首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of dopaminergic (DA) projections from the ventral tegmental area (VTA) in appetitive and rewarding behavior has been widely studied, but the VTA also has documented DA‐independent functions. Several drugs of abuse, act on VTA GABAergic neurons, and most studies have focused on local inhibitory connections. Relatively little is known about VTA GABA projection neurons and their connections to brain sites outside the VTA. This study employed viral‐vector‐mediated cell‐type‐specific anterograde tracing, classical retrograde tracing, and immunohistochemistry to characterize VTA GABA efferents throughout the brain. We found that VTA GABA neurons project widely to forebrain and brainstem targets, including the ventral pallidum, lateral and magnocellular preoptic nuclei, lateral hypothalamus, and lateral habenula. Minor projections also go to central amygdala, mediodorsal thalamus, dorsal raphe, and deep mesencephalic nuclei, and sparse projections go to prefrontal cortical regions and to nucleus accumbens shell and core. These projections differ from the major VTA DA target regions. Retrograde tracing studies confirmed results from the anterograde experiments and differences in projections from VTA subnuclei. Retrogradely labeled GABA neurons were not numerous, and most non‐tyrosine hydroxylase/retrogradely labeled cells lacked GABAergic markers. Many non‐TH/retrogradely labeled cells projecting to several areas expressed VGluT2. VTA GABA and glutamate neurons project throughout the brain, most prominently to regions with reciprocal connections to the VTA. These data indicate that VTA GABA and glutamate neurons may have more DA‐independent functions than previously recognized. J. Comp. Neurol. 522:3308–3334, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
The distribution of cholecystokinin (CCK) mRNA in the rat brain was determined by means of in situ hybridization histochemistry. Our results demonstrate a widespread distribution of neurons containing CCK mRNA throughout the rat brain. Hybridization-positive neurons were distributed throughout the neocortex, olfactory bulb, claustrum, amygdala, the dentate gyrus and hippocampus proper, and several subnuclei of the thalamus and the hypothalamus. The most abundant and most heavily labeled neurons were found in the endopiriform/piriform cortex, tenia tecta, and the ventral tegmental area. The distribution of neurons positive for CCK mRNA paralleled that of CCK-like immunoreactive neurons. These results detail the distribution of CCK mRNA and clearly identify the existence of CCK-synthesizing neurons in regions such as the paraventricular and supraoptic nuclei of the hypothalamus, where the presence of CCK cell bodies was previously uncertain.  相似文献   

3.
In situ hybridization histochemistry was used to localize tyrosine hydroxylase (TH) mRNA and cholecystokinin (CCK) mRNA-expressing cells in the ventral mesencephalon of the common marmoset (Callithrix jacchus) and to examine the effects of the dopaminergic (DA) neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on these two populations of neurons in the pars compacta of the substantia nigra (SNc) and ventral tegmental area (VTA). X-ray film and liquid emulsion autoradiography of brain sections hybridized with an 35S-labelled synthetic 45-mer antisense human TH oligonucleotide probe showed strong hybridization signals and dense populations of TH mRNA expressing cells in the SNc and VTA at all levels, in the control marmoset brain. In the MPTP-treated brain, there was a substantial reduction of TH mRNA in the ventral midbrain. The loss of TH mRNA-expressing cells amounted to 98% in the lateral SNc, 88% in the medial SNc and 33% in the VTA. In situ hybridization of adjacent sections with an 35S-labelled synthetic 45-mer antisense human CCK oligonucleotide probe showed a weak hybridization signal for CCK mRNA in the ventral midbrain of the control brain. Emulsion autoradiography demonstrated CCK mRNA expressing cells in the SNc and VTA at all levels with the number of cells in the VTA similar to that for TH mRNA. However, the number of cells in the SNc expressing CCK mRNA was a fraction (1/4) of that expressing TH mRNA; moreover, the level of expression per cell was substantially less than that for TH mRNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of acute and repeated amphetamine administration on mesolimbic dopamine (DA) neurons was assessed by studying DA and cholecystokinin (CCK) release in the nucleus accumbens (Acc), as well as effects on mRNA genes regulating DA and CCK synthesis in ventral tegmental area (VTA) cells in rats. Amphetamine (1.5 mg/kg) markedly increased extracellular levels of DA in the medial Acc (assessed by in vivo microdialysis) in drug-naive animals, about twice the amount released in animals repeatedly administered the drug for the previous 7 days (twice daily). CCK overflow was found to mirror the DA responses in that the very transient elevation of CCK monitored in drug-naive animals was attenuated in those with prior amphetamine use. The attenuation of both DA and CCK overflow in the medial Acc was found to be associated with a decrease in the number of CCK mRNA-positive VTA neurons (assessed by in situ hybridization histochemistry). Although the number of cells expressing CCK mRNA were decreased, the gene expression in those positive CCK and tyrosine hydroxylase mRNA cells in the VTA was significantly increased. The CCK mRNA neurons in the VTA were positively identified as those projecting to the medial Acc by the local perfusion of Fluoro-gold retrograde tracer via microdialysis probes located in the Acc.  相似文献   

5.
Many lines of evidence indicate an excitatory role by neurotensin (NT) on mesolimbic dopamine neurons in the ventral tegmental area (VTA). In support of this postulate, NT microinjection into the VTA of rats produces a dopamine-dependent increase in spontaneous motor activity that is associated with an increase in dopamine metabolism in the nucleus accumbens. In this study it was found that after daily intra-VTA injection with NT, both the motor hyperactivity and increase in dopamine metabolism were significantly enhanced. Further, the increased motor response to NT was present after 7 days without daily administration. While the augmented motor response could be produced with the carboxy-terminal fragment NT8-13, the NH2-terminal fragment, NT1-8, was ineffective. The enhancement of motor activity was only produced by NT injection into the A10 dopamine region and not adjacent nuclei. These results suggest that daily administration with NT into the VTA will potentiate the responsiveness of mesolimbic dopamine neurons to subsequent injection with NT.  相似文献   

6.
The lateral habenular complex (LHb) is a bilateral epithalamic brain structure involved in the modulation of ascending monoamine systems in response to afferents from limbic regions and basal ganglia. The LHb is implicated in various biological functions, such as reward, sleep-wake cycle, feeding, pain processing, and memory formation. The modulatory role of the LHb is partially assumed by putative spontaneously active LHb neurons projecting to the dopaminergic ventral tegmental area (VTA) and to the serotonergic median (MnR) and dorsal raphe nuclei (DR). All four nuclei form a complex and coordinated network to evoke appropriate responses to reward-related stimuli. At present it is not known whether individual LHb neurons project to only one or to more than one monoaminergic nucleus. To answer this question, we made dual injections of two different retrograde tracers into the rat VTA and either DR or MnR. Tracers were visualized by immunohistochemistry. In coronal sections, the different retrogradly labeled habenular neurons were quantified and assigned to the corresponding habenular subnuclei. Our results show that 1) the distribution of neurons in the LHb projecting to the three monoamine nuclei is similar and exhibits a great overlap, 2) the vast majority of LHb projection neurons target one monoaminergic nucleus only, and 3) very few, heterogeneously distributed LHb neurons project to both dopaminergic and serotonergic nuclei. These results imply that the LHb forms both separate and interconnected circuits with each monoaminergic nucleus, permitting the LHb to modulate its output to different monoamine systems either independently or jointly.  相似文献   

7.
After bilateral electrocoagulation of the ventral tegmental area (VTA) of rats, apomorphine (APO) was administered intraperitoneally to study the effect on the cholecystokinin-8 like immunoreactivity (CCK-8 IR) in the medial prefrontal cortex, the anterior and posterior part of the nucleus accumbens and the corpus striatum. In the medial prefrontal cortex and the posterior part of the nucleus accumbens, CCK-8 IR was markedly decreased by lesioning of the VTA. Then recovery of CCK-8 IR was noted in the APO treated rats following electrolytic lesioning of the VTA. This recovery corresponds to the response of CCK neurons not originating in the VTA or CCK interneurons to APO via DA receptors. In the anterior part of the nucleus accumbens and the corpus striatum, no significant decrease in CCK-8 IR was noted even following lesioning of the VTA. APO administration following the lesioning, however, resulted in a marked increase in CCK-8 IR in the anterior part of the nucleus accumbens and the corpus striatum. According to this result, in these sites, very few CCK neurons originating in the VTA exist and CCK neurons originating in sites other than the VTA or CCK interneurons react on APO via DA receptors.  相似文献   

8.
The chemical nature of the cells of the nucleus of the solitary tract (NTS) that project to the parabrachial nucleus (PB) was investigated in the pigeon by the use of fluorescent bead retrograde tracer and immunofluorescence for the detection of substance P (SP), leucineenkephalin (LENK), cholecystokinin (CCK), neurotensin (NT), somatostatin (SS), and tyrosine hydroxylase (TH). Cells immunoreactive for CCK were located in subnuclei lateralis dorsalis pars anterior (LDa) and medialis superficialis pars posterior, and caudal NTS (cNTS); 22–26.5% of these cells were double-labeled bilaterally. Immunoreactive SP cells were found in ventral NTS subnuclei; 24–25% of these cells were double-labeled bilaterally. Cells immunoreactive for LENK and NT were concentrated in the anterior NTS; 5.5–7.5% of the LENK cells were double-labeled bilaterally, while 11% (ipsilateral) and 21% (contralateral) of the NT immunoreactive cells were double-labeled. Many SS immunoreactive cells were found in peripherally located subnuclei; 5.5–6.5% of these cells were double-labeled bilaterally. Catecholamine cells were distributed in LDa, peripheral subnuclei, and cNTS; 23% of these cells were double-labeled ipsilaterally and 8.5% contralaterally. A two-color double-labeling immunofluorescence technique revealed many cells immunoreactive for both NT and LENK, only a rare cell immunoreactive for both SS and SP, and no cells immunoreactive for both TH and SP. Cells immunoreactive for SP, CCK, NT, and TH are major contributors to NTS projections to PB. The confinement of these substances to specific NTS subnuclei, which receive visceral sensory information from specific organs, may contribute to the chemical encoding of ascending visceral information. 1993 Wiley-Liss, Inc.  相似文献   

9.
Opioids, such as morphine or heroin, increase forebrain dopamine (DA) release and locomotion, and support the acquisition of conditioned place preference (CPP) or self-administration. The most sensitive sites for these opioid effects in rodents are in the ventral tegmental area (VTA) and rostromedial tegmental nucleus (RMTg). Opioid inhibition of GABA neurons in these sites is hypothesized to lead to arousing and rewarding effects through disinhibition of VTA DA neurons. We review findings that the laterodorsal tegmental (LDTg) and pedunculopontine tegmental (PPTg) nuclei, which each contain cholinergic, GABAergic, and glutamatergic cells, are important for these effects. LDTg and/or PPTg cholinergic inputs to VTA mediate opioid-induced locomotion and DA activation via VTA M5 muscarinic receptors. LDTg and/or PPTg cholinergic inputs to RMTg also modulate opioid-induced locomotion. Lesions or inhibition of LDTg or PPTg neurons reduce morphine-induced increases in forebrain DA release, acquisition of morphine CPP or self-administration. We propose a circuit model that links VTA and RMTg GABA with LDTg and PPTg neurons critical for DA-dependent opioid effects in drug-naïve rodents.  相似文献   

10.
The connections of the ventral tegmental area (VTA) and medial terminal nucleus (MTN) of the accessory optic system were studied in the albino rat. Using injection of two fluorescent retrograde tracers it was found that individual neurons of the VTA project to frontal cortices or the inferior olive but not both structures. Using combined retrograde fluorescent tracers and glyxylic acid histochemistry, it was found that although a third of the cells projecting to frontal cortex contained catecholamine, none of the cells projecting to the inferior olive contained catecholamine. Thus, these portions of the ascending and descending VTA systems are independent. In addition, using injections of the anterograde transneuronal tracer [3H]adenosine into one eye, it was found that cells in the VTA, as well as the MTN, contained the tracer. Therefore, there is a basis for direct retino-mesentelencephalic pathways through the VTA.  相似文献   

11.
Several lines of evidence support interactions between neurotensin (NT) and dopaminergic (DAergic) neurons in the brain. In order to obtain further knowledge about the anatomical substrate for such interactions, the distribution of cells expressing the cloned neurotensin receptor (NTR) mRNA was examined in relation to tyrosine hydroxylase (TH) mRNA-expressing cells within different subnuclei of the diencephalon and ventral mesencephalon of the male rat. In situ hybridization was performed on consecutive sections labeled with 33P-labeled oligonucleotide probes. In the hypothalamus, NTR mRNA signals were mostly found in the suprachiasmatic, dorsomedial, dorsal premammillary, and supramammillary nuclei. On the other hand, DAergic cells of the periventricular nucleus of the hypothalamus and dorsal aspect of the arcuate nucleus, revealed by TH in situ hybridization, did not exhibit NTR mRNA even though dense NT binding sites have been previously described in this nuclei. In the zona incerta, TH mRNA-containing cells were concentrated in the medial part, with little overlap with NTR mRNA-expressing cells located mainly in its mediolateral extent. In contrast, the distribution of both markers was superimposable within the different subdivisions of the ventral tegmental area and substantia nigra, as previously suggested, but also in the retrorubral field. These anatomical data further support the NT-dopamine interactions on both mesocorticolimbic and nigrostriatal DAergic systems. Moreover, the results suggest that diencephalic DAergic neurons do not synthesize the cloned NTR mRNA or express it at considerably lower levels than DAergic mesencephalic cells. © 1995 Wiley-Liss, Inc.  相似文献   

12.
The laterodorsal tegmental nucleus (ntdl) contains a cluster of cells located just medial to the locus coeruleus in the pontine brainstem. The ntdl has been shown to project both rostrally to the forebrain and diencephalon and caudally to the spinal cord. In an effort to characterize this region neurochemically, the present study was conducted to identify a variety of neurochemicals localized within perikarya and fibers of the ntdl and surrounding nuclei. Rats were perfused with formalin, and brain sections were processed for fluorescence immunocytochemistry and acetylcholinesterase (AChE). Of the neurochemicals screened, atrial natriuretic factor (ANF), choline acetyltransferase (ChAT), cholecystokinin (CCK), calcitonin gene-related peptide (CGRP), dynorphin B (Dyn B), galanin, somatostatin, substance P, neurotensin (NT), neuropeptide Y (NPY), vasopressin, vasoactive intestinal polypeptide (VIP), serotonin (5HT), glutamic acid decarboxylase (GAD), and tyrosine hydroxylase (TH) were studied. AChE and ChAT staining revealed that the ntdl contains mostly cholinergic neurons. In addition, brightly reactive substance P and galanin and paler staining CRF, ANF, CGRP, NT, VIP, and Dyn B cell bodies were found within the ntdl. Varicose fibers in this nucleus also contained these peptides in addition to CCK, GAD, TH, 5HT, and NPY. The dorsal tegmental nucleus, dorsal raphe nucleus, locus coeruleus, and the parabrachial region contained a dense and varied assortment of peptides with distinct positions and patterns. This multiplicity of neurochemicals within this area suggests a possible influence on a variety of functions modulated by the ntdl and other closely associated tegmental nuclei.  相似文献   

13.
《Neuropsychopharmacology》2023,93(2):197-208
BackgroundNeuropeptides are contained in nearly every neuron in the central nervous system and can be released not only from nerve terminals but also from somatodendritic sites. Cholecystokinin (CCK), among the most abundant neuropeptides in the brain, is expressed in the majority of midbrain dopamine neurons. Despite this high expression, CCK function within the ventral tegmental area (VTA) is not well understood.MethodsWe confirmed CCK expression in VTA dopamine neurons through immunohistochemistry and in situ hybridization and detected optogenetically induced CCK release using an enzyme-linked immunosorbent assay. To investigate whether CCK modulates VTA circuit activity, we used whole-cell patch clamp recordings in mouse brain slices. We infused CCK locally in vivo and tested food intake and locomotion in fasted mice. We also used in vivo fiber photometry to measure Ca2+ transients in dopamine neurons during feeding.ResultsHere we report that VTA dopamine neurons release CCK from somatodendritic regions, where it triggers long-term potentiation of GABAergic (gamma-aminobutyric acidergic) synapses. The somatodendritic release occurs during trains of optogenetic stimuli or prolonged but modest depolarization and is dependent on synaptotagmin-7 and T-type Ca2+ channels. Depolarization-induced long-term potentiation is blocked by a CCK2 receptor antagonist and mimicked by exogenous CCK. Local infusion of CCK in vivo inhibits food consumption and decreases distance traveled in an open field test. Furthermore, intra-VTA–infused CCK reduced dopamine cell Ca2+ signals during food consumption after an overnight fast and was correlated with reduced food intake.ConclusionsOur experiments introduce somatodendritic neuropeptide release as a previously unknown feedback regulator of VTA dopamine cell excitability and dopamine-related behaviors.  相似文献   

14.
The CNS cell groups that project to vagal preganglionic neurons which innervate the most distal part of the airways were identified by the viral retrograde transneuronal labeling method. Pseudorabies virus (PRV) was injected into the lung parenchyma of C8 spinal rats and after 5 days survival, brain tissue sections from these animals were processed for immunohistochemical detection of PRV. Retrogradely labeled parasympathetic preganglionic cells (first-order neurons) were seen mainly in the ventral medulla oblongata: the compact portion of the nucleus ambiguus and the area ventral to it. Occasionally, a few labeled cells were seen within the rostral part of the dorsal vagal nucleus. This labeling pattern correlated well with the retrograde cell body labeling seen following cholera toxin beta-subunit (CT-b) injections in the lung parenchyma. PRV transneuronally labeled neurons (second-order and/or presumed third-order neurons) were found throughout the CNS with the characteristic labeling in the brainstem. Labeled neurons were identified along and just beneath the ventral medullary surface, and in nearby areas: the parapyramidal, retrotrapezoid, gigantocellular and lateral paragigantocellular reticular nuclei, as well as the caudal raphe nuclei (raphe pallidus, obscurus, and magnus). Several nucleus tractus solitarius (nTS) regions contained labeled cells including the commissural, medial, and ventrolateral nTS subnuclei. The A5 cell group and a small number of locus coeruleus neurons were also labeled. PRV-infected neurons were present in the K?lliker-Fuse and Barrington's nuclei. In the mesencephalon, neurons within the ventral periventricular gray matter were labeled. Labeling was present in the dorsal, lateral and paraventricular hypothalamic nuclei, and within the amygdaloid complex. In summary, the parasympathetic preganglionic neurons that innervate the peripheral airways are controlled by networks of lower brainstem and suprapontine neurons that lie in the same regions known to be involved in central regulation of autonomic functions.  相似文献   

15.
Many studies have demonstrated that physical or psychological stress can increase Fos expression in brainstem monoaminergic nuclei. Little is known, however, about the extent to which stress increases the expression of Fos in monoaminergic and nonmonoaminergic neurons in the brainstem. We examined the effects of conditioned-fear (CF) stress following mild footshock (FS) as unconditioned stress on Fos expression in the monoaminergic and GABAergic neurons of the ventral tegmental area (VTA), locus coeruleus (LC), and dorsal raphe nucleus (DR) in rats. The CF stress significantly increased the number of Fos-positive (Fos+) cells in both the LC and DR, whereas it did not increase the number in the VTA. Using a double-labeling technique, we combined Fos immunostaining with that for tyrosine hydroxylase (TH), serotonin (5-HT), or GABA for histochemical identification of the CF stress-induced Fos+ neurons. The percentage of TH/Fos double-labeled cells resulting from CF stress was 63% of the Fos+ cells in the LC, whereas 52% of the Fos+ cells contained 5-HT in the DR. We also found that approximately 60% of the CF stress-induced Fos+ cells were GABAergic neurons in these brain regions. These results indicate that CF stress induces intense Fos expression in the noradrenergic LC and serotonergic DR neurons, but not in the dopaminergic VTA neurons. They also indicate that not only monoaminergic neurons but also GABAergic neurons within the LC and DR are activated by the stress.  相似文献   

16.
17.
The distribution of the afferents to the rat's prefrontal cortex originating in the thalamic mediodorsal nucleus and the amygdala was investigated with two fluorescent tracers. Special emphasis was laid on detecting the loci of neurons which project via axonal collaterals into both lateral and medial portions of the prefrontal cortex. It was found that a high number of neurons of the anterior portion of the basolateral amygdaloid nucleus terminate via collaterals in both the medial and lateral subfields of the prefrontal cortex. On the other hand, only a small number of mediodorsal thalamic cells were found to project to both sides of the prefrontal hemisphere via bifurcating axonal collaterals. These cells were situated exclusively in the lateral part of the medial segment of the mediodorsal nucleus. The majority of both thalamic and amygdaloid neurons with bifurcating axons originate from subregions whose cells innervate primarily the medial prefrontal cortex. In brain-stem, neurons of the nucleus raphé dorsalis also project via collaterals to the medial and lateral prefrontal regions. Furthermore, neurons of the dorsal and ventral premamillary nuclei, the lateral mamillary nucleus, the ventral tegmental area of Tsai, and the ventral tegmental nucleus of Gudden were found to project to the medial prefrontal cortex. Our results indicate a differential collateral organization of thalamic and amygdaloid afferents to prefrontal cortical fields. The anterior basolateral amygdala (which innervates via collaterals both the medial and lateral prefrontal subfields) may add a common input to either subfield, such as information on the significance of incoming stimuli to the animal's behavior, while the mediodorsal nucleus (whose segments are principally connected to only one prefrontal subfield) may add segment-specific information, for example, of a spatial-cognitive nature for the lateral segment and of an emotional nature for the central and medial segments. The existence of a basolateral limbic circuit, composed of the amygdala, the thalamic mediodorsal nucleus, and the prefrontal cortex, is confirmed and knowledge on its interconnectivity is extended. From an anatomical point of view these data provide arguments for both unitary and diverging functions of the prefrontal cortex.  相似文献   

18.
Gudden's tegmental nuclei provide major inputs to the rodent mammillary bodies, where they are thought to be important for learning and navigation. Comparable projections have yet to be described in the primate brain, where part of the problem has been in effectively delineating these nuclei. Immunohistochemical staining of tissue from a series of macaque monkeys (Macaca mulatta) showed that cells in the region of both the ventral and dorsal tegmental nuclei selectively stain for parvalbumin, thus helping to reveal these nuclei. These same tegmental nuclei were not selectively revealed when tissue was stained for SMI32, acetylcholinesterase, calbindin, or calretinin. In a parallel study, horseradish peroxidase was injected into the mammillary bodies of five cynomolgus monkeys (Macaca fascicularis). Retrogradely labeled neurons were consistently found in the three subdivisions of the ventral tegmental nucleus of Gudden, which are located immediately below, within, and above the medial longitudinal fasciculus. Further projections to the mammillary body region arose from cells in the anterior tegmental nucleus, which appears to be a rostral continuation of the infrafascicular part of the ventral tegmental nucleus. In the dorsal tegmental nucleus of Gudden, labeled cells were most evident when the tracer injection was more laterally placed in the mammillary bodies, consistent with a projection to the lateral mammillary nucleus. The present study not only demonstrates that the primate mammillary bodies receive parallel inputs from the dorsal and ventral tegmental nuclei of Gudden, but also helps to confirm the extent of these poorly distinguished nuclei in the monkey brain.  相似文献   

19.
Subcortical projections to the anterior thalamic nuclei were studied in the rat, with special reference to projections from the mammillary nuclei, by retrograde and anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. The medial mammillary nucleus (MM) projects predominantly ipsilaterally to the entire anterior thalamic nuclei, whereas the lateral mammillary nucleus projects bilaterally to the anterodorsal nucleus (AD) of the anterior thalamic nuclei. A topographic relationship was recognized between the MM and the anterior thalamic nuclei. The dorsal region of the pars mediana of the MM projects to the interanteromedial nucleus (IAM), whereas the ventral region projects to the rostral part of the anteromedial nucleus (AM). The dorsal and the ventral regions of the pars medialis project to the dorsomedial part of the AM at its caudal and rostral levels, respectively. The dorsomedial region of the pars lateralis projects to the ventral AM. The ventrolateral region of the pars lateralis projects to the ventral part of the anteroventral nucleus (AV) in such a manner that rostral cells project rostrally and caudal cells project caudally. The pars basalis projects predominantly ipsilaterally to the dorsolateral AV and bilaterally to the AD. The rostrolateral region of the pars posterior projects to the lateral AV, whereas the medial and the caudal regions of the pars posterior project to the dorsomedial AV. The rostrodorsal part of the nucleus reticularis thalami was found to project to the anterior thalamic nuclei; cells located rostrally in this part project to the IAM and AM, whereas cells located caudodorsally project to the AV and AD. The laterodorsal tegmental nucleus projects predominantly ipsilaterally to the AV, especially to its dorsolateral part. The present study demonstrates that subdivisions of the subcortical structures are connected to the subnuclei of the anterior thalamic nuclei, with a clear-cut topography arranged in the dorsoventral and the rostrocaudal dimensions.  相似文献   

20.
This study was undertaken to verify immunohistochemical data (10,11) which have indicated that a cholecystokinin -like peptide coexists with dopamine (DA) in some neurons of the ventral tegmental area (VTA). For this purpose we examined the effects of bilateral 6-hydroxydopamine (6-OHDA) lesions of the VTA on the contents of the cholecystokinin octapeptide-like immunoreactivity (CCK 8) and DA in the anterior cerebral cortex, the nucleus accumbens and the anterior part of the striatum. Such lesions induced a selective pronounced decrease in CCK 8 levels in the posterior part of the nucleus accumbens similar to that observed for DA, confirming the presence of a composite VTA-nucleus accumbens CCK 8-DA pathway. Although CCK 8 levels in the prefrontal cortex were not affected by 6-OHDA lesions, bilateral electrolytic lesions of the VTA induced a slight significant decrease in CCK 8 levels in this cortical area. This latter result is in favor of the existence of a non-DA pathway containing CCK 8 which originate or pass through the VTA and innervate the ventral part of the prefrontal cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号