首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

PURPOSE

This study compared the effect of three intraoral repair systems on the bond strength between composite resin and zirconia core.

MATERIALS AND METHODS

Thirty zirconia specimens were divided into three groups according to the repair method: Group I- CoJet™ Repair System (3M ESPE) [chairside silica coating with 30 µm SiO2 + silanization + adhesive]; Group II- Ceramic Repair System (Ivoclar Vivadent) [etching with 37% phosphoric acid + Zirconia primer + adhesive]; Group III- Signum Zirconia Bond (Heraus) [Signum Zirconia Bond I + Signum Zirconia Bond II]. Composite resin was polymerized on each conditioned specimen. The shear bond strength was tested using a universal testing machine, and fracture sites were examined with FE-SEM. Surface morphology and wettability after surface treatments were examined additionally. The data of bond strengths were statistically analyzed with one-way ANOVA and Tamhane post hoc test (α=.05).

RESULTS

Increased surface roughness and the highest wettability value were observed in the CoJet sand treated specimens. The specimens treated with 37% phosphoric acid and Signum Zirconia Bond I did not show any improvement of surface irregularity, and the lowest wettability value were found in 37% phosphoric acid treated specimens. There was no significant difference in the bond strengths between Group I (7.80 ± 0.76 MPa) and III (8.98 ± 1.39 MPa). Group II (3.21 ± 0.78 MPa) showed a significant difference from other groups (P<.05).

CONCLUSION

The use of Intraoral silica coating system and the application of Signum Zirconia Bond are effective for increasing the bond strength of composite resin to zirconia.  相似文献   

2.

PURPOSE

The purpose of this study is to evaluate and compare the shear bond strength of the gingiva-colored composite resin and the tooth-colored composite resin to porcelain, metal and zirconia.

MATERIALS AND METHODS

Sixty cylindrical specimens were fabricated and divided into the following 6 groups (Group 1-W: tooth-colored composite bonded to porcelain, Group 1-P: gingiva-colored composite bonded to porcelain, Group 2-W: tooth-colored composite bonded to base metal, Group 2-P: gingiva-colored composite bonded to base metal, Group 3-W: toothcolored composite bonded to zirconia, Group 3-P: gingiva-colored composite bonded to zirconia). The shear bond strength was measured with a universal testing machine after thermocycling and the failure mode was noted. All data were analyzed using the two-way analysis of variance test and the Bonferroni post-hoc test at a significance level of 0.05.

RESULTS

The mean shear bond strength values in MPa were 12.39, 13.42, 8.78, 7.98, 4.64 and 3.74 for Group 1-W, 1-P, 2-W, 2-P, 3-W and 3-P, respectively. The difference between the two kinds of composite resin was not significant. The shear bond strength of Group 1 was the highest and that of Group 3 was the lowest. The differences among Group 1, 2 and 3 were all significant (P<.05).

CONCLUSION

The shear bond strength of the gingiva-colored composite was not less than that of the tooth-colored composite. Thus, repairing or fabricating ceramic restorations using the gingiva-colored composite resin can be regarded as a practical method. Especially, the prognosis would be fine when applied on porcelain surfaces.  相似文献   

3.

Objective

This study investigated the durability of repaired all-ceramic crowns after cyclic loading.

Material and methods

Eighty In-ceram zirconia crowns were fabricated to restore prepared maxillary premolars. Resin cement was used for cementation of crowns. Palatal cusps were removed to simulate fracture of veneering porcelain and divided into 4 groups (n = 20). Fracture site was treated before repair as follows: roughening with diamond bur, (DB); air abrasion using 50 µm Al2O3, (AA) and silica coating using Cojet system followed by silane application, (SC). Control group (CG) 20 specimens were left without fracture. Palatal cusps were repaired using composite resin. Specimens were stored in water bath at 37°C for one week. Ten specimens of each group were subjected to cyclic loading. Fracture load (N) was recorded for each specimen using a universal testing machine. Two-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) test (α=.05) were used for statistical analysis.

Results

There was statistically significant difference between control and tested groups, (p<0.001). Post Hoc analysis with the Tukey HSD test showed that cyclic loading fatigue significantly decreased means fracture load of control and test groups as follows (CG, 950.4±62.6 / 872.3±87.4, P = 0.0004), (DB, 624.2 ±38 / 425.5± 31.7, P <.001), (AA, 711.5 ±15.5 / 490 ± 25.2, p <0.001) and (SC, 788.7 ± 18.1 / 610.2 ± 25.2, P <.001), while silica coating and silane application significantly increased fracture load of repaired crowns (p<0.05).

Conclusion

Repair of fractured Inceram zirconia crowns after chairside treatment of the fracture site by silica coating and silane application could improve longevity of repaired In-ceram zirconia crowns.  相似文献   

4.

PURPOSE

This study evaluated the bond strength between porcelain denture teeth (Bioblend 43D) and four different polymerized denture resins (Lucitone 199, Palapress, Acron MC, Triad) with and without a bonding agent and after four different types of surface treatment (polished, HF etched, sandblasted, air-abraded).

MATERIALS AND METHODS

Central incisor porcelain denture teeth were divided into 32 groups of 5 each. Tensile bond strength (MPa) was determined using a testing machine at crosshead speed of 0.5 mm/min. Mean and standard deviation are listed. Data were analyzed by two-way ANOVA. Means were compared by Tukey-Kramer intervals at 0.05 significance level.

RESULTS

All surface treatment increased bond strength compared to polished surface and the highest bond strength was found with Palapress resin with etched porcelain surface (8.1 MPa). Bonding agent improved the bond strength of all denture resins to porcelain teeth. Superior bonding was found with Palapress and air-abraded porcelain (39 MPa).

CONCLUSION

Resins with different curing methods affect the bond strength of porcelain teeth to denture bases. Superior bonding was found with auto-polymerized resin (Palapress). Application of ceramic primer and bonding agent to porcelain teeth with and without surface treatment will improve the bond strength of all denture resins to porcelain teeth.  相似文献   

5.

Purpose of the Study:

It is difficult to achieve a reliable bond between the titanium and veneering porcelain. The aim of this study was to evaluate the bond strength between titanium ceramic crowns.

Materials and Methods:

The surfaces of titanium copings were divided in two groups. Group A sandblasted with 250 um (n = 10) and Group B without sandblasting (n = 10). Low-fusing porcelain was bonded over copings. A universal testing machine was used to determine the fracture load (N) of the crowns. All data were compared using Student''s t-test.

Results:

There was a significant difference in fracture toughness between two groups (P = 0.05). The mean value of fracture strength for Group A was 721.66 N and for Group B was 396.39 N.

Conclusions:

Sandblasting improves the bond strength between titanium, and ceramic, mechanical bonding plays a crucial role in the bonding between titanium and ceramic.Key Words: Bonding, fracture load, sandblasting, titanium  相似文献   

6.

STATEMENT OF PROBLEM

Zirconia-based restorations have the common technical complication of delamination, or porcelain chipping, from the zirconia core. Thus the shear bond strength between the zirconia core and the veneering porcelain requires investigation in order to facilitate the material''s clinical use.

PURPOSE

The purpose of this study was to evaluate the bonding strength of the porcelain veneer to the zirconia core and to other various metal alloys (high noble metal alloy and base metal alloy).

MATERIAL AND METHODS

15 rectangular (4×4×9mm) specimens each of zirconia (Cercon), base metal alloy (Tillite), high noble metal alloy (Degudent H) were fabricated for the shear bond strength test. The veneering porcelain recommended by the manufacturer for each type of material was fired to the core in thickness of 3mm. After firing, the specimens were embedded in the PTFE mold, placed on a mounting jig, and subjected to shear force in a universal testing machine. Load was applied at a crosshead speed of 0.5mm/min until fracture. The average shear strength (MPa) was analyzed with the one-way ANOVA and the Tukey''s test (α= .05). The fractured specimens were examined using SEM and EDX to determine the failure pattern.

RESULTS

The mean shear strength (± SD) in MPa was 25.43 (± 3.12) in the zirconia group, 35.87 (± 4.23) in the base metal group, 38.00 (± 5.23) in the high noble metal group. The ANOVA showed a significant difference among groups, and the Tukey''s test presented a significant difference between the zirconia group and the metal group. Microscopic examination showed that the failure primarily occurred near the interface with the residual veneering porcelain remaining on the core.

CONCLUSION

There was a significant difference between the metal ceramic and zirconia ceramic group in shear bond strength. There was no significant difference between the base metal alloy and the high noble metal alloy.  相似文献   

7.

PURPOSE

The purpose of this study was to investigate the impact of different surface treatment methods and thermal ageing on the bond strength of autopolymerizing acrylic resin to Co-Cr.

MATERIALS AND METHODS

Co-Cr alloy specimens were divided into five groups according to the surface conditioning methods. C: No treatment; SP: flamed with the Silano-Pen device; K: airborne particle abrasion with Al2O3; Co: airborne particle abrasion with silica-coated Al2O3; KSP: flamed with the Silano-Pen device after the group K experimental protocol. Then, autopolymerized acrylic resin was applied to the treated specimen surfaces. All the groups were divided into two subgroups with the thermal cycle and water storage to determine the durability of the bond. The bond strength test was applied in an universal test machine and treated Co-Cr alloys were analyzed by scanning electron microscope (SEM). Two-way analysis of variance (ANOVA) was used to determine the significant differences among surface treatments and thermocycling. Their interactons were followed by a multiple comparison'' test performed uing a post hoc Tukey HSD test (α=.05).

RESULTS

Surface treatments significantly increased repair strengths of repair resin to Co-Cr alloy. The repair strengths of Group K, and Co significantly decreased after 6,000 cycles (P<.001).

CONCLUSION

Thermocycling lead to a significant decrease in shear bond strength for air abrasion with silica-coated aluminum oxide particles. On the contrary, flaming with Silano-Pen did not cause a significant reduction in adhesion after thermocycling.  相似文献   

8.

PURPOSE

The porcelain fused to gold has been widely used as a restoration both with the natural esthetics of the porcelain and durability and marginal fit of metal casting. However, recently, due to the continuous rise in the price of gold, an interest towards materials to replace gold alloy is getting higher. This study compared the bond strength of porcelain to millingable palladium-silver (Pd-Ag) alloy, with that of 3 conventionally used metal-ceramic alloys.

MATERIALS AND METHODS

Four types of metal-ceramic alloys, castable nonprecious nickel-chrome alloy, castable precious metal alloys containing 83% and 32% of gold, and millingable Pd-Ag alloy were used to make metal specimens (n=40). And porcelain was applied on the center area of metal specimen. Three-point bending test was performed with universal testing machine. The bond strength data were analyzed with a one-way ANOVA and post hoc Scheffe''s tests (α=.05).

RESULTS

The 3-point bending test showed the strongest (40.42 ± 5.72 MPa) metal-ceramic bond in the nonprecious Ni-Cr alloy, followed by millingable Pd-Ag alloy (37.71 ± 2.46 MPa), precious metal alloy containing 83% of gold (35.89 ± 1.93 MPa), and precious metal alloy containing 32% of gold (34.59 ± 2.63 MPa). Nonprecious Ni-Cr alloy and precious metal alloy containing 32% of gold showed significant difference (P<.05).

CONCLUSION

The type of metal-ceramic alloys affects the bond strength of porcelain. Every metal-ceramic alloy used in this study showed clinically applicable bond strength with porcelain (25 MPa).  相似文献   

9.

PURPOSE

The aim of this study was to determine differences in shear bond strength to human dentin using immediate dentin sealing (IDS) technique compared to delayed dentin sealing (DDS).

MATERIALS AND METHODS

Forty extracted human molars were divided into 4 groups with 10 teeth each. The control group was light-cured after application of dentin bonding agent (Excite® DSC) and cemented with Variolink® II resin cement. IDS/SE (immediate dentin sealing, Clearfil™ SE Bond) and IDS/SB (immediate dentin sealing, AdapterTM Single Bond 2) were light-cured after application of dentin bonding agent (Clearfil™ SE Bond and Adapter™ Sing Bond 2, respectively), whereas DDS specimens were not treated with any dentin bonding agent. Specimens were cemented with Variolink® II resin cement. Dentin bonding agent (Excite® DSC) was left unpolymerized until the application of porcelain restoration. Shear strength was measured using a universal testing machine at a speed of 5 mm/min and evaluated of fracture using an optical microscope.

RESULTS

The mean shear bond strengths of control group and IDS/SE group were not statistically different from another at 14.86 and 11.18 MPa. Bond strength of IDS/SE group had a significantly higher mean than DDS group (3.14 MPa) (P < .05). There were no significance in the mean shear bond strength between IDS/SB (4.11 MPa) and DDS group. Evaluation of failure patterns indicates that most failures in the control group and IDS/SE groups were mixed, whereas failures in the DDS were interfacial.

CONCLUSION

When preparing teeth for indirect ceramic restoration, IDS with Clearfil™ SE Bond results in improved shear bond strength compared with DDS.  相似文献   

10.

PURPOSE

The objective of this study was to evaluate fracture strength of collarless metal-ceramic FPDs according to their metal coping designs.

MATERIALS AND METHODS

Four different facial margin design groups were investigated. Group A was a coping with a thin facial metal collar, group B was a collarless coping with its facial metal to the shoulder, group C was a collarless coping with its facial metal 1 mm short of the shoulder, and group D was a collarless coping with its facial metal 2 mm short of the shoulder. Fifteen 3-unit collarless metal-ceramic FPDs were fabricated in each group. Finished FPDs were cemented to PBT (Polybutylene terephthalate) dies with resin cement. The fracture strength test was carried out using universal testing machine (Instron 4465, Instron Co., Norwood MA, USA) at a cross head speed of 0.5 mm/min. Aluminum foil folded to about 1 mm of thickness was inserted between the plunger tip and the incisal edge of the pontic. Vertical load was applied until catastrophic porcelain fracture occurred.

RESULTS

The greater the bulk of unsupported facial shoulder porcelain was, the lower the fracture strength became. However, there were no significant differences between experimental groups (P > .05).

CONCLUSION

All groups of collarless metal-ceramic FPDs had higher fracture strength than maximum incisive biting force. Modified collarless metal-ceramic FPD can be an alternative to all-ceramic FPDs in clinical situations.  相似文献   

11.
Despite the advances in bonding materials, many clinicians today still prefer to place bands on molar teeth. Molar bonding procedures need improvement to be widely accepted clinically.

Objective

The purpose of this study was to evaluate the shear bond strength when an additional adhesive layer was applied on the occlusal tooth/tube interface to provide reinforcement to molar tubes.

Material and methods

Sixty third molars were selected and allocated to the 3 groups: group 1 received a conventional direct bond followed by the application of an additional layer of adhesive on the occlusal tooth/tube interface, group 2 received a conventional direct bond, and group 3 received a conventional direct bond and an additional cure time of 10 s. The specimens were debonded in a universal testing machine. The results were analyzed statistically by ANOVA and Tukey’s test (α=0.05).

Results

Group 1 had a significantly higher (p<0.05) shear bond strength compared to groups 2 and 3. No difference was detected between groups 2 and 3 (p>0.05).

Conclusions

The present in vitro findings indicate that the application of an additional layer of adhesive on the tooth/tube interface increased the shear bond strength of the bonded molar tubes.  相似文献   

12.

PURPOSE

The purpose of this study was to compare the fracture strength of the metal and the bond strength in metal-ceramic restorations produced by selective laser sintering (SLS) and by conventional casting (CAST).

MATERIALS AND METHODS

Non-precious alloy (StarLoy C, DeguDent, Hanau, Germany) was used in CAST group and metal powder (SP2, EOS GmbH, Munich, Germany) in SLS group. Metal specimens in the form of sheets (25.0 × 3.0 × 0.5 mm) were produced in accordance with ISO 9693:1999 standards (n=30). To measure the bond strength, ceramic was fired on a metal specimen and then three-point bending test was performed. In addition, the metal fracture strength was measured by continuing the application of the load. The values were statistically analyzed by performing independent t-tests (α=.05).

RESULTS

The mean bond strength of the SLS group (50.60 MPa) was higher than that of the CAST group (46.29 MPa), but there was no statistically significant difference. The metal fracture strength of the SLS group (1087.2 MPa) was lower than that of the CAST group (2399.1 MPa), and this difference was statistically significant.

CONCLUSION

In conclusion the balling phenomenon and the gap formation of the SLS process may increase the metal-ceramic bond strength.  相似文献   

13.

PURPOSE

Fracture of the veneering material of zirconia restorations frequently occurs in clinical situations. The purpose of this in vitro study was to compare the fracture strengths of zirconia crowns veneered with various ceramic materials by various techniques.

MATERIALS AND METHODS

A 1.2 mm, 360° chamfer preparation and occlusal reduction of 2 mm were performed on a first mandibular molar, and 45 model dies were fabricated in a titanium alloy by CAD/CAM system. Forty-five zirconia copings were fabricated and divided into three groups. In the first group (LT) zirconia copings were veneered with feldspathic porcelain by the layering technique. In the second group (HT) the glass ceramic was heat-pressed on the zirconia coping, and for the third group (ST) a CAD/CAM-fabricated high-strength anatomically shaped veneering cap was sintered onto the zirconia coping. All crowns were cemented onto their titanium dies with Rely X™ Unicem (3M ESPE) and loaded with a universal testing machine (Instron 5583) until failure. The mean fracture values were compared by an one-way ANOVA and a multiple comparison post-hoc test (α=0.05). Scanning electron microscope was used to investigate the fractured interface.

RESULTS

Mean fracture load and standard deviation was 4263.8±1110.8 N for Group LT, 5070.8±1016.4 for Group HT and 6242.0±1759.5 N for Group ST. The values of Group ST were significantly higher than those of the other groups.

CONCLUSION

Zirconia crowns veneered with CAD/CAM generated glass ceramics by the sintering technique are superior to those veneered with feldspathic porcelain by the layering technique or veneered with glass ceramics by the heat-pressing technique in terms of fracture strength.  相似文献   

14.

PURPOSE

This study evaluated the effectiveness of various methods for removing provisional cement from implant abutments, and what effect these methods have on the retention of prosthesis during the definitive cementation.

MATERIALS AND METHODS

Forty implant fixture analogues and abutments were embedded in resin blocks. Forty cast crowns were fabricated and divided into 4 groups each containing 10 implants. Group A was cemented directly with the definitive cement (Cem-Implant). The remainder were cemented with provisional cement (Temp-Bond NE), and classified according to the method for cleaning the abutments. Group B used a plastic curette and wet gauze, Group C used a rubber cup and pumice, and Group D used an airborne particle abrasion technique. The abutments were observed using a stereomicroscope after removing the provisional cement. The tensile bond strength was measured after the definitive cementation. Statistical analysis was performed using one-way analysis of variance test (α=.05).

RESULTS

Group B clearly showed provisional cement remaining, whereas the other groups showed almost no cement. Groups A and B showed a relatively smooth surface. More roughness was observed in Group C, and apparent roughness was noted in Group D. The tensile bond strength tests revealed Group D to have significantly the highest tensile bond strength followed in order by Groups C, A and B.

CONCLUSION

A plastic curette and wet gauze alone cannot effectively remove the residual provisional cement on the abutment. The definitive retention increased when the abutments were treated with rubber cup/pumice or airborne particle abraded to remove the provisional cement.  相似文献   

15.

PURPOSE

The aim of this study was to evaluate effect of different surface treatment methods on the bond strength between aged composite-resin core and luting agent.

MATERIALS AND METHODS

Seventy-five resin composites and also seventy-five zirconia ceramic discs were prepared. 60 composite samples were exposed to thermal aging (10,000 cycles, 5 to 55℃) and different surface treatment. All specimens were separated into 5 groups (n=15): 1) Intact specimens 2) Thermal aging-air polishing 3) Thermal aging- Er:YAG laser irradiation 4) Thermal aging- acid etching 5) Thermal-aging. All specimens were bonded to the zirconia discs with resin cement and fixed to universal testing machine and bond strength testing loaded to failure with a crosshead speed of 0.5 mm/min. The fractured surface was classified as adhesive failure, cohesive failure and adhesive-cohesive failure. The bond strength data was statistically compared by the Kruskal-Wallis method complemented by the Bonferroni correction Mann-Whitney U test. The probability level for statistical significance was set at α=.05.

RESULTS

Thermal aging and different surface treatment methods have significant effect on the bond strength between composite-resin cores and luting-agent (P<.05). The mean baseline bond strength values ranged between 7.07 ± 2.11 and 26.05 ± 6.53 N. The highest bond strength of 26.05 ± 6.53 N was obtained with Group 3. Group 5 showed the lowest value of bond strength.

CONCLUSION

Appropriate surface treatment method should be applied to aged composite resin cores or aged-composites restorations should be replaced for the optimal bond strength and the clinical success.  相似文献   

16.

PURPOSE

The purpose of this study was to evaluate the efficacy of two different metal conditioners for non-precious metal alloys for the bonding of porcelain to a cobalt-chromium (Co-Cr) alloy.

MATERIALS AND METHODS

Disk-shaped specimens (2.5×10.0 mm) were cast with Co-Cr alloy and used as adherend materials. The bonding surfaces were polished with a 600-grid silicon carbide paper and airborne-particle abraded using 110 µm alumina particles. Bonding specimens were fabricated by applying and firing either of the metal conditioners on the airborne-particle abraded surface, followed by firing porcelain into 5 mm in diameter and 3 mm in height. Specimens without metal conditioner were also fabricated. Shear bond strength for each group (n=8) were measured and compared (α=.05). Sectional view of bonding interface was observed by SEM. EDS analysis was performed to determine the chemical elements of metal conditioners and to determine the failure modes after shear test.

RESULTS

There were significant differences among three groups, and two metal conditioner-applied groups showed significantly higher values compared to the non-metal conditioner group. The SEM observation of the sectional view at bonding interface revealed loose contact at porcelain-alloy surface for non-metal conditioner group, however, close contact at both alloy-metal conditioner and metal conditioner-porcelain interfaces for both metal conditioner-applied groups. All the specimens showed mixed failures. EDS analysis showed that one metal conditioner was Si-based material, and another was Ti-based material. Si-based metal conditioner showed higher bond strengths compared to the Ti-based metal conditioner, but exhibited more porous failure surface failure.

CONCLUSION

Based on the results of this study, it can be stated that the application of metal conditioner is recommended for the bonding of porcelain to cobalt-chromium alloys.  相似文献   

17.

PURPOSE

To compare the shear bond strength of various veneering materials to grade II commercially pure titanium (CP-Ti).

MATERIALS AND METHODS

Thirty specimens of CP-Ti disc with 9 mm diameter and 10 mm height were divided into three experimental groups. Each group was bonded to heat-polymerized acrylic resin (Lucitone 199), porcelain (Triceram), and indirect composite (Sinfony) with 7 mm diameter and 2 mm height. For the control group (n=10), Lucitone 199 were applied on type IV gold alloy castings. All samples were thermocycled for 5000 cycles in 5-55℃ water. The maximum shear bond strength (MPa) was measured with a Universal Testing Machine. After the shear bond strength test, the failure mode was assessed with an optic microscope and a scanning electron microscope. Statistical analysis was carried out with a Kruskal-Wallis Test and Mann-Whitney Test.

RESULTS

The mean shear bond strength and standard deviations for experimental groups were as follows: Ti-Lucitone 199 (12.11 ± 4.44 MPa); Ti-Triceram (11.09 ± 1.66 MPa); Ti-Sinfony (4.32 ± 0.64 MPa). All of these experimental groups showed lower shear bond strength than the control group (16.14 ± 1.89 MPa). However, there was no statistically significant difference between the Ti-Lucitone 199 group and the control group, and the Ti-Lucitone 199 group and the Ti-Triceram group. Most of the failure patterns in all experimental groups were adhesive failures.

CONCLUSION

The shear bond strength of veneering materials such as heat-polymerized acrylic resin, porcelain, and indirect composite to CP-Ti was compatible to that of heatpolymerized acrylic resin to cast gold alloy.  相似文献   

18.

PURPOSE

The purpose of this in vitro study was to investigate the flexural properties of a recently introduced urethane dimethacrylate denture base material (Eclipse) after being repaired with two different materials.

MATERIALS AND METHODS

Two repair groups and a control group consisting of 10 specimens each were generated. The ES group was repaired with auto-polymerizing polymer. The EE group was repaired with the Eclipse. The E group was left intact as a control group. A 3-point bending test device which was set to travel at a crosshead speed of 5 mm/min was used. Specimens were loaded until fracture occurred and the mean displacement, maximum load, flexural modulus and flexural strength values and standard deviations were calculated for each group and the data were statistically analyzed. The results were assessed at a significance level of P<.05.

RESULTS

The mean "displacement", "maximum load before fracture", "flexural strength" and "flexural modulus" rates of Group E were statistically significant higher than those of Groups ES and EE, but no significant difference (P>.05) was found between the mean values of Group ES and EE. There was a statistically significant positive relation (P<.01) between the displacement and maximum load of Group ES (99.5%), Group EE (94.3%) and Group E (84.4%).

CONCLUSION

The more economic and commonly used self-curing acrylic resin can be recommended as an alternative repair material for Eclipse denture bases.  相似文献   

19.

PURPOSE

The purpose of this study was to evaluate the effect of provisional cement removal by different dentin cleaning protocols (dental explorer, pumice, cleaning bur, Er:YAG laser) on the shear bond strength between ceramic and dentin.

MATERIALS AND METHODS

In total, 36 caries-free unrestored human third molars were selected as tooth specimens. Provisional restorations were fabricated and cemented with eugenol-free provisional cement. Then, disc-shaped ceramic specimens were fabricated and randomly assigned to four groups of dentin cleaning protocols (n = 9). Group 1 (control): Provisional cements were mechanically removed with a dental explorer. Group 2: The dentin surfaces were treated with a cleaning brush with pumice Group 3: The dentin surfaces were treated with a cleaning bur. Group 4: The provisional cements were removed by an Er:YAG laser. Self-adhesive luting cement was used to bond ceramic discs to dentin surfaces. Shear bond strength (SBS) was measured using a universal testing machine at a 0.05 mm/min crosshead speed. The data were analyzed using a Kolmogorov Smirnov, One-way ANOVA and Tukey HSD tests to perform multiple comparisons (α=0.05).

RESULTS

The dentin cleaning methods did not significantly affect the SBS of ceramic discs to dentin as follows: dental explorer, pumice, cleaning bur, and Er:YAG laser.

CONCLUSION

The use of different cleaning protocols did not affect the SBS between dentin and ceramic surfaces.  相似文献   

20.

Objective

To determine the influence of the light curing units on the shear bond strength of orthodontic brackets.

Material and Methods

Seventy-two premolars were divided into six groups (n=12): Group I: brackets bonded with Transbond and polymerization with halogen light; Group II: Transbond and LED; Group III: Fuji Ortho and halogen light; Group IV: Fuji Ortho and LED; Group V: Fuji Ortho, without acid and halogen light; Group VI: Fuji Ortho, without acid and LED. The groups were tested to shear strength in a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed statistically by ANOVA and Tukey’s test.

Results

The composite resin presented higher shear bond strength than the resin-modified glass ionomer cement (p<0.05). The halogen light and LED sources produced similar shear bond strength (p>0.05).

Conclusion

The shear bond strength was influenced by the material but not by the light-curing unit. The use of LED reduced the experimental time by approximately 60%, with the same curing efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号