首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND & AIMS: Tumor necrosis factor (TNF) induces multiple effects including cell proliferation and death by ligation with TNF receptor type II (TNFR2). We studied the role of TNFR2 in chronic inflammation-induced colonic epithelial alteration. METHODS: TNFR2 expression in colonic epithelial cells (CECs) was assessed by ribonuclease protection assay (RPA) and immunohistochemistry (IHC) in patients with inflammatory bowel disease (IBD) and murine colitis models. TNFR2 expression was also analyzed using COLO205 cells. The role of TNFR2 in colonic epithelial homeostasis was examined by generating interleukin 6-deficient TCR alpha KO (alpha IL-6DKO) or TNFR2-deficient TCR alpha (alpha TNFR2DKO) mice. RESULTS: TNFR2 expression was up-regulated in CEC in both human ulcerative colitis and Crohn's disease. In vitro studies showed that TNFR2 expression was up-regulated by a cooperative effect of key proinflammatory cytokines. By RPA, the increased expression of TNFR2 was detectable in TCR alpha KO mice with colitis compared with TCR alpha KO mice without colitis or wild-type mice. In alpha IL-6DKO mice, TNFR2 expression, proliferation, and nuclear factor kappa B activation of CECs were markedly reduced compared with TCR alpha KO mice. alpha TNFR2 mice also showed significantly less colonic epithelial proliferation compared with TCR alpha KO mice. CONCLUSIONS: Expression of TNFR2 is consistently increased on CECs in both murine colitis models as well as patients with IBD. TNFR2 may play an important role in colonic inflammation-associated alteration in the intestinal epithelium.  相似文献   

2.
3.
AIM: Different strains of bifidobacteria were analysed for their effects on HT-29 intestinal epithelial cells (IECs) in in vitro models both of the non-inflamed and inflamed intestinal epithelium. METHODS: A reporter gene system in HT-29 cells was used to measure levels of NF-kappaB activation after challenge with bifidobacteria or after bacterial pre-treatment following LPS challenge. IL-8 protein and pro-inflammatory gene expression was investigated using normal HT-29 cells. RESULTS: None of the bifidobacteria tested induced activation of nuclear factor kappaB (NF-kappaB) indicating that bifidobacteria themselves do not induce inflammatory events in IECs. However, six out of eight bifidobacteria tested inhibited lipopolysaccharide- (LPS-) induced NF-kappaB activation in a dose- and strain-dependent manner. In contrast, NF-kappaB activation in response to challenge with tumor necrosis factor-alpha (TNF-alpha) was affected by none of the tested bifidobacteria, indicating that the inhibitory effect of bifidobacteria is specific for LPS-induced inflammation in IECs. As shown with two of the six inhibition-positive bifidobacteria, LPS-induced inhibition of NF-kappaB activation was accompanied by a dose-dependent decrease of interleukin 8 (IL-8) secretion and by lower mRNA levels for IL-8, TNF-alpha, cyclooxygenase 2 (Cox-2), and intercellular adhesion molecule 1 (ICAM-1). CONCLUSION: Some strains of bifidobacteria are effective in inhibiting LPS-induced inflammation and thus might be appropriate candidates for probiotic intervention in chronic intestinal inflammation.  相似文献   

4.
BACKGROUND & AIMS: Clostridium difficile toxin A causes mitochondrial dysfunction resulting in generation of oxygen radicals and adenosine triphosphate (ATP) depletion. We investigated whether mitochondrial dysfunction is involved in nuclear factor kappaB (NF-kappaB) activation and interleukin (IL)-8 release from toxin A-exposed enterocytes. METHODS: NF-kappaB activation and IL-8 release in response to toxin A were correlated with reactive oxygen intermediate (ROI) generation and ATP production in HT-29 monolayers or HT-29 cells exposed to ethidium bromide (EB) to inhibit mitochondrial function. RESULTS: HT-29 cells exposed to EB showed damaged mitochondria and diminished resting levels of ATP. ROI production in EB-treated cells exposed to toxin A for 30 minutes was significantly reduced. Exposure of wild-type HT-29 cells to toxin A resulted in increased oxygen radical generation and IL-8 production (P < 0.01 vs. control) that was inhibited by antioxidant pretreatment. Degradation of IkappaB was observed within 30 minutes of toxin exposure, before ras homologue (Rho) glucosylation, and was followed by nuclear translocation of NF-kappaB. Toxin A did not increase IL-8 levels in EB-treated cells, whereas IL-8 release in response to IL-1beta was not affected. CONCLUSIONS: Our data support an early role for mitochondria-derived ROIs in stimulation of IL-8 release from colonocytes by toxin A. ROI generation is independent of Rho inactivation and involves nuclear translocation of NF-kappaB before release of IL-8.  相似文献   

5.
6.
Interleukin (IL)-10-deficient (IL-10-/-) mice develop colitis under specific pathogen-free (SPF) conditions and remain disease free if kept sterile (germ free [GF]). We used four different protocols that varied the time-points of oral administration of Lactobacillus plantarum 299v (L. plantarum) relative to colonization with SPF bacteria to determine whether L. plantarum could prevent and treat colitis induced by SPF bacteria in IL-10-/- mice and evaluated the effect of this probiotic organism on mucosal immune activation. Assessment of colitis included blinded histologic scores, measurements of secreted colonic immunoglobulin isotypes, IL-12 (p40 subunit), and interferon (IFN)-gamma production by anti-CD3-stimulated mesenteric lymph node cells. Treating SPF IL-10-/- mice with L. plantarum attenuated previously established colonic inflammation as manifested by decreased mucosal IL-12, IFN-gamma, and immunoglobulin G2a levels. Colonizing GF animals with L. plantarum and SPF flora simultaneously had no protective effects. Gnotobiotic IL-10-/- mice monoassociated with L. plantarum exhibited mild immune system activation but no colitis. Pretreatment of GF mice by colonization with L. plantarum, then exposure to SPF flora and continued probiotic therapy significantly decreased histologic colitis scores. These results demonstrate that L. plantarum can attenuate immune-mediated colitis and suggest a potential therapeutic role for this agent in clinical inflammatory bowel diseases.  相似文献   

7.
8.
AIM:To investigate the protective effects of combinations of probiotic(Bifico)on interleukin(IL)-10-genedeficient(IL-10 KO)mice and Caco-2 cell monolayers.METHODS:IL-10 KO mice were used to assess the benefits of Bifico in vivo.IL-10 KO and control mice received approximately 1.5×108 cfu/d of Bifico for 4 wk.Colons were then removed and analyzed for epithelial barrier function by Ussing Chamber,while an ELISA was used to evaluate proinflammatory cytokines.The colon epithelial cell line,Caco-2,was used to test the benefit of Bifico in vitro.Enteroinvasive Escherichia coli(EIEC)and the probiotic mixture Bifico,or single probiotic strains,were applied to cultured Caco-2 monolayers.Barrier function was determined by measuring transepithelial electrical resistance and tight junction protein expression.RESULTS:Treatment of IL-10 KO mice with Bifico partially restored body weight,colon length,and epithelial barrier integrity to wild-type levels.In addition,IL-10 KO mice receiving Bifico treatment had reduced mucosal secretion of tumor necrosis factor-αand interferon-γ,and attenuated colonic disease.Moreover,treatment of Caco-2 monolayers with Bifico or singlestrain probiotics in vitro inhibited EIEC invasion and reduced the secretion of proinflammatory cytokines.CONCLUSION:Bifico reduced colon inflammation in IL-10 KO mice,and promoted and improved epithelialbarrier function,enhanced resistance to EIEC invasion,and decreased proinflammatory cytokine secretion.  相似文献   

9.
BACKGROUND AND AIMS: This study examined the role of breast milk in neonatal bacterial colonization of the colon and disease progression in IL-10-deficient mice. METHODS: IL-10-deficient mice were cross-fostered at birth and raised until weaning with a normal mother. Results were compared with normal pups cross-fostered to an IL-10-deficient mother. Mice were examined at various ages for histologic disease, levels of colonic bacteria, and proinflammatory cytokine secretion. RESULTS: IL-10-deficient mice that had been cross-fostered to a normal mother demonstrated normal levels of colonic adherent bacteria and reduced TNFalpha and IFN gamma secretion at 2 to 12 weeks of age. Histologic disease was significantly reduced up to 12 weeks of age. Normal mice cross-fostered to an IL-10-deficient mother had increased levels of adherent bacteria at 2 and 4 weeks and increased IFN gamma secretion. This group also demonstrated slight inflammation up until 12 weeks of age. CONCLUSION: Breast milk has a role in neonatal bacterial colonization. Changing the luminal environment of IL-10-deficient mice during the neonatal period alters the natural disease course.  相似文献   

10.
11.
BACKGROUND & AIMS: Interleukin-10 knockout (IL-10(-/-)) mice spontaneously develop colitis characterized by T-helper cell type 1-polarized inflammation. We tested the possible therapeutic activity of the peroxisome proliferator-activated receptor alpha (PPARalpha) ligand fenofibrate, and the PPARdelta ligand GW0742, in IL-10(-/-) mice and investigated the cellular/molecular mechanisms for fenofibrate action. METHODS: The effect of fenofibrate or GW0742 on the progression of colitis in C3H.IL-10(-/-) mice was evaluated. Effects of fenofibrate on cytokine and chemokine gene expression were studied in cultured splenocytes, pathogenic T cells isolated from C3H/HeJBir mice, and HT-29 colorectal cancer cells. RESULTS: Treatment of C3H.IL-10(-/-) mice with fenofibrate delayed the onset of colitis, decreased the colonic histopathology score, and decreased colonic expression of genes encoding the inflammatory cytokines interferon-gamma and interleukin (IL)-17. The target for fenofibrate, PPARalpha, was expressed in lymphocytes, macrophages, and crypt and surface epithelial cells of the colon. The mean number of lymphocytes was decreased by more than 75% in colonic sections of fenofibrate-treated as compared with control IL-10(-/-) mice, and fenofibrate repressed interferon-gamma and IL-17 expression in isolated T cells. Fenofibrate also repressed the expression of the genes encoding 3 chemokines, CXCL10, CCL2, and CCL20, and repressed CXCL10 gene promoter activity in tumor necrosis factor-alpha-treated HT-29 cells. In contrast to the beneficial effect of fenofibrate, the PPARdelta ligand GW0742 accelerated the onset of colitis in IL-10(-/-) mice. CONCLUSIONS: The immunopathology observed in IL-10(-/-) mice resembles that seen in Crohn's disease. The novel therapeutic activity of fenofibrate in this mouse model suggests that it may also have activity in Crohn's disease.  相似文献   

12.
13.
BACKGROUND & AIMS: Interleukin (IL)-22, a member of the IL-10 subfamily, is a recently identified T-cell-derived cytokine. We investigated IL-22 expression in the inflamed mucosa of patients with inflammatory bowel disease (IBD) and analyzed its biologic activities in human colonic subepithelial myofibroblasts (SEMFs). METHODS: Mucosal IL-22 expression was evaluated by immunohistochemical procedures. The effects of IL-22 on colonic SEMFs were investigated by cDNA microarrays, Northern blots, enzyme-linked immunosorbent assay, and electrophoretic gel mobility shift assays (EMSAs). RESULTS: IL-22 was not detectable in normal colonic mucosa. In IBD mucosa, IL-22 expression was detectable in CD4-positive T cells. IL-22-positive cells were increased in ulcerative colitis and even more so in Crohn's disease. IL-22 receptor expression colocalized with a marker of SEMFs. IL-22 did not modulate SEMF proliferation and collagen synthesis. cDNA microarray analyses demonstrated that, in colonic SEMFs, IL-22 increased the messenger RNA (mRNA) expression of inflammatory cytokines (IL-6, IL-8, IL-11, and leukemia inhibitory factor [LIF]), chemokines, and matrix metalloproteinases. IL-22 induced an activation of nuclear factor (NF)-kappaB and activating protein (AP)-1 within 1 hour, and a blockade of NF-kappaB and AP-1 activation markedly reduced IL-22 induction of IL-6, IL-8, IL-11, and LIF mRNA. MAP-kinase inhibitors (PD98059, U0216, and SB202190) significantly reduced IL-22 induction of cytokine secretion. The combination of either IL-17 plus IL-22 or IL-19 plus IL-22 additively up-regulated cytokine secretion. CONCLUSIONS: IL-22 derived from activated T cells acts on SEMFs to elicit expression of proinflammatory cytokines and matrix-degrading molecules indicating proinflammatory/remodeling roles in IBD.  相似文献   

14.
15.
Bacterial lipopolysaccharide (LPS) stimulates Kupffer cells and participates in the pathogenesis of alcohol-induced liver injury. However, it is unknown whether LPS directly affects hepatic stellate cells (HSCs), the main fibrogenic cell type in the injured liver. This study characterizes LPS-induced signal transduction and proinflammatory gene expression in activated human HSCs. Culture-activated HSCs and HSCs isolated from patients with hepatitis C virus-induced cirrhosis express LPS-associated signaling molecules, including CD14, toll-like receptor (TLR) 4, and MD2. Stimulation of culture-activated HSCs with LPS results in a rapid and marked activation of NF-kappaB, as assessed by in vitro kinase assays for IkappaB kinase (IKK), IkappaBalpha steady-state levels, p65 nuclear translocation, NF-kappaB-dependent luciferase reporter gene assays, and electrophoretic mobility shift assays. Lipid A induces NF-kappaB activation in a similar manner. Both LPS- and lipid A-induced NF-kappaB activation is blocked by preincubation with either anti-TLR4 blocking antibody (HTA125) or Polymyxin B. Lipid A induces NF-kappaB activation in HSCs from TLR4-sufficient (C3H/OuJ) mice but not from TLR4-deficient (C3H/HeJ) mice. LPS also activates c-Jun N-terminal kinase (JNK), as assessed by in vitro kinase assays. LPS up-regulates IL-8 and MCP-1 gene expression and secretion. LPS-induced IL-8 secretion is completely inhibited by the IkappaB super repressor (Ad5IkappaB) and partially inhibited by a specific JNK inhibitor, SP600125. LPS also up-regulates cell surface expression of ICAM-1 and VCAM-1. In conclusion, human activated HSCs utilize components of TLR4 signal transduction cascade to stimulate NF-kappaB and JNK and up-regulate chemokines and adhesion molecules. Thus, HSCs are a potential mediator of LPS-induced liver injury.  相似文献   

16.
BACKGROUND: Nuclear translocation and DNA binding of the nuclear factor kappaB (NF-kappaB) is an early event in inflammatory cell activation in response to stimulation with bacterial components or cytokines. Cell activation via different receptors culminates in a common pathway leading to NF-kappaB activation and proinflammatory cytokine induction. We have previously shown that acute alcohol inhibits NF-kappaB activation by lipopolysaccharide (LPS) in human monocytes. Here we investigated whether acute alcohol treatment of human monocytes also inhibits NF-kappaB when induced through activation of the interleukin (IL)-1 or tumor necrosis factor (TNF) receptors. METHODS: Human peripheral blood monocytes were treated with LPS, TNFalpha, and IL-1beta in the presence or absence of 25mM alcohol for 1 hr. NF-kappaB activation was determined by electrophoretic mobility shift assays using nuclear extracts. Inhibitory kappaB(alpha) (IkappaB(alpha)) was estimated by Western blotting in cytoplasmic extracts. Chinese hamster ovary cells expressing human CD14 were treated with LPS in the presence or absence of alcohol to study NF-kappaB and IkappaB(alpha) regulation. RESULTS: Our results indicate that acute alcohol inhibits IL-1beta- and TNFalpha-induced NF-kappaB activation. We further show in CD14/toll-like receptor 4-expressing Chinese hamster ovary cells the specificity of alcohol-mediated inhibition of NF-kappaB via the toll-like receptor 4/CD14 receptors. Inhibition of NF-kappaB by acute alcohol was concomitant with decreased levels of the IkappaB(alpha) molecule in the cytoplasm of LPS, IL-1, and TNFalpha-activated monocytes. CONCLUSIONS: These data suggest a unique, IkappaB(alpha)-independent pathway for the inhibition of NF-kappaB activation by acute alcohol in monocytes. Universal inhibition of NF-kappaB by acute alcohol via these various receptor systems suggests a target for the effects of alcohol in the NF-kappaB activation cascade that is downstream from IkappaB(alpha) degradation. Further, these results demonstrate that acute alcohol is a potent inhibitor of NF-kappaB activation by mediators of early (LPS) or late (IL-1, TNF(alpha)) stages of inflammation in monocytes.  相似文献   

17.
BACKGROUND & AIMS: Clostridium difficile toxin B (TxB) mediates acute inflammatory diarrhea characterized by neutrophil infiltration and intestinal mucosal injury. In a xenograft animal model, TxB was shown to induce interleukin (IL)-8 gene expression in human colonic epithelium. However, the precise mechanisms of this TxB response are unknown. The aim of this study was to investigate the TxB-mediated proinflammatory pathway in colonocytes. METHODS: The effect of TxB on epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK) 1/2 signaling pathway and IL-8 gene expression was assessed in nontransformed human colonic epithelial NCM460 cells. TxB regulation of EGFR-ERK1/2 signaling pathways was determined using immunoblot analysis, confocal microscopy, and enzyme-linked immunosorbent assay, whereas IL-8 gene expression was measured by luciferase promoter assay. RESULTS: TxB activates EGFR and ERK1/2 phosphorylation with subsequent release of IL-8 from human colonocytes. Pretreatment with either the EGFR tyrosine kinase inhibitor, AG1478, or an EGFR-neutralizing antibody blocked both TxB-induced EGFR and ERK activation. By using neutralizing antibodies against known ligands of EGFR, we found that the activation of EGFR and ERK1/2 phosphorylation was mediated by transforming growth factor-alpha (TGF-alpha). Inhibition of matrix metalloproteinase (MMP) decreased TGF-alpha secretion and TxB-induced EGFR and ERK activation. Inhibition of MMP, EGFR, and ERK activation significantly decreased TxB-induced IL-8 expression. CONCLUSIONS: TxB signals acute proinflammatory responses in colonocytes by transactivation of the EGFR and activation of the ERK/MAP kinase pathway.  相似文献   

18.
Yang ZD  Chen M  Wu R  McDuffie M  Nadler JL 《Diabetologia》2002,45(9):1307-1314
AIMS/HYPOTHESIS: Pro-inflammatory cytokines are increased during the active stages of Type I (insulin-dependent) diabetes mellitus. The aim of this study was to investigate the applicability of using a new anti-inflammatory compound, Lisofylline, to prevent diabetes in non-obese diabetic (NOD) mice. Lisofylline has previously been shown to block Th1 cell differentiation and to reduce IL-1 beta-induced dysfunction in rat islets. METHODS: Lisofylline was added to isolated NOD islets in vitro, with or without IL-1 beta. Insulin secretion and DNA damage of the islets was assessed. Lisofylline was administered to female non-obese diabetic mice starting at 4, 7 and 17 weeks of age for 3 weeks. Cytokines and blood glucose concentrations were monitored. Histology and immunohistochemistry were carried out in pancreatic sections. Splenocytes isolated from donor mice were intravenously injected into immunodeficient NOD (NOD.scid) mice. RESULTS: In vitro, Lisofylline preserved beta-cell insulin secretion and inhibited DNA damage of islets in the presence of IL-1 beta. In vivo, Lisofylline suppressed IFN-gamma production, reduced the onset of insulitis and diabetes, and inhibited diabetes after transfer of splenocytes from Lisofylline-treated donors to NOD.scid recipients. However, cotransfer of splenocytes from both Lisofylline-treated and diabetic NOD donors did not suppress diabetes in recipient mice. CONCLUSION/INTERPRETATION: Lisofylline prevents the onset of autoimmune diabetes in NOD mice by a mechanism that does not seem to enhance the function of regulatory T cells, but could be associated with suppression of proinflammatory cytokines and reduction of cellular infiltration in islets. This study suggests that Lisofylline could have therapeutic benefits in preventing the onset of Type I diabetes.  相似文献   

19.
20.
Immunostimulatory DNA ameliorates experimental and spontaneous murine colitis   总被引:23,自引:0,他引:23  
BACKGROUND & AIMS: Impaired mucosal barrier, cytokine imbalance, and dysregulated CD4(+) T cells play important roles in the pathogenesis of experimental colitis and human inflammatory bowel disease. Immunostimulatory DNA sequences (ISS-DNA) and their synthetic oligonucleotide analogs (ISS-ODNs) are derived from bacterial DNA, are potent activators of innate immunity at systemic and mucosal sites, and can rescue cells from death inflicted by different agents. We hypothesized that these combined effects of ISS-DNA could inhibit the damage to the colonic mucosa in chemically induced colitis and thereby limit subsequent intestinal inflammation. METHODS: The protective and the anti-inflammatory effect of ISS-ODN administration were assessed in dextran sodium sulfate-induced colitis and in 2 models of hapten-induced colitis in Balb/c mice. Similarly, these effects of ISS-ODN were assessed in spontaneous colitis occurring in IL-10 knockout mice. RESULTS: In all models of experimental and spontaneous colitis examined, ISS-ODN administration ameliorated clinical, biochemical, and histologic scores of colonic inflammation. ISS-ODN administration inhibited the induction of colonic proinflammatory cytokines and chemokines and suppressed the induction of colonic matrix metalloproteinases in both dextran sodium sulfate- and hapten-induced colitis. CONCLUSIONS: As the colon is continuously exposed to bacterial DNA, these findings suggest a physiologic, anti-inflammatory role for immunostimulatory DNA in the GI tract. Immunostimulatory DNA deserves further evaluation for the treatment of human inflammatory bowel disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号