首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
In addition to the well-known erythroid 4.1 gene, two human genes (KIAA0338 and 4.1G) have recently been identified as members of the protein 4.1 family of genes. We compared the expression levels of these three genes and found that the KIAA0338 gene was predominantly expressed in human brain. To further characterize this novel protein 4.1, called brain 4.1, we isolated rat brain 4.1 cDNA and analyzed its gene products in rat brain. The results indicated that the mRNA and protein products of the brain 4.1 gene were more abundant in brain compared to any other tissues examined. The brain 4.1 mRNA appeared as multiple bands with estimated sizes of 3.9 kb, 6.2 kb and 8.7 kb on RNA blotting analysis, and was found to consist of various alternative forms as reported previously for the erythroid 4. 1 gene. As for the brain 4.1 gene product, many isoforms discernible by immunoblotting analysis were also observed depending on the tissue type and the brain region. The existence of multiple forms of the brain 4.1 implies that it has multiple and diverse functions like the erythroid 4.1 gene product.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
To study a possible involvement of inwardly rectifying K+ 4.1 (Kir 4. 1) channels in neural cell development, RT-PCR, immunocytochemistry and whole-cell patch-clamp techniques were used to assess expression of Kir 4.1 channels in proliferating and differentiated NG108-15 cells. RT-PCR revealed co-expression of Kir 4.1 and rat ether-a-go-go-related gene (R-ERG) mRNAs in both proliferating and differentiated cells. The relative Kir 4.1 mRNA concentration increased markedly as cells progressed from undifferentiated to differentiated cells. Kir 4.1-immunoreactivity was barely detectable in undifferentiated cells, but clearly detected in differentiated cells, indicating that Kir 4.1 gene and protein expressions are developmentally regulated. However, corresponding Kir 4.1 current could not be detected in differentiated cells using whole-cell patch-clamp recording. The 'silent' channel/receptor, often found in tumor cells, may carry genetic defects, which prevent functional expression of the channel. NG108-15 may serve as unique model for studying the relationship between the expression of an ion channel gene and the electrophysiological phenotype it encodes.  相似文献   

11.
We have cloned and expressed the full-length human Na(V)1.6 sodium channel cDNA. Northern analysis showed that the hNa(V)1.6 gene, like its rodent orthologues, is abundantly expressed in adult brain but not other tissues including heart and skeletal muscle. Within the adult brain, hNa(V)1.6 mRNA is widely expressed with particularly high levels in the cerebellum, occipital pole and frontal lobe. When stably expressed in human embryonic kidney cells (HEK293), the hNa(V)1.6 channel was found to be very similar in its biophysical properties to human Na(V)1.2 and Na(V)1.3 channels [Eur. J. Neurosci. 12 (2000) 4281-4289; Pflügers Arch. 441 (2001) 425-433]. Only relatively subtle differences were observed, for example, in the voltage dependence of gating. Like hNa(V)1.3 channels, hNa(V)1.6 produced sodium currents with a prominent persistent component when expressed in HEK293 cells. These persistent currents were similar to those reported for the rat Na(V)1.2 channel [Neuron 19 (1997) 443-452], although they were not dependent on over-expression of G protein betagamma subunits. These data are consistent with the proposal that Na(V)1.6 channels may generate the persistent currents observed in cerebellar Purkinje neurons [J. Neurosci. 17 (1997) 4157-4536]. However, in our hNa(V)1.6 cell line we have been unable to detect the resurgent currents that have also been described in Purkinje cells. Although Na(V)1.6 channels have been implicated in producing these resurgent currents [Neuron 19 (1997) 881-891], our data suggest that this may require modification of the Na(V)1.6 alpha subunit by additional factors found in Purkinje neurons but not in HEK293 cells.  相似文献   

12.
13.
14.
Connors NC  Kofuji P 《Glia》2006,53(2):124-131
A major role for Müller cells in the retina is to buffer changes in the extracellular K+ concentration ([K+]o) resulting from light-evoked neuronal activity. The primary K+ conductance in Müller cells is the inwardly rectifying K+ channel Kir4.1. Since this channel is constitutively active, K+ can enter or exit Müller cells depending on the state of the [K+]o. This process of [K+]o buffering by Müller cells ("K+ siphoning") is enhanced by the precise accumulation of these K+ channels at discrete subdomains of Müller cell membranes. Specifically, Kir4.1 is localized to the perivascular processes of Müller cells in animals with vascular retinas and to the endfeet of Müller cells in all species examined. The water channel aquaporin-4 (AQP4) also appears to be important for [K+]o buffering and is expressed in Müller cells in a very similar subcellular distribution pattern to that of Kir4.1. To gain a better understanding of how Müller cells selectively target K+ and water channels to discrete membrane subdomains, we addressed the question of whether Kir4.1 and AQP4 associate with the dystrophin-glycoprotein complex (DGC) in the mammalian retina. Immunoprecipitation (IP) experiments were utilized to show that Kir4.1 and AQP4 are associated with DGC proteins in rat retina. Furthermore, AQP4 was also shown to co-precipitate with Kir4.1, suggesting that both channels are tethered together by the DGC in Müller cells. This work further defines a subcellular localization mechanism in Müller cells that facilitates [K+]o buffering in the retina.  相似文献   

15.
Role of Kir4.1 channels in growth control of glia   总被引:1,自引:0,他引:1  
Higashimori H  Sontheimer H 《Glia》2007,55(16):1668-1679
The inwardly rectifying potassium channel Kir4.1 is widely expressed by astrocytes throughout the brain. Kir4.1 channels are absent in immature, proliferating glial cells. The progressive expression of Kir4.1 correlates with astrocyte differentiation and is characterized by the establishment of a negative membrane potential (> -70 mV) and an exit from the cell cycle. Despite some correlative evidence, a mechanistic interdependence between Kir4.1 expression, membrane hyperpolarization, and control of cell proliferation has not been demonstrated. To address this question, we used astrocyte-derived tumors (glioma) that lack functional Kir4.1 channels, and generated two glioma cell lines that stably express either AcGFP-tagged Kir4.1 channels or AcGFP vectors only. Kir4.1 expression confers the same K+ conductance to glioma membranes and a similar responsiveness to changes in [K+]o that characterizes differentiated astrocytes. Kir4.1 expression was sufficient to move the resting potential of gliomas from -50 to -80 mV. Importantly, Kir4.1 expression impaired cell growth by shifting a significant number of cells from the G2/M phase into the quiescent G0/G1 stage of the cell cycle. Furthermore, these effects could be nullified entirely if Kir4.1 channels were either pharmacologically inhibited by 100 microM BaCl2 or if cells were chronically depolarized by 20 mM KCl to the membrane voltage of growth competent glioma cells. These studies therefore demonstrate directly that Kir4.1 causes a membrane hyperpolarization that is sufficient to account for the growth attenuation, which in turn induces cell maturation characterized by a shift of the cells from G2/M into G0/G1.  相似文献   

16.
17.
Human and rat Kv10.1a and b cDNAs encode silent K+ channel pore-forming subunits that modify the electrophysiological properties of Kv2.1. These alternatively spliced variants arise by the usage of an alternative site of splicing in exon 1 producing an 11-amino acid insertion in the linker between the first and second transmembrane domains in Kv10.1b. In human, the Kv10s mRNA were detected by Northern blot in brain kidney lung and pancreas. In brain, they were expressed in cortex, hippocampus, caudate, putamen, amygdala and weakly in substantia nigra. In rat, Kv10.1 products were detected in brain and weakly in testes. In situ hybridization in rat brain shows that Kv10.1 mRNAs are expressed in cortex, olfactory cortical structures, basal ganglia/striatal structures, hippocampus and in many nuclei of the amygdala complex. The CA3 and dentate gyrus of the hippocampus present a gradient that show a progression from high level of expression in the caudo-ventro-medial area to a weak level in the dorso-rostral area. The CA1 and CA2 areas had low levels throughout the hippocampus. Several small nuclei were also labeled in the thalamus, hypothalamus, pons, midbrain, and medulla oblongata. Co-injection of Kv2.1 and Kv10.1a or b mRNAs in Xenopus oocytes produced smaller currents that in the Kv2.1 injected oocytes and a moderate reduction of the inactivation rate without any appreciable change in recovery from inactivation or voltage dependence of activation or inactivation. At higher concentration, Kv10.1a also reduces the activation rate and a more important reduction in the inactivation rate. The gene that encodes for Kv10.1 mRNAs maps to chromosome 2p22.1 in human, 6q12 in rat and 17E4 in mouse, locations consistent with the known systeny for human, rat and mouse chromosomes.  相似文献   

18.
Guadagno E  Moukhles H 《Glia》2004,47(2):138-149
Dystroglycan (DG) is part of a multiprotein complex that links the extracellular matrix to the actin cytoskeleton of muscle fibers and that is involved in aggregating acetylcholine receptors at the neuromuscular junction. This complex is also expressed in regions of the central nervous system where it is localized to both neuronal and glial cells. DG and the inwardly rectifying potassium channels, Kir4.1, are concentrated at the interface of astroglia and small blood vessels. These channels are involved in siphoning potassium released into the extracellular space after neuronal excitation. This raises the possibility that DG may be involved in targeting Kir4.1 channels to specific domains of astroglia. To address this question, we used mixed hippocampal cultures to investigate the distribution of DG, syntrophin, dystrobrevin, and Kir4.1 channels, as well as aquaporin-permeable water channels, AQP4. These proteins exhibit a similar distribution pattern and form aggregates in astrocytes cultured on laminin. Both DG and syntrophin colocalize with Kir4.1 channel aggregates in astrocytes. Similarly, DG colocalizes with AQP4 channel aggregates. Quantitative studies show a significant increase of Kir4.1 and AQP4 channel aggregates in astrocytes cultured in the presence of laminin when compared with those in the absence of laminin. These findings show that laminin has a role in Kir4.1 and AQP4 channel aggregation and suggest that this may be mediated via a dystroglycan-containing complex. This study reveals a novel functional role for DG in brain including K+ buffering and water homeostasis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号