunization with a plasmid encoding secretory E protein results in an altered cytokine response and better protection against i.c. JEV challenge than that conferred by immunization with plasmids encoding nonsecretory forms of E protein. We also demonstrate that unlike peripheral JEV challenge, i.c. JEV challenge does not result in an increase in anamnestic antibody response suggesting that other components of immune system such as cytotoxic T cells and T helper cells contribute to protection against i.c. JEV challenge of DNA vaccinated mice.  相似文献   

7.
Fló J 《Vaccine》2003,21(11-12):1239-1245
At present, the significance of antibody for protection of the female genital tract against infection with HSV-2 remains controversial.In the present study, the ability of a DNA vaccine encoding different forms of glycoprotein D (gD) of herpes simplex virus-2 (HSV-2) to induce simultaneously cellular and humoral responses was evaluated. Mice immunized with a plasmid encoding full length gD (pgD) developed a strong cellular immune response but weak antibody titers in serum and vaginal washings. On the other hand, mice immunized with a plasmid encoding soluble form of gD (pdeltagD) showed high titers of antibodies but a very weak cell-mediated immune response. When mice were immunized simultaneously with both plasmids, cellular and humoral immune responses were elicited. This mice showed neutralizing antibodies in serum and vaginal washings as well as a high number of IFN-gamma secreting cells in spleen. When challenged with 50 lethal doses of virus, mice immunized with pgD along with pdeltagD showed a more complete protection than mice immunized with pgD alone. Collectively these results suggest that neutralizing antibodies help cell-mediated immune response for the protection against HSV-2 infection.  相似文献   

8.
Resistance to chloramphenicol was reported in Salmonella Typhi in 1950 but it was not until 22 years later that the first outbreaks of chloramphenicol-resistant typhoid fever occurred. Multidrug-resistant (MDR) Salmonella Typhi emerged in the 1980s and today has an almost worldwide distribution. Genome analysis of Salmonella Typhi strain CT18, an MDR isolate from a patient admitted to The Centre for Tropical Diseases, Ho Chi Minh City, Viet Nam, in December 1993 revealed that the resistance plasmid pHCM1 is very closely related to plasmid R27 which was first isolated in 1961. There is a core region shared by the two plasmids with five regions of variation. Two of these regions contain the genes encoding resistance. The largest region is 34.955 kbp in length, is bordered by two almost identical IS10 elements and contains several integron-like structures including a truncated Tn10 element. The second region is 14.75I kbp and encodes a trimethoprim-resistance gene, dfrA14, associated with a class one integrase. Restriction enzyme analysis has shown that the variation in Salmonella Typhi plasmids, collected during the emergence of resistant Salmonella Typhi in Viet Nam, maps to five variable regions. These regions appear to be hot spots for DNA acquisition in IncHI1 plasmids.  相似文献   

9.
Clostridium perfringens is an important cause of foal necrotizing enteritis and canine acute hemorrhagic diarrhea. A major virulence determinant of the strains associated with these diseases appears to be a beta-sheet pore-forming toxin, NetF, encoded within a pathogenicity locus (NetF locus) on a large tcp-conjugative plasmid. Strains producing NetF also produce the putative toxin NetE, encoded within the same pathogenicity locus, as well as CPE enterotoxin and CPB2 on a second plasmid, and sometimes the putative toxin NetG within a pathogenicity locus (NetG locus) on another separate large conjugative plasmid. Previous genome sequences of two netF-positive C. perfringens showed that they both shared three similar plasmids, including the NetF/NetE and CPE/CPB2 toxins-encoding plasmids mentioned above and a putative bacteriocin-encoding plasmid. The main purpose of this study was to determine whether all NetF-producing strains share this common plasmid profile and whether their distinct NetF and CPE pathogenicity loci are conserved. To answer this question, 15 equine and 15 canine netF-positive isolates of C. perfringens were sequenced using Illumina Hiseq2000 technology. In addition, the clonal relationships among the NetF-producing strains were evaluated by core genome multilocus sequence typing (cgMLST).The data obtained showed that all NetF-producing strains have a common plasmid profile and that the defined pathogenicity loci on the plasmids are conserved in all these strains. cgMLST analysis showed that the NetF-producing C. perfringens strains belong to two distinct clonal complexes. The pNetG plasmid was absent from isolates of one of the clonal complexes, and there were minor but consistent differences in the NetF/NetE and CPE/CPB2 plasmids between the two clonal complexes.  相似文献   

10.
The development of an effective vaccine against Toxoplasma gondii infection is an important issue due to the seriousness of the related public health problems, and the economic importance of this parasitic disease worldwide. Rhoptry neck proteins (RONs) are components of the moving junction macromolecular complex formed during invasion. The aim of this study was to evaluate the vaccine potential of RON4 using two vaccination strategies: DNA vaccination by the intramuscular route, and recombinant protein vaccination by the nasal route. We produced recombinant RON4 protein (RON4S2) using the Schneider insect cells expression system, and validated its antigenicity and immunogenicity. We also constructed optimized plasmids encoding full length RON4 (pRON4), or only the N-terminal (pNRON4), or the C-terminal part (pCRON4) of RON4. CBA/J mice immunized with pRON4, pNRON4 or pCRON4 plus a plasmid encoding the granulocyte-macrophage-colony-stimulating factor showed high IgG titers against rRON4S2. Mice immunized by the nasal route with rRON4S2 plus cholera toxin exhibited low levels of anti-RON4S2 IgG antibodies, and no intestinal IgA antibodies specific to RON4 were detected. Both DNA and protein vaccination generated a mixed Th1/Th2 response polarized towards the IgG1 antibody isotype. Both DNA and protein vaccination primed CD4+ T cells in vivo. In addition to the production of IFN-γ, and IL-2, Il-10 and IL-5 were also produced by the spleen cells of the immunized mice stimulated with RON4S2, suggesting that a mixed Th1/Th2 type immune response occurred in all the immunized groups. No cytokine was detectable in stimulated mesenteric lymph nodes from mice immunized by the nasal route. Immune responses were induced by both DNA and protein vaccination, but failed to protect the mice against a subsequent oral challenge with T. gondii cysts. In conclusion, strategies designed to enhance the immunogenicity and to redirect the cellular response towards a Th1 type response against RON4 could lead to more encouraging results.  相似文献   

11.
In this work we have tested the in vivo antiviral activity of type I interferons (IFNs) in Atlantic salmon by injecting presmolts intramuscularly (i.m.) with plasmids encoding IFNa1, IFNb or IFNc under the control of a CMV promoter, and measured expression of antiviral genes in organs and protection against infection with infectious salmon anemia virus (ISAV) infection. All three IFN plasmids induced expression of antiviral genes (Mx, Viperin, ISG15 and IFIT5) at the muscle injection site while the control plasmid had little effect. Only IFNb and IFNc plasmids induced expression of antiviral genes in head kidney, liver and heart. This suggests that IFNb and IFNc are distributed systemically while IFNa1 is active only at the injection site. Injection of IFNc plasmid was found to induce expression of antiviral genes and receptors for virus RNA (RIG-I, TLR3 and TLR7) in head kidney from 1 to at least 8 weeks. Immunoblotting showed increased expression of ISG15 and Mx protein in liver with time during this time period. Challenge of presmolts with ISAV 8 weeks after injection of IFN plasmids, showed strong protection of the IFNc plasmid injected fish, low protection of the IFNb plasmid injected fish and no protection of the IFNa1 plasmid injected fish. Clues to the difference in protection obtained with IFNb and IFNc plasmids were found by immunohistochemical and immunoblot studies of Mx protein, which indicated that IFNc plasmid stimulated stronger Mx protein expression in heart tissues and liver endothelial cells than IFNb plasmid. Taken together, these data suggest that i.m. injection of the IFNc expression plasmid may be a new method for protecting Atlantic salmon against virus infection.  相似文献   

12.
The potent antimicrobial effects of antimicrobial photodynamic therapy (aPDT) with visible light plus water-filtered infrared-A irradiation and natural compounds as photosensitizers (PSs) have recently been demonstrated. The aim of this study was to obtain information on the antimicrobial effects of aPDT with mother juices against typical cariogenic oral Streptococcus pathogens in their planktonic form and determine its eradication potential on total human salivary bacteria from volunteers. Mother juices of pomegranate, bilberry, and chokeberry at different concentrations were used as PSs. The unweighted (absolute) irradiance was 200 mW cm−2, applied five minutes. Planktonic cultures of Streptococcus mutans and Streptococcus sobrinus and total mixed bacteria from pooled saliva of volunteers were treated with aPDT. Up to more than 5 log10 of S. mutans and S. sobrinus were killed by aPDT with 0.4% and 0.8% pomegranate juice, 3% and 50% chokeberry juice, and 12.5% bilberry juice (both strains). Concentrations of at least 25% (pomegranate) and >50% (chokeberry and bilberry) eradicated the mixed bacteria in saliva samples. This pilot study has shown that pomegranate mother juice is superior to the berry juices as a multicomponent PS for killing pathogenic oral bacteria with aPDT.  相似文献   

13.
The present study was conducted mainly to evaluate the contribution of the cellular and the humoral responses in protection conferred by the MIC3 DNA vaccine (pMIC3i) that was proved as a potent vaccine against toxoplasmosis. We performed the adoptive transfer of CD4+ and CD8+ T lymphocytes from pMIC3i immunized mice to naive ones and the role of humoral immunity was evaluated by in vitro invasion assays. We also constructed plasmids encoding the EGF-like domains and the Lectin-like domain of MIC3, to define which domains of MIC3 are involved in the protection. Furthermore, the adjuvant effect of the GM-CSF-expressing vector (granulocyte-macrophage colony-stimulating factor) required the precise temporal and spatial codelivery of GM-CSF with antigen, thus, we constructed a bicistronic plasmid expressing MIC3 and GM-CSF. In conclusion, the protection induced by pMIC3i was mainly mediated by CD4+ and CD8+ T lymphocytes and both EGF and Lectin domains of MIC3 conferred protection. Furthermore, the codelivery of GM-CSF by a bicistronic plasmid appeared to be a most effective way for enhancing the adjuvant properties of GM-CSF.  相似文献   

14.
The present study utilizes an in vivo murine tumor expressing human Her-2/neu to evaluate potential Her-2/neu vaccines consisting of either full length or various subunits of Her-2/neu delivered in either protein or plasmid DNA form. Our results demonstrate that protective immunity against Her-2/neu-expressing tumor challenge can be achieved by vaccination with plasmid DNA encoding either full length or subunits of Her-2/neu. Partial protective immunity was also observed following vaccination with the intracellular domain (ICD), but not extracellular domain (ECD), protein subunit of Her-2/neu. The mechanism of protection elicited by plasmid DNA vaccination appeared to be exclusively CD4 dependent, whereas the protection observed with ICD protein vaccination required both CD4 and CD8 T cells.  相似文献   

15.
The use of live recombinant attenuated Salmonella vaccines (RASV) is a promising approach for controlling infections by multiple pathogens. The highly conserved extracellular domain of the influenza M2 protein (M2e) has been shown to provide broad spectrum protection against multiple influenza subtypes sharing similar M2e sequences. An M2e epitope common to a number of avian influenza subtypes was inserted into the core antigen of woodchuck hepatitis virus and expressed in two different recombinant attenuated Salmonella Typhimurium strains. One strain was attenuated via deletion of the cya and crp genes. The second strain was engineered to exhibit a programmed delayed lysis phenotype. Both strains were able to produce both monomeric fusion proteins and fully assembled core particles. Mice orally immunized with the strain exhibiting delayed lysis induced significantly greater antibody titers than the Δcya Δcrp strain and provided moderate protection against weight loss to a low level challenge with the influenza strain A/WSN/33 modified to express the M2e sequence common to avian viruses. Further studies indicated that the Salmonella expressed core antigen induced comparable antibody levels to the purified core antigen injected with an alum adjuvant and that both are able to reduce viral replication in the lungs. To our knowledge this is the first report demonstrating Salmonella-mediated delivery of influenza virus M2e protein in a mammalian host to induce a protective immune response against viral challenge.  相似文献   

16.
Mucosal immune responses act as the first line of defense against dental caries. In this study, an optimal vaccination strategy was developed to enhance anti-caries mucosal immune responses. Mice and rats were vaccinated intranasally firstly with plasmid pCIA-P encoding PAc antigen of Streptococcus mutans and then with rPAc, or with pCIA-P for twice, or with rPAc protein for twice, respectively. The potential of inducing mucosal and systemic immune responses to special antigens was measured by ELISA. In addition, antibody type, cytokine production and protection effectiveness against dental caries were also evaluated. Although all immunized groups developed immune responses, the antibody responses in the DNA prime–protein boost group were stronger compared with those elicited by either the DNA vaccine or the protein vaccine. In particular, the Th1-biased response that was established by the DNA immunization was diverted to Th1/Th2-mixed response following the rPAc protein boost. Moreover, protection against S. mutans challenge was obtained in the rats treated with the DNA prime–protein boost regimen, as shown by a significant reduction in dental caries lesion, compared with the control groups immunized with the DNA or protein only. All these findings may provide useful information about effective mucosal vaccines against dental caries.  相似文献   

17.
Konishi E  Ajiro N  Nukuzuma C  Mason PW  Kurane I 《Vaccine》2003,21(25-26):3675-3683
Mice immunized with a plasmid DNA encoding the premembrane (prM) and envelope (E) proteins of Japanese encephalitis (JE) virus (designated pcJEME) produce neutralizing antibodies and are protected from JE. To determine the role of the immune response to other viral proteins in protection, we constructed plasmid DNAs encoding other JE virus proteins and made a direct comparison among these plasmids using a mouse model. Cytotoxic T lymphocytes (CTLs) were induced by plasmids encoding capsid (C) or nonstructural proteins, NS1, NS2A, NS2B, NS3 or NS5. However, these plasmids provided only a partial protection against intraperitoneal challenge with a lethal dose of JE virus, whereas mice immunized with pcJEME were fully protected. In mice inoculated with CTL-inducing plasmids, high virus titers were detected in plasma immediately (1h) following challenge and in brain on day 4 post-challenge, but no virus infectivity was detected in plasma and brain of pcJEME-immunized mice during the 5 days following challenge. These results indicate that protection provided by the prM/E-encoding DNA consists of neutralizing antibody that prevents virus dissemination from the peripheral site to the brain, and that this antibody-mediated mechanism of protection is more efficient than the immunity induced by plasmids that generate CTL responses capable of killing JE virus-infected cells.  相似文献   

18.
In this work, we have investigated the immune response in pigs to two recombinant plasmids containing immunodominant neutralizing antibody epitopes of foot-and-mouth disease virus structural protein (VP1) coexpressed with viral non-structural proteins as a source of T cell epitopes. The plasmid pcDNA3.1/3D15 contained a sequence coding for the 3D polymerase upstream of a sequence coding for peptide FMDV15, a peptide derived from VP1, previously shown to stimulate protective immunity to foot-and-mouth disease virus (FMDV), that consisted of the carboxy terminal peptide [VP1(200-213)] linked by ProProSer to the "loop" peptide [VP1(143-160)] and terminating in CysGly. The plasmid, pcDNA3.1/2B15 contained a sequence coding for the non-structural protein 2B, and the same FMDV15 peptide sequence. Pigs injected with both constructs showed antibody and T cell responses to 3D and 2B, but not to the FMDV15 peptide. Additionally, delayed type hypersensitivity responses were observed in some cases to both 3D or 2B and to FMDV virus. Finally, no protection was seen against FMDV infection in animals immunized with either of the two FMDV DNA constructs. The additional co-immunization of plasmids encoding for GMCSF did not result in any significant change in the immune responses to the plasmids encoding for FMDV. This work gives some optimism for the construction of a DNA vaccine for FMDV in the future.  相似文献   

19.
In this work, the cDNA encoding a novel P-II type metalloproteinase from Bothrops asper venom glands was cloned, sequenced and used for DNA immunization of animals with accelerated DNA-coated tungsten microparticles and the helius Gene Gun system. Specific antibodies against B. asper venom antigens were induced in mice co-immunized with the plasmid encoding the P-II metalloproteinase together with an expression plasmid encoding the murine IL-2. Similarly, specific antibodies against B. asper venom antigens were also induced in a horse co-immunized with the plasmid encoding the P-II metalloproteinase, together with a plasmid encoding the equine IL-6. The equine antibodies induced by immunization with the P-II metalloproteinase encoding plasmid cross react with several proteins of B. asper, Crotalus durissus durissus, and Lachesis stenophrys venoms in western blot, demonstrating antigenic similarity between the cloned metalloproteinase and other metalloproteinases present in these venoms. Furthermore, the equine antibodies induced by immunization with the P-II metalloproteinase encoding plasmid completely neutralized the hemorrhagic activity of the whole B. asper venom and partially the hemorrhagic activity of C. durissus durissus venom. The neutralizing ability of the produced antibodies raises, for the first time, the possibility of developing therapeutic antivenoms in horses by DNA immunization using tungsten microparticles.  相似文献   

20.
Hsieh MK  Wu CC  Lin TL 《Vaccine》2006,24(47-48):6955-6965
The purpose of the present study was to determine whether DNA vaccination by co-administration of DNA coding for chicken interferon-gamma (IFN-gamma) gene and DNA encoding for the VP243 gene of IBDV could enhance immune response and protection efficacy of chickens against challenge by IBDV. Plasmids carrying VP243 gene of IBDV strain variant E (VE) (P/VP243/E) and chicken IFN-gamma gene (P/cIFN-gamma) were constructed, respectively. One-day-old chickens were intramuscularly injected with P/VP243/E, or P/cIFN-gamma, or both once, twice, or three times into the thigh muscle of one leg or the thigh muscles of two separate legs at weekly intervals. Chickens were orally challenged with IBDV strain VE at 3 weeks of age and observed for 10 days. Chickens receiving two plasmids in the same site two times had significantly higher (P<0.05) bursal lesion scores and significantly lower (P<0.05) bursa weight/body weight ratios than those that only received P/VP243/E two or three times. Chickens inoculated with two plasmids separately in the thigh muscles of different legs or P/VP243/E two times had 33-50% protection and those receiving two plasmids in the same sites did not have any protection against IBD. The enzyme-linked immunosorbent assay (ELISA) and virus neutralization (VN) titers to IBDV of chickens in the groups with three doses of P/VP243/E were significantly higher (P<0.05) than those in groups receiving two doses of P/VP243/E or P/VP243/E and P/cIFN-gamma. Chickens protected by DNA vaccination did not have detectable IBDV antigen in the bursae as determined by immunofluorescent antibody assay (IFA). The results indicated that co-administration of plasmid encoding chicken IFN-gamma gene with plasmid encoding a large segment gene of the IBDV did not enhance immune response and protection against challenge by IBDV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号