首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cyanobacterial toxin cylindrospermopsin (CYN) is widely distributed in German lakes, but volumetric data for risk assessment are lacking and it is unclear which cyanobacterial species produce CYN in Europe. We therefore analyzed CYN concentration and cyanobacterial composition of 21 German lakes in 2005. CYN was detected in 19 lakes (102 of 115 samples). In total, 45 samples contained particulate CYN only, and 57 contained both dissolved and particulate CYN. The concentrations were 0.002-0.484 microg L(-1) for particulate CYN and 0.08-11.75 microg L(-1) for dissolved CYN with a maximum of 12.1 microg L(-1) total CYN. A drinking water guideline value of 1 microg L(-1) proposed by Humpage and Falconer [2003. Oral toxicity of the cyanobacterial toxin CYN in male Swiss albino mice: determination of no observed adverse effect level for deriving a drinking water guideline value. Environ. Toxicol. 18, 94-103] was exceeded in 18 samples from eight lakes due to high concentrations of dissolved CYN. CYN occurrence in the German lakes could not be ascribed to the three known CYN-producing species Cylindrospermopsis raciborskii, Anabaena bergii and Aphanizomenon flos-aquae, which were detected in some lakes in low abundances. The highest correlation coefficients were observed between particulate CYN and the native Aphanizomenon gracile. It occurred in 98 CYN-positive samples, was the most abundant Nostocales and was the only Nostocales in five samples. This indicates that A. gracile is a potential CYN producer in German lakes.  相似文献   

2.
The toxin cylindrospermopsin (CYN) is produced by a variety of cyanobacterial genera. One of these, Cylindrospermopsis raciborskii, is generally assumed to be the source of CYN in lakes and rivers in Florida, USA. However, in this study, none of the eight Florida isolates of this species tested contained the genetic determinants involved in toxin production nor did they produce CYN. We show for the first time that Aphanizomenon ovalisporum isolated from a pond in this state has the genes putatively associated with CYN production. Analysis by liquid chromatography with mass spectrometric detection (LC/MS) revealed that it produced CYN in the range of 7.39-9.33 microg mg(-1) freeze-dried cells. 16S rDNA sequences of this strain showed 99.6% and 99.9% identity to published A. ovalisporum and Anabaena bergii 16S sequences, respectively. These results help to explain the general lack of a defined relationship between the abundance of C. raciborskii in freshwater ecosystems of Florida and observed concentrations of CYN. The latter observation raises the potential that previous reports of CYN may be coincidental with unrecorded presence of another CYN-producing species.  相似文献   

3.
Cylindrospermopsin (CYN) is a potent hepatotoxin produced by different cyanobacteria of the order Nostocales. Questions of major concern are: which species produce CYN, which are the seasonal patterns of CYN dynamics and how are they regulated? Therefore, we studied for the first time the seasonal dynamics of particulate and dissolved CYN concentrations, cyanobacterial abundance and environmental factors in two German lakes over 2 years. Total CYN reached maximum concentrations of 0.34 and 1.80 μg L−1 in Melangsee and Langer See, respectively. In both lakes, maxima of the dissolved CYN fraction occurred later in the season than those of the particulate fraction, and it reached higher concentrations. This indicates that CYN is poorly decomposed and accumulates in the water. The cyanobacterial community in both lakes included several potentially CYN-producing species that did not correlate with CYN concentrations. Significant correlations between the particulate CYN concentrations and species biovolume were only found for Aphanizomenon gracile (rs = 0.803) in Langer See indicating that this species is a CYN producer. Different correlations of CYN with abiotic factors in the two lakes indicate the presence of further undetected CYN producers as well as different regulation mechanisms of their dynamics and the variability of CYN.  相似文献   

4.
The cyanotoxin cylindrospermopsin (CYN) is produced by several species of cyanobacteria and can be persistent in drinking waters supplies, which is of major concern to water authorities because of its potential to severely compromise human health. Consequently, there is a need to fully understand the persistence of CYN in water supplies, in particular, to determine whether this toxin is readily degraded by endemic aquatic organisms. This study provides insights into the environmental factors that can influence the biodegradation of this toxin in Australian drinking water supplies. Biodegradation of CYN was only evident in water supplies that had a history of toxic Cylindrospermopsis raciborskii blooms. In addition, lag periods were evident prior to the onset of biodegradation; however, repeated exposure of the endemic organisms to CYN resulted in substantial decreases in the lag periods. Furthermore, the concentration of CYN was shown to influence biodegradation with a near linear relationship (R(2) of 0.9549) existing between the biodegradation rate and the initial CYN concentration. Temperature was also shown to affect the biodegradation of CYN, which is important since CYN is now being detected in more temperate climates. The presence of copper-based algicides inhibited CYN degradation, which has significant implications since copper-based algicides are commonly used to control cyanobacterial growth in water bodies. The results from this study indicate that the biodegradation of CYN in natural water bodies is a complex process that can be influenced by many environmental factors, some of which include CYN concentration, temperature, and the presence of copper-based algicides.  相似文献   

5.
Cylindrospermopsis raciborskii, a freshwater cyanobacterium of tropical origin, is not only increasingly found in (sub) tropical water bodies, but also in temperate regions. Since this species may produce potent toxins such as cylindrospermopsin (CYN) and paralytic shellfish poisons, its massive occurrence in water bodies used as drinking water sources or for recreation is of major concern. The proliferation of C. raciborskii in German water bodies has been documented for the past decade. We investigated the occurrence of CYN in field populations and isolates of C. raciborskii from two lakes, and assessed the toxicity of culture isolates using the mouse bioassay, primary rat hepatocytes and human derived cell lines. We show for the first time the occurrence of CYN in German water bodies. None of seven isolates of C. raciborskii contained CYN, however, all isolates were toxic to primary rat hepatocytes, human hepatoblastoma (HEP-G2) and human colon adenocarcinoma (CACO-2) cells. Methanolic extracts were more toxic than aqueous extracts. Three isolates tested in the mouse bioassay were toxic at a concentration of 800 mg kg(-1) showing liver and spleen damage and inflammation of the intestine. These results give strong evidence that the German isolates of C. raciborskii contain currently not identified or unknown toxins.  相似文献   

6.
The lakes of northern Poland are among the recreational sites most valued by Polish and German holiday makers. Given the socioeconomic importance of these lakes, water quality should be maintained at high levels for such intensive recreational purposes. In 2002 studies of species composition, biomass, and toxin production by phytoplankton and the attendant physicochemical variables were performed in order to assess the risk of cyanobacterial blooms in selected northern lakes: Lakes Jeziorak, Jagodne, Szymoneckie, Szymon, Taltowisko, Siecino, and Trzesiecko. The research showed that total phosphorus (0.1 mg P/L) and total nitrogen (1.5 mg N/L) in the studied lakes almost exceeded the permissible limits for eutrophication of water bodies. Most phytoplankton samples were taken in late summer, when cyanobacteria were expected to reach their highest biomass. At the time of sampling most of the lakes were dominated by oscillatorialean and nostocalean species. Average chlorophyll-a concentration was higher than 10 microg/L in almost all the lakes studied, which corresponded with an average microcystin concentration in the range of 4-5 microg/L. The main microcystins in the analyzed samples were dmMC-RR, MC-RR, MC-YR, and MC-LR. The results demonstrated a potential for intensive cyanobacterial blooms to appear during the summer in northern Polish lakes. The levels of cyanobacteria found in the lakes investigated indicated that toxicity had reached the first-alert level according to World Health Organization recommendations. If microcystin-producing cyanobacteria dominate, with a microcystin concentration of 2-4 microg/L, symptoms of toxicity can appear in the swimmers most sensitive to exposure. Analysis of cyanobacterial assemblages in northern Polish lakes also indicated a significant presence of Aphanizomenon species including a Scandinavian species, A. skujae (Skuja) Kom.-Legn. & Cronb. Future investigations of Polish lakes also should assess neurotoxins and study the biology of their producers. This study was the first attempt to evaluate the potential danger of toxic cyanobacterial blooms in the lakes of northern Poland.  相似文献   

7.
Lake Dianchi is in Yunnan Province in southwestern China. In recent years, significant cyanobacterial blooms have occurred in this lake nearly every year because of eutrophication. Monitoring data for the past 5 years acquired by our research group showed that phytoplankton composition alternated between species of Microcystis sp. during warm seasons and those of Aphanizomenon sp. during cool seasons. In March 2003, when phytoplankton composition was highly dominated by Aphanizomenon sp., samples were taken from the lake for toxin detection and immediate strain isolation. A mouse bioassay with extracts from the lyophilized field material showed obvious intoxication from paralytic shellfish poisons (PSPs), and all mice died within 30 min. Further analysis of both field and isolated algal strain Aphanizomenon DC-1 by the postcolumn HPLC-FLD method confirmed its PSP-producing ability. The analogues found in the extracts from the field material were neoSTX, dcSTX, and dcGTX3, with contents of 2.279, 1.135, and 0.547 ng/mg DW, respectively. Under laboratory culture condition, toxin content in the Aphanizomenon strain DC-1 varied greatly during different growth phases, with two peaks: in the early-exponential and late-stationary growth phases. When the culture grew at a relatively high rate during the mid- to late-exponential growth phase, toxin content declined gradually. Moreover, the types of toxin in the DC-1 strain varied greatly during a single culture cycle. The HPLC results showed that dcSTX was the only toxin isomer detected throughout the culture period, and its level remained stable. On the other hand, dcGTX2 and GTX4 were the major toxins during the early-exponential and stationary phases, respectively. This article presents the first data on the identification and detection of paralytic shellfish toxins from cyanobacteria in Lake Dianchi. As far as we know, this is also the first report of this type of toxin in inland water bodies in China. Our study indicates the threat associated with PSP toxins in Lake Dianchi and suggests that necessary measures and programs for control are urgently needed to prevent the spread of toxic cyanobacterial blooms.  相似文献   

8.
The occurrence of the cyanobacterial toxin cylindrospermopsin (CYN) in freshwater reservoirs is a common phenomenon. However, the biodegradation of this toxin in environmental samples has been observed only occasionally. In this work the biodegradation ability of cylindrospermopsin was investigated based on isolates from lakes with previous cyanotoxin history. Bacterial strains were identified based on the 16S rDNA and rpoD gene comparison. CYN biodegradation was monitored using the HPLC method. The R6 strain identified as Aeromonas sp. was documented as being capable of CYN removal. This biodegradation was dependent on the pH and temperature. Additionally, the stimulation of the growth of the R6 strain in the presence of CYN was indicated. Our discovery supports the hypothesis that (in analogy to the well-known phenomenon of microcystin biodegradation) in lakes dominated by potential CYN-producing cyanobacteria, the processes of microbial utilization of this toxin may occur.  相似文献   

9.
In Australian freshwaters, Anabaena circinalis, Microcystis spp. and Cylindrospermopsis raciborskii are the dominant toxic cyanobacteria. Many of these surface waters are used as drinking water resources. Therefore, the National Health and Medical Research Council of Australia set a guideline for MC-LR toxicity equivalents of 1.3 microg/l drinking water. However, due to lack of adequate data, no guideline values for paralytic shellfish poisons (PSPs) (e.g. saxitoxins) or cylindrospermopsin (CYN) have been set. In this spot check, the concentration of microcystins (MCs), PSPs and CYN were determined by ADDA-ELISA, cPPA, HPLC-DAD and/or HPLC-MS/MS, respectively, in two water treatment plants in Queensland/Australia and compared to phytoplankton data collected by Queensland Health, Brisbane. Depending on the predominant cyanobacterial species in a bloom, concentrations of up to 8.0, 17.0 and 1.3 microg/l were found for MCs, PSPs and CYN, respectively. However, only traces (<1.0 microg/l) of these toxins were detected in final water (final product of the drinking water treatment plant) and tap water (household sample). Despite the low concentrations of toxins detected in drinking water, a further reduction of cyanobacterial toxins is recommended to guarantee public safety.  相似文献   

10.
Cylindrospermopsin (CYN) is a toxic alkaloid produced by several genera of freshwater cyanobacteria. This compound has been implicated in outbreaks of human sickness and the death of domestic and wild animals. Given that several of the cyanobacterial genera known to produce CYN are common components of the phytoplankton of freshwaters including aquaculture facilities, we studied the accumulation of CYN in the freshwater mussel (swan mussel) Anodonta cygnea. Anodonta were exposed to CYN-producing cultures of the cyanobacterium Cylindrospermopsis raciborskii for 16 days and were found to accumulate the toxin to concentrations up to 2.52 microg g tissue dry weight(-1). There was considerable variation in the concentrations of CYN detected in different parts of the body. At the end of a 2-week accumulation period the distribution of CYN in the body of Anodonta was as follows: haemolymph (68.1%), viscera (23.3%), foot and gonad (7.7%) and mantle (0.9%). No CYN was detected in the gills or adductor muscle of any animals. Following a 2-week depuration period, approximately 50% of the toxin remained in the tissues. Based on the recently derived guideline value for CYN in human drinking water (1 microg l(-1)) and the concentrations of this compound in animal tissues reported here, there is a clear need for the increased monitoring of this compound in organisms grown for human and animal consumption.  相似文献   

11.
Three single-filament isolates of Aphanizomenon flos-aquae from two German lakes were found to produce remarkable amounts of the cyanobacterial hepatotoxin cylindrospermopsin (CYN). CYN-synthesis of the strains were evidenced both by LC-MS/MS analysis and detection of PCR products of gene fragments which are implicated in the biosynthesis of the toxin. The strains contain CYN in the range of 2.3-6.6 mg g(-1) of cellular dry weight. To our knowledge this is the first report of CYN in A. flos-aquae.  相似文献   

12.
Poisoning of humans resulting from consumption of water affected by the toxic cyanobacterium Cylindrospermopsis raciborskii was first reported almost 20 years ago from Palm Island, northern Queensland, Australia. Since that time a great deal has been learned about this organism and cylindrospermopsin (CYN), the toxin it produces. This article reviews the information now available to us. It summarizes aspects of the chemistry of the toxin-now known to be produced by some cyanobacterial species other than C. raciborskii-and its biosynthesis and chemical synthesis in vitro, as well as its detection and measurement by chemical and biological assay. Some of the factors affecting toxin production by cultured isolates of C. raciborskii are reviewed and the conditions that cause its release from the cells described. The occurrence of CYN in water bodies and the management strategies used to minimize the harmful effects of the toxin are outlined. These include a range of water-treatment practices now in place to remove CYN-producing organisms and/or to neutralize the toxin together with some management procedures that have been tried, with varying degrees of success, to prevent buildup of blooms of the offending organisms. Some of the public-health considerations arising from exposure to water supplies affected by CYN are summarized along with the risk factors and guidance values as they are currently applied. Among the more recent developments described are those that come from the application of molecular techniques for characterizing toxic and nontoxic strains and for exploring the genetic aspects of CYN production.  相似文献   

13.
M L Saker  G K Eaglesham 《Toxicon》1999,37(7):1065-1077
Redclaw crayfish, Cherax quadricarinatus harvested from an aquaculture pond infested by a bloom of the cyanobacterium Cylindrospermopsis raciborskii (order: Nostocales), were shown to accumulate the toxic alkaloid cylindrospermopsin. Pond water samples collected during the bloom contained 589 microg l(-1) of the toxin (93% in the cyanobacterial cells, 7% in the water). Crayfish from the pond contained cylindrospermopsin at concentrations of 4.3 microg g freeze dried hepatopancreas tissue and 0.9 microg g freeze dried muscle tissue. Trichomes of C. raciborskii were observed in gut contents of crayfish harvested during the cyanobacterial bloom, indicating that the most likely mechanism for accumulation of the toxin was by ingestion of cyanobacterial cells. Crayfish subjected to an extract of harvested bloom material under laboratory conditions for a period of 14 days were also found to accumulate cylindrospermopsin, indicating that this toxin is also absorbed into the tissues by direct uptake of the toxin in solution.  相似文献   

14.
Water bodies are routinely monitored for the presence of potentially toxic cyanobacteria; however, the methodology for confirming toxicity is currently complex and expensive. Here we describe the application of gene-based technology to rapidly identify cylindrospermopsin-producing cyanobacteria, specifically, Cylindrospermopsis raciborskii. A multiplex polymerase chain reaction (PCR) test was developed that simultaneously identified polyketide synthase (pks) and peptide synthetase (ps) determinants associated with cylindrospermopsin production and distinguished C. raciborskii from other cylindrospermopsin-producing cyanobacteria of the species Anabaena bergii and Aphanizomenon ovalisporum, by targeting the rpoC1 gene. Twenty-one C. raciborskii, 5 A. bergii, 10 Aph. ovalisporum isolates and 3 environmental samples all yielded PCR results consistent with their toxicological status, as assessed by high-performance liquid chromatography coupled to mass spectrometry or matrix-assisted laser desorption ionization-time-of-flight mass spectrometry, and C. raciborskii was always correctly identified. The PCR test is a rapid, reliable, and economical way of assessing the toxic potential of cyanobacterial blooms formed by these organisms.  相似文献   

15.
This article reports a light and electron microscopy investigation of the effects of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum ingestion on midgut and associated digestive diverticula of Daphnia magna. Additionally, survivorship and growth effects caused by feeding on cyanobacteria were assessed. Three cyanobacteria were used in the experiments: cylindrospermopsin (CYN)-producing C. raciborskii, CYN-producing A. ovalisporum and non-CYN-producing C. raciborskii. In order to discriminate between the alterations due to the low nutritional value of cyanobacteria and toxic effects, a control group was fed on the chlorophyte Ankistrodesmus falcatus and another control group was not fed. In the chlorophyte fed control, the epithelium lining the midgut and associated diverticula is mainly formed by strongly stained cells with an apical microvilli border. Nevertheless, unstained areas in which cell lyses had occurred were also observed. In the unfed control, the unstained areas became predominant due to an increment of cell lyses. All individuals fed on CYN-producing A. ovalisporum and some of those fed on non-CYN-producing C. raciborskii appear similar to the unfed control. However, some individuals fed on non-CYN-producing C. raciborskii showed similarities with the fed control. In contrast, the midgut and digestive diverticula of D. magna fed on CYN-producing C. raciborskii showed a widespread dissociation of epithelial cells, associated with severe intracellular disorganization, but cell lysis was less evident than in controls. These alterations cannot be attributed to CYN, because those effects were not induced by CYN-producing A. ovalisporum. Therefore, data suggest the production of another unidentified active metabolite by CYN-producing C. raciborskii, responsible for the disruption of cell adhesion in the epithelium of D. magna digestive tract. Data also show that the tested cyanobacteria are inadequate as food to D. magna, due to low nutritional value and toxic content.  相似文献   

16.
Cylindrospermopsin (CYN), a potent cyanobacterial hepatotoxin produced by Cylindrospermopsis raciborskii and other cyanobacteria, is regularly found in water supplies in many parts of the world, and has been associated with the intoxication of humans and livestock. In this study, Balb/c mice were injected via the intraperitoneal (IP) route with a single dose of 0.2 mg/kg CYN. Animals were sacrificed at 6, 12, 24, 48 and 72 h. DNA was isolated from the mouse livers, and examined for strand breakage by alkaline gel electrophoresis (pH 12). Significant DNA strand breakage was observed in the mouse liver exposed to CYN, suggesting that induction of DNA strand breakage is probably one of the key mechanisms for CYN genotoxicity.  相似文献   

17.
Massive cyanobacterial water blooms are serious environmental and health problems worldwide. While some cyanobacterial toxins such as peptide microcystins have been investigated extensively, other toxic components of cyanobacteria (e.g. lipopolysaccharides, LPS) are poorly understood. The present study characterized endotoxin activities of LPS isolated from (i) laboratory cyanobacterial cultures, (ii) cyanobacterial water bloom samples dominated by Microcystis sp., Planktothrix sp., Aphanizomenon sp. and Anabaena sp., (iii) heterotrophic Gram-negative bacteria Escherichia coli, Kluyvera intermedia, Pseudomonas putida and Pseudomonas fluorescens and (iv) green alga Pseudokirchneriella subcapitata. Toxicity results derived with Limulus amebocyte lysate assay (LAL-test) showed that endotoxin activities of LPS from both cyanobacteria and heterotrophic bacteria were comparable and the values were within a similar range (1 x 10(3)-1 x 10(6) Endotoxin Units, EU, per mg of isolated LPS). The highest activities among the cyanobacterial samples were observed in the Aphanizomenon sp. dominated water bloom. The results also suggest generally higher endotoxin activities in complex natural samples than in laboratory cyanobacterial cultures. Further, experiments with the eukaryotic green alga P. subcapitata demonstrated a need for careful purification of the LPS extracts prior to testing with the LAL assay as several contaminants may overestimate endotoxin activities. This study shows relatively high pyrogenicity of LPS from various cyanobacteria. Further research should focus on detailed toxicological and ecotoxicological characterization of LPS in massive cyanobacterial water blooms.  相似文献   

18.
The aim of this study was early genetic identification of microcystin-producing cyanobacteria and monitoring their toxigenicity by determining toxin concentrations in three Polish lakes throughout the summer of 2004. The assessment of cyanobacterial blooms was carried out in shallow, eutrophic water bodies: Lake Jeziorak, Lake Bninskie, and Sulejow Reservoir. Samples for DNA, phycological, and toxin analyses were collected from July till October. Molecular analysis of the 16S rRNA region was used to detect cyanobacteria in water samples. The microscopic analysis was performed to investigate seasonal variation of phytoplankton. Cyanobacteria, with domination by Microcystis, Planktothrix, and Planktolyngbya were detected during the whole monitoring period in Sulejow Reservoir, Lake Bninskie, and Lake Jeziorak, respectively. The presence and identification of toxic strains in water bodies was studied by PCR amplification of mcy genes in the microcystis synthesis pathway. The presence of the mcyA, mcyB, mcyD, and mcyE genes in water samples indicated the genetic potential to produce microcystins. Toxicity of water samples and microcystin concentrations were established by PPIA and HPLC, respectively. The maximum concentration of microcystins was 11.13 microg/L and 4.67 microg/L in samples dominated by P. agardhii and M. aeruginosa, respectively. Molecular analysis showed that toxigenic strains of cyanobacteria occurred in the three lakes throughout the summer season.  相似文献   

19.
Cylindrospermopsin (CYN) is a newly emerging carcinogenic alkaloid originally identified in tropical cyanobacteria Cylindrospermopsis raciborskii. Some recent studies reported production of this toxin also by other cyanobacteria in European countries. Here we report comparison of the immunochemical ELISA determination with the liquid chromatography/mass spectrometry (LC/MS) method for CYN analyses in the samples from the Czech Republic, Central Europe. We have analysed 56 samples of raw lake waters collected from 32 localities. CYN was found at 3 localities with Aphanizomenon sp. sub-dominated water blooms. Results of the ELISA and LC/MS showed good qualitative agreement. However, concentrations determined by ELISA (0.4-4 μg/L) were systematically higher than concentrations determined by LC/MS (0.01-0.3 μg/L). Differences between methods could be attributed to matrix effects (both in ELISA and LC/MS) or ELISA cross-reactivity with other unidentified derivatives of CYN. Our study demonstrates for the first time occurrence of CYN in the Central Europe. With respect to its suspected carcinogenicity, further research on distribution, concentrations and risks of this cyanobacterial toxin is needed.  相似文献   

20.
The cyanobacterial toxin Cylindrospermopsin (CYN), a potent protein synthesis inhibitor, is increasingly being found in freshwater bodies infested by cyanobacterial blooms worldwide. Moreover, it has been reported to be implicated in human intoxications and animal mortality. Recently, the alteration of the activity and gene expression of some glutathione related enzymes in tilapias (Oreochromis niloticus) exposed to a single dose of CYN has been reported. However, little is known about the effects induced by repeated doses of this toxin in tilapias exposed by immersion and the potential reversion of these biochemical alterations after two different depuration periods (3 or 7 days). In the present study, tilapias were exposed by immersion to repeated doses of a CYN-containing culture of Aphanizomenon ovalisporum during 14 days, and then were subjected to depuration periods (3 or 7 days) in clean water in order to examine the potential reversion of the effects observed. The activity and relative mRNA expression by real-time polymerase chain reaction (PCR) of the antioxidant enzymes glutathione peroxidase (GPx) and soluble glutathione-S-transferases (sGST), and also the sGST protein abundance by Western blot analysis were evaluated in liver and kidney of fish. Results showed significant alterations in most of the parameters evaluated and their recovery after 3 days (GPx activity, sGST relative abundance) or 7 days (GPx gene expression, sGST activity). These findings not only confirm the oxidative stress effects produced in fish by cyanobacterial cells containing CYN, but also show the effectiveness of depuration processes in mitigating the CYN-containing culture toxic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号