首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Leptin secretion is complexly regulated in humans. Insulin has been shown to stimulate leptin secretion, whereas in vitro data suggest that catecholamines and free fatty acids (FFAs) inhibit leptin secretion. To dissect differential effects on leptin secretion, we performed two experimental protocols in 11 lean healthy subjects in addition to a saline infusion plus oral acipimox to suppress lipolysis (SAL + ACX) as a control experiment: (1) isoproterenol (approximately 30 ng/kg x min, to increase the heart rate by approximately 50 bpm) plus oral acipimox (ISO + ACX, 240 minutes) and (2) Intralipid (Pharmacia & Upjohn, Erlangen, Germany) plus heparin (LIP, 420 minutes). During SAL + ACX, FFAs decreased from 0.44 +/- 0.04 to 0.06 +/- 0.02 mmol/L (P = .001), while serum insulin and leptin remained unchanged. During ISO + ACX, FFAs decreased similarly from 0.41 +/- 0.13 to 0.09 +/- 0.02 mmol/L (P= .001), while insulin increased from 47 +/- 8 to a maximum of 116 +/- 15 pmol/L (P= .001) and serum leptin decreased acutely from 6.4 +/- 2.1 to a minimum of 5.4 +/- 1.8 ng/mL after 90 minutes (P = .003 vSAL + ACX). After 150 minutes, leptin returned to control levels. During LIP, the elevation of FFAs from 0.34 +/- 0.04 to 1.71 +/- 0.19 mmol/L (P = .001) had no effect on serum insulin or leptin concentrations (both P = nonsignificant). In conclusion, our results show that in humans, isoproterenol acutely suppresses leptin levels independently of increased FFAs, and elevated FFAs have no acute effect on leptin levels. The fact that an inhibition of leptin secretion occurred despite conditions that are known to suppress intracellular cyclic adenosine monophosphate (cAMP) levels, as demonstrated by suppressed lipolysis, suggests that signaling mechanisms other than those mediated by cAMP must be involved in modulating leptin secretion.  相似文献   

2.
Rapid leptin decrease in immediate post-exercise recovery   总被引:4,自引:0,他引:4  
OBJECTIVE: Leptin concentrations in humans are known to decrease in response to fasting. The aim of this work was to investigate whether leptin levels might also be modified by exercise-induced negative energy balance. SUBJECTS: Eight male runners reported in the morning from 0800 to 1200 h for (i) one resting session (sitting) and (ii) one exercise-and-rest session (2 h run and 2 h rest). MEASUREMENTS: Plasma leptin, free fatty acids (FFA), glycerol, cortisol and salivary cortisol were assayed in both sessions at 1200 h. RESULTS: After exercise-and-rest the leptin concentrations were lower than after rest (1.7 +/- 0.1 vs 2.5 +/- 0.2 micrograms/l, P < 0.05), i.e. a mean decrease of 30.3 +/- 4.5% (range 9.5-45.8). Plasma FFA, glycerol and cortisol concentrations increased: FFA 0.78 +/- 0.08 vs 0.18 +/- 0.04 mmol/l, glycerol 0.13 +/- 0.01 vs 0.04 +/- 0.01 mmol/l, and cortisol 428 +/- 36 vs 279 +/- 27 nmol/l. A negative correlation was found between plasma FFA and leptin levels (r = -0.5, P < 0.05) and between plasma glycerol and leptin levels (r = -0.05, P < 0.05). No correlation was found between leptin and cortisol levels. CONCLUSIONS: In normal subjects with low body fat, a strenuous exercise-and-rest lowers leptin levels by a mean of 30%. A role of lipolysis possibly via increased plasma free fatty acids and glycerol levels is suggested. Cortisol does not seem to be involved.  相似文献   

3.
We examined the effect of pioglitazone (PIO) on circulating adipocytokine levels to elucidate the mechanisms by which thiazolidinediones improve insulin resistance in type 2 diabetes mellitus (T2DM). Twenty-three subjects with T2DM (age 54 +/- 2 yr, body mass index 29 +/- 1 kg/m(2)) were randomly assigned to receive placebo (n = 11) or PIO, 45 mg/d (n = 12), for 4 months. Before and after treatment, subjects received a 75-g oral glucose tolerance test (OGTT); euglycemic insulin clamp (40 mU/m(2).min) with 3-(3)H-glucose; determination of fat mass ((3)H(2)O); and measurement of fasting glucose, free fatty acids (FFAs), leptin, adiponectin, and TNFalpha concentrations. After 4 months of PIO, fasting plasma glucose concentration (Delta = -2.7 mol/liter), mean plasma glucose during OGTT (Delta = -3.8 mol/liter), and hemoglobin A(1c) (Delta = 1.7%) decreased (P < 0.05 vs. placebo) without change in fasting or post-OGTT plasma insulin levels. Fasting FFAs (Delta = 168 micromol/liter) and TNFalpha (Delta = 0.7 pg/ml) concentrations decreased (P < 0.05 vs. placebo), whereas adiponectin (Delta = 8.7 microg/ml) increased (P < 0.01 vs. placebo). Despite the increase in body fat mass (Delta = 3.4 kg) after PIO, plasma leptin concentration did not change significantly. No changes in plasma glucose, FFAs, or adipocytokine levels were observed in placebo-treated subjects. During the insulin clamp, endogenous (hepatic) glucose production decreased (Delta = -2.67 micromol/fat-free mass.min, P < 0.05 vs. placebo), whereas metabolic clearance rate of glucose (MCR) increased (Delta = 0.58 ml/fat-free mass.min, P < 0.05 vs. placebo) after PIO. In all subjects, before and after PIO, the decrease in plasma FFA concentration was correlated with the changes in both endogenous (hepatic) glucose production (r = 0.47, P < 0.05) and MCR (r = -0.41, P < 0.05), whereas the increase in plasma adiponectin concentration was correlated with the change in endogenous (hepatic) glucose production (r = -0.70, P < 0.01) and MCR (r = 0.49, P < 0.05). These results suggest that the direct effects of PIO on adipose tissue to decrease plasma FFA levels and increase plasma adiponectin contribute to the improvements in hepatic and peripheral insulin sensitivity and glucose tolerance in patients with T2DM.  相似文献   

4.
OBJECTIVE: The regulation and function of systemic ghrelin levels appear to be associated with food intake and energy balance rather than GH. Since GH, in turn, acutely induces lipolysis and insulin resistance in skeletal muscle, we aimed to study the isolated and combined effects of GH, free fatty acids (FFAs) and insulin sensitivity on circulating ghrelin levels in human subjects. DESIGN: Seven GH-deficient patients (aged 37 +/- 4 years (mean +/- s.e.)) were studied on four occasions in a 2 x 2 factorial design with and without GH substitution and with and without administration of acipimox, which lowers FFA levels by inhibition of the hormone-sensitive lipase, in the basal state and during a hyperinsulinemic euglycemic clamp. RESULTS: Serum FFA levels decreased with acipimox administration irrespective of GH status. The GH-induced reduction in insulin sensitivity was countered by acipimox. Fasting ghrelin levels decreased insignificantly during GH administration alone, but were reduced by 33% during co-administration of GH and acipimox (Aci) (in ng/l): 860 +/- 120 (-GH - Aci), 711 +/- 130 (-GH + Aci), 806 +/- 130 (+GH - Aci), 574 +/- 129 (+GH + Aci), P < 0.01. The clamp was associated with a further, moderate lowering of ghrelin. GH and acipimox induced a reciprocal 25% increase in serum leptin levels (microg/l): 11.2 +/- 4.4 (-GH - Aci), 11.7 +/- 4.4 (-GH + Aci), 11.5 +/- 4.4 (+GH - Aci), 13.9 +/- 4.2 (+GH + Aci), P = 0.005. CONCLUSION: Our data suggest that antilipolysis via suppression of the hormone-sensitive lipase in combination with GH administration is associated with significant and reciprocal changes in ghrelin and leptin.  相似文献   

5.
OBJECTIVE: Concentrations of the orexigenic peptide ghrelin is affected by a number of hormones, which also affect circulating levels of free fatty acids (FFAs). The present study was therefore designed to determine the direct effect of FFAs on circulating ghrelin. DESIGN: Eight lean, healthy men were examined for 8 h on four occasions using variable infusion rates (0, 3, 6 and 12 microl/kg per min) of intralipid to create different plasma FFA concentrations. Constant levels of insulin and GH were obtained by administration of acipimox (250 mg) and somatostatin (300 microg/h). At the end of each study day a hyperinsulinaemic-euglycaemic clamp was performed. RESULTS: Four distinct levels of FFAs were obtained at the end of the lipid infusion period (FFA(LIPID): 0.03 +/- 0.00 vs: 0.49 +/- 0.04, 0.92 +/- 0.08 and 2.09 +/- 0.38 mmol/l; ANOVA P < 0.0001) and during hyperinsulinaemia (FFA(LIPID+INSULIN): 0.02 +/- 0.00 vs: 0.34 +/- 0.03, 0.68 +/- 0.09 and 1.78 +/- 0.32 mmol/l; ANOVA P < 0.0001). Whereas, somatostatin infusion alone reduced ghrelin concentration by approximately 67%, concomitant administration of increasing amounts of intralipid reduced circulating ghrelin by a further 14, 19 and 19% respectively (change in ghrelin: 0.52 +/- 0.05 vs: 0.62 +/- 0.06, 0.72 +/- 0.09 and 0.71 +/- 0.05 microg/l; ANOVA P = 0.04). No further reduction in ghrelin concentration was observed during hyperinsulinaemia. CONCLUSION: FFA exposure between 0 and 1 mmol/l significantly suppresses ghrelin levels independent of ambient GH and insulin levels.  相似文献   

6.
OBJECTIVE: The effects of free fatty acids (FFA), leptin, tumour necrosis factor (TNF) alpha and body fat distribution on in vivo oxidation of a glucose load were studied in two South African ethnic groups. DESIGN AND MEASUREMENTS: Anthropometric and various metabolic indices were measured at fasting and during a 7 h oral glucose tolerance test (OGTT). Body composition was measured using bioelectrical impedance analysis and subcutaneous and visceral fat mass was assessed using a five- and two-level CT-scan respectively. Glucose oxidation was evaluated by measuring the ratio of (13)CO(2) to (12)CO(2) in breath following ingestion of 1-(13)C-labelled glucose. SUBJECTS: Ten lean black women (LBW), ten obese black women (OBW), nine lean white women (LWW) and nine obese white women (OWW) were investigated after an overnight fast. RESULTS: Visceral fat levels were significantly higher (P<0.01) in obese white than black women, despite similar body mass indexes (BMIs). There were no ethnic differences in glucose oxidation however; in the lean subjects of both ethnic groups the area under the curve (AUC) was higher than in obese subjects (P<0.05 for both) and was found to correlate negatively with weight (r=-0.69, P<0.01) after correcting for age. Basal TNF alpha concentrations were similar in all groups. Percentage suppression of FFAs at 30 min of the OGTT was 24+/-12% in OWW and -38+/-23% (P<0.05) in OBW, ie the 30 min FFA level was higher than the fasting level in the latter group. AUC for FFAs during the late postprandial period (120--420 min) was significantly higher in OWW than OBW (P<0.01) and LWW (P<0.01) and correlated positively with visceral fat mass independent of age (r=0.78, P<0.05) in the OWW only. Leptin levels were higher (P<0.01) both at fasting and during the course of the OGTT in obese women from both ethnic groups compared to the lean women. CONCLUSIONS: Glucose oxidation is reduced in obese subjects of both ethnic groups; inter- and intra-ethnic differences were observed in visceral fat mass and FFA production and it is possible that such differences may play a role in the differing prevalences of obesity-related disorders that have been reported in these two populations.  相似文献   

7.
To test Randle's hypothesis we examined whether free fatty acids (FFAs) affect glucose-stimulated glucose transport/phosphorylation and allosteric mediators of muscle glucose metabolism under conditions of fasting peripheral insulinemia. Seven healthy men were studied during somatostatin-glucose-insulin clamp tests [plasma insulin, 50 pmol/L; plasma glucose, 5 mmol/L (0-180 min), 10 mmol/L (180-300 min)] in the presence of low (0.05 mmol/L) and increased (2.6 mmol/L) plasma FFA concentrations. (31)P and (1)H nuclear magnetic resonance spectroscopy was used to determine intracellular concentrations of glucose-6-phosphate (G6P), inorganic phosphate, phosphocreatine, ADP, pH, and intramyocellular lipids. Rates of glucose turnover were measured using D-[6,6-(2)H(2)]glucose. Plasma FFA elevation reduced rates of glucose uptake at the end of the euglycemic period (R(d 150-180 min): 8.6 +/- 0.5 vs. 12.6 +/- 1.6 micromol/kg.min, P < 0.05) and during hyperglycemia (R(d 270-300 min): 9.9 +/- 0.6 vs. 22.3 +/- 1.7 micromol/kg.min, P < 0.01). Similarly, intramuscular G6P was lower at the end of both euglycemic (G6P(167-180 min): -22 +/- 7 vs. +24 +/- 7 micromol/L, P < 0.05) and hyperglycemic periods (G6P(287-300 min): -7 +/- 9 vs. +28 +/- 7 micromol/L, P < 0.05). Changes in intracellular inorganic phosphate exhibited a similar pattern, whereas FFA did not affect phosphocreatine, ADP, pH, and intramyocellular lipid contents. In conclusion, the lack of an increase in muscular G6P along with reduction of whole body glucose clearance indicates that FFA might directly inhibit glucose transport/phosphorylation in skeletal muscle.  相似文献   

8.
BACKGROUND: Circulating ghrelin levels are reported to be suppressed by insulin, GH and free fatty acids (FFAs). However, insulin, GH and FFA levels are all interdependent, and it is therefore difficult to delineate their independent effects on ghrelin secretion. OBJECTIVE: To isolate and define the impact of GH, GH receptor (GHR) blockade and intravenous FFA infusion on total circulating ghrelin levels during a hyperinsulinaemic glucose clamp with identical insulin levels. DESIGN: In a randomized design, eight healthy males each underwent an 8-h hyperinsulinaemic glucose clamp on four occasions together with either: (1) control (saline), (2) intravenous FFA infusion (intralipid/heparin infusion 4 h), (3) a GH bolus (0.5 mg i.v.) or (4) GHR blockade (pegvisomant, 30 mg s.c.). RESULTS: Hyperinsulinaemia per se resulted in a decrease in ghrelin concentrations of about 15%. During FFA exposure, ghrelin levels were suppressed by about 22% when compared with saline [area under the curve (AUC)(ghrelin0-240) 122.7 +/- 10.9 vs. 97.6 +/- 13.4 pg/ml/min, P = 0.001], followed by a rebound increase upon discontinuation of the infusion. Furthermore, average ghrelin concentration (AUC(ghrelin)) was significantly inversely correlated to average FFA levels (AUC(FFA)) (r = -0.33, P < 0.05). Neither GH administration nor GHR blockade resulted in significant alterations in total ghrelin levels in the presence of unaltered insulin and FFA levels. CONCLUSIONS: Elevation of FFAs by means of an intravenous infusion acutely suppresses ghrelin levels, whereas GH administration and GHR blockade have no detectable effect on ghrelin concentration when insulin and FFA levels are kept fixed.  相似文献   

9.
AIMS: Metabolic responses to manipulation of the plasma free fatty acid (FFA) concentration were assessed in six healthy men via cross-over design to determine whether FFAs independently influence insulin sensitivity. METHODS: Intramyocellular lipid (IMCL) was measured by proton magnetic resonance spectroscopy and insulin sensitivity via frequently sampled intravenous glucose tolerance test (IVGTT) after 67 h of two identical low carbohydrate/high fat (LC) diets which were used to elevate IMCL and plasma FFAs. To uncouple the influence of FFAs and IMCL on insulin sensitivity, FFAs were suppressed 30 min prior to and during IVGTT in one treatment [LC + nicotinic acid (NA)] by NA ingestion. RESULTS: Vastus lateralis IMCL was significantly elevated in LC (13.3 +/- 1.1 x 10(-3)) and LC + NA (13.5 +/- 1.1 x 10(-3)) (P < 0.01 for both), but was not different between conditions (P > 0.05). Plasma FFAs were raised in LC (0.79 +/- 0.08 mmol/l) and LC + NA (0.80 +/- 0.11 mmol/l) (P < 0.01 for both) and were significantly reduced by NA ingestion prior to (0.36 +/- 0.05 mmol/l, P < 0.01) and during IVGTT (P < 0.05) in LC + NA. Despite marked differences in plasma FFA availability, insulin sensitivity and glucose tolerance were not different between LC and LC + NA (P > 0.05 for both). CONCLUSIONS: Plasma FFAs appear to exert no immediate effect on insulin sensitivity/glucose tolerance independent of their action on intracellular lipid moieties. Further research is required to elucidate the duration of FFA suppression required to restore insulin sensitivity following lipid-induced insulin resistance.  相似文献   

10.
OBJECTIVE: Leptin is known to play an important role in pubertal development in humans, probably acting as one permissive factor for the onset of puberty. Leptin serum concentrations change during pubertal development and an initial increase before the onset of puberty has been reported. The underlying mechanism for this increase in leptin levels is unknown. We hypothesized that the pulsatile release of GnRH stimulates leptin metabolism. In this study, the effect of short-term pulsatile GnRH administration on leptin levels in children with delayed onset of puberty was investigated. METHODS: Nineteen children (15 males and four females, mean age 15.5 years, range 13.1-20.5 years), who underwent evaluation for delayed sexual maturation, were included in the study. Sixteen subjects received 36 h of pulsatile intravenous GnRH, using an infusion pump that released 5 microg GnRH every 90 min. Serum concentrations of LH, FSH, testosterone, estradiol and leptin were analysed before and up to 36 h after GnRH administration. Eight patients received a single dose GnRH-agonist stimulation test (buserelin acetate test, 10 microg/kg body weight) with a 24-h follow-up (five patients underwent both tests). RESULTS: Mean (+/-s.e.m.) serum leptin increased significantly (P<0.01) after 36 h of pulsatile GnRH administration (7.26+/-1.35 vs 9.75+/-1.76 ng/ml). In contrast, no increase in leptin concentrations was observed after administration of a single dose of buserelin. CONCLUSIONS: These findings suggested that the increase in serum leptin at the onset of puberty is triggered by the pulsatile release of GnRH.  相似文献   

11.
To investigate the effect of a sustained (7-d) decrease in plasma free fatty acid (FFA) concentration in individuals genetically predisposed to develop type 2 diabetes mellitus (T2DM), we studied the effect of acipimox, a potent inhibitor of lipolysis, on insulin action and adipocytokine concentrations in eight normal glucose-tolerant subjects (aged 40 +/- 4 yr, body mass index 26.5 +/- 0.8 kg/m(2)) with at least two first-degree relatives with T2DM. Subjects received an oral glucose tolerance test (OGTT) and 120 min euglycemic insulin clamp (80 mU/m(2).min) with 3-[(3)H] glucose to quantitate rates of insulin-mediated whole-body glucose disposal (Rd) and endogenous (primarily hepatic) glucose production (EGP) before and after acipimox, 250 mg every 6 h for 7 d. Acipimox significantly reduced fasting plasma FFA (515 +/- 64 to 285 +/- 58 microm, P < 0.05) and mean plasma FFA during the OGTT (263 +/- 32 to 151 +/- 25 microm, P < 0.05); insulin-mediated suppression of plasma FFA concentration during the insulin clamp also was enhanced (162 +/- 18 to 120 +/- 15 microm, P < 0.10). Following acipimox, fasting plasma glucose (5.1 +/- 0.1 vs. 5.2 +/- 0.1 mm) did not change, whereas mean plasma glucose during the OGTT decreased (7.6 +/- 0.5 to 6.9 +/- 0.5 mm, P < 0.01) without change in mean plasma insulin concentration (402 +/- 90 to 444 +/- 102 pmol/liter). After acipimox Rd increased from 5.6 +/- 0.5 to 6.8 +/- 0.5 mg/kg.min (P < 0.01) due to an increase in insulin-stimulated nonoxidative glucose disposal (2.5 +/- 0.4 to 3.5 +/- 0.4 mg/kg.min, P < 0.05). The increment in Rd correlated closely with the decrement in fasting plasma FFA concentration (r = -0.80, P < 0.02). Basal EGP did not change after acipimox (1.9 +/- 0.1 vs. 2.0 +/- 0.1 mg/kg.min), but insulin-mediated suppression of EGP improved (0.22 +/- 0.09 to 0.01 +/- 0.01 mg/kg.min, P < 0.05). EGP during the insulin clamp correlated positively with the fasting plasma FFA concentration (r = 0.49, P = 0.06) and the mean plasma FFA concentration during the insulin clamp (r = 0.52, P < 0.05). Plasma adiponectin (7.1 +/- 1.0 to 7.2 +/- 1.1 microg/ml), resistin (4.0 +/- 0.3 to 3.8 +/- 0.3 ng/ml), IL-6 (1.4 +/- 0.3 to 1.6 +/- 0.4 pg/ml), and TNFalpha (2.3 +/- 0.3 to 2.4 +/- 0.3 pg/ml) did not change after acipimox treatment.We concluded that sustained reduction in plasma FFA concentration in subjects with a strong family history of T2DM increases peripheral (muscle) and hepatic insulin sensitivity without increasing adiponectin levels or altering the secretion of other adipocytokines by the adipocyte. These results suggest that lipotoxicity already is well established in individuals who are genetically predisposed to develop T2DM and that drugs that cause a sustained reduction in the elevated plasma FFA concentration may represent an effective modality for the prevention of T2DM in high-risk, genetically predisposed, normal glucose-tolerant individuals despite the lack of an effect on adipocytokine concentrations.  相似文献   

12.
Type 2 diabetes mellitus and obesity are characterized by fasting hyperinsulinemia, insulin resistance with respect to glucose metabolism, elevated plasma free fatty acid (FFA) levels, hypertriglyceridemia, and decreased high-density lipoprotein (HDL) cholesterol. An association between hyperinsulinemia and dyslipidemia has been suggested, but the causality of the relationship remains uncertain. Therefore, we infused eight 12-week-old male catheterized conscious normal rats with insulin (1 mU/min) for 7 days while maintaining euglycemia using a modification of the glucose clamp technique. Control rats (n = 8) received vehicle infusion. Baseline FFAs were 1.07+/-0.13 mmol/L, decreased to 0.57+/-0.10 (P < .05) upon initiation of the insulin infusion, and gradually increased to 0.95+/-0.12 by day 7 (P = NS vbaseline). On day 7 after a 6-hour fast, plasma insulin, glucose, and FFA levels in control and chronically hyperinsulinemic rats were 32+/-5 versus 116+/-21 mU/L (P < .005), 122+/-4 versus 129+/-8 mg/dL (P = NS), and 1.13+/-0.18 versus 0.95+/-0.12 mmol/L (P = NS); total plasma triglyceride and cholesterol levels were 78+/-7 versus 66+/-9 mg/dL (P = NS) and 50+/-3 versus 47+/-2 mg/dL (P = NS), respectively. Very-low-density lipoprotein (VLDL) + intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL), and HDL2 and HDL3 subfractions of plasma triglyceride and cholesterol were similar in control and hyperinsulinemic rats. Plasma FFA correlated positively with total (r = .61, P < .005) triglycerides. On day 7 after an 8-hour fast, hyperinsulinemic-euglycemic clamps with 3-3H-glucose infusion were performed in all rats. Chronically hyperinsulinemic rats showed peripheral insulin resistance (glucose uptake, 15.8+/-0.8 v 19.3+/-1.4 mg/kg x min, P < .02) but normal suppression of hepatic glucose production (HGP) compared with control rats (4.3+/-1.0 v 5.6+/-1.4 mg/kg x min, P = NS). De novo tissue lipogenesis (3-3H-glucose incorporation into lipids) was increased in chronically hyperinsulinemic versus control rats (0.90+/-0.10 v 0.44+/-0.08 mg/kg x min, P < .005). In conclusion, chronic physiologic hyperinsulinemia (1) causes insulin resistance with regard to the suppression of plasma FFA levels and increases lipogenesis; (2) induces peripheral but not hepatic insulin resistance with respect to glucose metabolism; and (3) does not cause an elevation in VLDL-triglyceride or a reduction in HDL-cholesterol.  相似文献   

13.
AIMS: To assess differences in circulating leptin and glucagon-like peptide (GLP)-1 concentrations before and after an oral glucose load, in euglycaemic and isoinsulinaemic conditions, between obese patients with and without Type 2 diabetes mellitus. METHODS: Ten male obese (body mass index (BMI) > 30 kg/m2) patients with Type 2 diabetes and 20 matched non-diabetic subjects were studied. Leptin, GLP-1(7-36)amide and GLP-1(7-37) concentrations were measured 0, 30, 60, and 90 min after a 50-g oral glucose load administered 90 min after the beginning of a euglycaemic hyperinsulinaemic clamp. RESULTS: GLP-1(7-36)amide concentrations before the glucose load were significantly lower in diabetic patients than in controls (median (quartiles): 50.5 (44.7-53.2) vs. 128.7(100-172.5) pg/ml; P < 0.01), while no difference was observed in baseline GLP-1(7-37). In non-diabetic subjects, GLP-1(7-36)amide and GLP-1(7-37) concentrations increased significantly after the oral glucose load, while no glucose-induced increase in GLP-1 concentration was observed in diabetic patients. GLP-1(7-36)amide at 30, 60, and 90 min, and GLP-1(7-37) at 30 min, of the glucose challenge, were significantly lower in diabetic patients. Leptin concentrations were not significantly different in diabetic patients when compared to non-diabetic subjects, and they did not change after the oral glucose load. DISCUSSION: Leptin concentrations are not significantly modified in obese Type 2 diabetic patients. GLP-1(7-36)amide baseline concentrations are reduced in Type 2 diabetes; moreover, diabetic subjects show an impaired response of GLP-1 to oral glucose in euglycaemic, isoinsulinaemic conditions. This impairment, which is not the result of differences in glycaemia or insulinaemia during assessment, could contribute to the pathogenesis of hyperglycaemia in Type 2 diabetes mellitus.  相似文献   

14.
OBJECTIVE: To measure whether changes in the concentrations of circulating free fatty acids (FFAs) after a 7 day fast in rheumatoid arthritis (RA) patients would inhibit in vitro T-lymphocyte proliferation. METHODS: The concentration and composition of plasma FFAs were measured in nine RA patients at the conclusion of a 7 day fast. A FFA mixture was made up based on these findings (20% linoleic, 43% oleic, 10% stearic, 27% palmitic acid). Mitogen-induced lymphocyte proliferative responses were measured after co-culture of peripheral blood mononuclear cells (PBMC) from healthy individuals in the presence of increasing concentrations of this FFA mixture (from 0 to 2000 microM) and in the presence of FFA mixtures where the relative proportions of fatty acids varied. RESULTS: Both the concentration of the FFA mixture and the ratio between the unsaturated and saturated fatty acids significantly influenced in vitro lymphocyte proliferation (P<0.0001). Unexpectedly, the highest concentrations of the FFA mixture increased lymphocyte proliferation. At equimolar concentrations (600 microM), manipulating the amounts of oleic and linoleic fatty acids relative to stearic and palmitic fatty acids had a potent inhibitory effect upon lymphocyte proliferation. CONCLUSION: Fasting-associated increases in total plasma FFA concentrations do not inhibit, but rather enhance, in vitro lymphocyte proliferation. An inhibitory effect could only be achieved by manipulating the balance between the unsaturated and saturated fatty acids.  相似文献   

15.
To investigate the dose-dependent effect of free fatty acid (FFA) on the hepatic glucose uptake (HGU), we determined hepatic glucose fluxes by a dual tracer technique during the basal state and euglycemic hyperinsulinemic clamp combined with a portal glucose load in three groups of rats given saline (saline), low-dose lipid (lipid-L), or high-dose lipid infusion (lipid-H). In the basal state, lipid infusion dose-dependently increased plasma FFA (saline, 400 +/- 50; lipid-L, 550 +/- 30; lipid-H, 1700 +/- 270 micromol l(-1); mean +/- S.E). Endogenous glucose production (EGP) in lipid-H was 63.5 +/- 5.5 micromol kg(-1) min(-1) and significantly higher than in the saline and lipid-L (40.2 +/- 2.9, 47.6 +/- 3.1 micromol kg(-1) min(-1), respectively). During euglycemic hyperinsulinemic clamp, plasma FFA decreased to 130 +/- 30 micromol l(-1) in saline, but remained at basal levels in lipid-L and lipid-H (470 +/- 30 and 1110 +/- 180 micromol l(-1), respectively). Insulin-suppressed EGP was complete in saline and lipid-L, but impaired in lipid-H (38.0 +/- 6.4 micromol kg(-1) min(-1)). Elevated FFA dose-dependently reduced HGU (saline, 12.2 +/- 0.9; lipid-L, 8.6 +/- 0.6; lipid-H, 4.7 +/- 1.4 micromol kg(-1) min(-1)). In conclusion, acutely elevated FFA impairs HGU as well as insulin-mediated suppression of EGP during hyperinsulinemic clamp with portal glucose loading. Impaired hepatic glucose uptake associated with elevated FFA may contribute to the development of insulin resistance in obesity and type 2 diabetes.  相似文献   

16.
Energy surplus raises circulating concentrations of leptin and insulin while lowering plasma ghrelin. Exercise has the opposite effects. The purpose of this study was to determine whether exercise counters the hormonal effects of energy surplus independent of changes in energy balance. To do that, we assessed plasma concentrations of leptin, insulin, and ghrelin at baseline, after overfeeding, and after overfeeding plus exercise. Baseline (B) leptin and insulin concentrations and ghrelin area under the curve were measured during an oral glucose challenge in 9 healthy, active subjects (6 male, 3 female) after 2 days in energy balance without exercise. Measurements were repeated after subjects were overfed by +3213 +/- 849 kJ/d for 3 more sedentary days (OF). In the third condition, the same net energy surplus (+3125 +/- 933 kJ/d) was generated for 24 hours by doubling the overfeeding (+6284 +/- 1669 kJ/d) and countering it with a bout of exercise (expenditure = 3063 +/- 803 kJ); and measurements were made the next day (OF + EX). Compared with B, leptin went up (5.8 +/- 8.2 to 7.6 +/- 10.6 ng/mL) after OF, but was not significantly higher after OF + EX (7.1 +/- 10.2 ng/mL). Compared with B, insulin was +36% and +43% higher after OF and OF + EX, respectively. In contrast, ghrelin area under the curve did not change after OF but was significantly lower (-14%) than B or OF after OF + EX (indicating greater suppression). These data suggest that the effect of short-term exercise on fasting leptin and insulin depends on energy balance but the ghrelin response may be partially mediated by effects of exercise independent of energy balance.  相似文献   

17.
Insulin-induced leptinemia in humans appears to be blunted by insulin resistance. We therefore examined the relationship between insulin action and plasma leptin by monitoring regional and whole body lipolysis and plasma leptin levels in 15 premenopausal women (body fat range, 14-59%) during a two-stage euglycemic clamp (insulin was infused 90 min each at 6-10 and 12-20 mU/m2 x min). Microdialysis probes were placed in abdominal and femoral sc adipose tissue. Subjects were given a primed, constant infusion of a stable isotope tracer (2H5-glycerol), and plasma glycerol isotope enrichments were analyzed by mass spectrometry to determine glycerol kinetics. Although there was no mean change in plasma leptin during the clamp (baseline, 16.6 +/- 4.5 ng/mL; final, 16.3 +/- 4.3 ng/mL), there was large interindividual variability in the changes in plasma leptin (range, -18% to +19%). Changes in plasma leptin during the clamp stages were correlated with abdominal dialysate glycerol concentrations (r = -0.44; P < 0.05), but not femoral dialysate glycerol concentrations (r = -0.15), the rate of appearance of glycerol in plasma (r = 0.005), or plasma insulin levels (r = 0.16). The results suggest that insulin-induced changes in plasma leptin are more related to the lipolytic state (i.e. low leptin response when lipolysis is high) of abdominal sc adipose tissue than that of other fat depots.  相似文献   

18.
OBJECTIVE: Elevation of free fatty acids (FFAs) by the infusion of triglyceride-heparin emulsion infusion (TG-Hep) causes insulin resistance (IR). We examined the effect of insulin sensitizer (rosiglitazone) on FFA-induced IR. DESIGN: Nine obese subjects underwent a 6-h infusion of TG-Hep before and after 6 wk of rosiglitazone (8 mg/d) treatment. Hyperinsulinemic euglycemic clamps were performed during 0-2 and 4-6 h of TG-Hep. RESULTS: After rosiglitazone for 6 wk, fasting FFA concentration fell, but not significantly (489 +/- 63 at 0 wk; 397 +/- 58 micromol/liter at 6 wk; P = 0.16), whereas C-reactive protein (4.26 +/- 0.95 at 0 wk; 2.03 +/- 0.45 microg/ml at 6 wk) and serum amyloid A (17.36 +/- 4.63 at 0 wk; 8.77 +/- 1.63 microg/ml at 6 wk) decreased significantly. At 0 wk, TG-Hep infusion caused a decrease in glucose infusion rate (GIR) from 4.49 +/- 0.95 mg/kg.min to 3.02 +/- 0.59 mg/kg.min (P = 0.018). Rosiglitazone treatment resulted in an increase in baseline GIR to 6.29 +/- 0.81 mg/kg.min (P = 0.03 vs. 0 wk), which decreased to 4.52 +/- 0.53 mg/kg.min (P = 0.001) after 6 h of TG-Hep infusion. The decrease in GIR induced by TG-Hep infusion was similar before and after rosiglitazone therapy [1.47 +/- 0.50 vs. 1.77 0.3 mg/kg.min (28.9 +/- 6.5 vs. 26.4 +/- 3.7%); P = 0.51]. The rise in FFAs and triglycerides after TG-Hep infusion was significantly lower at 6 wk (P = 0.006 for FFAs; P = 0.024 for triglycerides). CONCLUSIONS: We conclude that rosiglitazone: 1) causes a significant increase in GIR; 2) induces a decrease in inflammatory mediators, C-reactive protein, and serum amyloid A; 3) decreases the rise in FFAs and triglycerides after TG-Hep infusion; and 4) does not prevent FFA-induced IR.  相似文献   

19.
OBJECTIVE: Insulin is thought to be an important regulator of leptin secretion. However, increasing evidence suggests that insulin-mediated glucose uptake rather than insulin per se regulates circulating leptin concentration. Here, we hypothesised that a reduction of insulin sensitivity, ie insulin resistance, will diminish the stimulatory effect of insulin on leptin secretion as a consequence of decreased insulin-mediated glucose uptake. DESIGN: Changes in serum leptin concentration during 30 hyperinsulinaemic-hypoglycaemic clamps were studied after induction of different levels of insulin resistance in normal-weight men. In 15 subjects insulin sensitivity was reduced by exposing them to a 2.5 h antecedent hypoglycaemia (3.1 mmol/l) induced by a high rate of insulin infusion (15.0 mU/min/kg) on the day before the proper experiment ('ante-hypo' condition). In the other 15 subjects no antecedent hypoglycaemia was induced ('control' condition). The proper experiment on both conditions was a 6 h stepwise hypoglycaemic clamp induced by a constant rate of insulin infusion (1.5 mU/min/kg). SUBJECTS: Experiments were carried out in 30 lean healthy subjects (age, mean +/- s.e.m., 26 +/- 1 y; body mass index, 23.1 +/- 0.6 kg/m2). RESULTS: As expected, glucose demand during the clamp was lower in the ante-hypo condition than in the control condition (gram of glucose infused per kilogram body weight, 1.52 +/- 0.16 vs 2.01 +/- 0.17 g/kg; P < 0.05). During the clamp, leptin levels increased by 25.4 +/- 4.3% in the control condition (P < 0.05), but not in the ante-hypo condition (+4.8 +/- 4.5%; P > 0.25). Thus, serum leptin response to the clamp significantly differed between the two conditions (P < 0.01). Across both conditions, the increase of leptin levels during the clamp was correlated with the amount of glucose infused (r = 0.37; P < 0.05). CONCLUSION: Considering that insulin concentrations were identical during both clamp conditions, the data indicate that experimentally-induced insulin resistance diminishes the stimulatory effect of insulin on leptin secretion.  相似文献   

20.
Administration of leptin during reduced nutrition improves reproductive activity in several monogastric species and reverses GH suppression in rodents. Whether leptin is a nutritional signal regulating neuroendocrine control of pituitary function in ruminant species is unclear. The present study examined the control of pulsatile LH and GH secretion in sheep. We determined whether exogenous leptin could prevent either the suppression of pulsatile LH secretion or the enhancement of GH secretion that occur during fasting. Recombinant human met-leptin (rhmet-leptin; 50 microg/kg BW; n = 8) or vehicle (n = 7) was administered s.c. every 8 h during a 78-h fast to estrogen-treated, castrated yearling males. LH and GH were measured in blood samples collected every 15 min for 6 h before fasting and during the last 6 h of fasting. Leptin was measured both by a universal leptin assay and by an assay specific for ovine leptin. During the fast, endogenous plasma leptin fell from 1.49 +/- 0.16 to 1.03 +/- 0.13 ng/ml. The average concentration of rhmet-leptin 8 h after leptin administration was 18.0 ng/ml. During fasting, plasma insulin, glucose, and insulin-like growth factor I levels declined, and nonesterified fatty acid concentrations increased similarly in vehicle-treated and leptin-treated animals. In vehicle-treated animals, LH pulse frequency declined markedly during fasting (5.6 +/- 0.5 vs. 1.1 +/- 0.5 pulses/6 h; fed vs. fasting; P < 0.0001). Leptin treatment prevented the fall in LH pulse frequency (5.0 +/- 0.4 vs. 4.9 +/- 0.4 pulses/6 h; P = 0.6). Neither fasting nor leptin administration altered GH pulse frequency. Fasting produced a modest increase in mean concentrations of circulating GH in control animals (2.4 +/- 0.5 vs. 3.4 +/- 0.6 ng/ml; P = 0.04), whereas there was a much greater increase in GH during leptin treatment (2.7 +/- 0.6 vs. 8.6 +/- 1.6 ng/ml; P = 0.0001). GH pulse amplitudes were also increased by fasting in control (P = 0.04) and leptin-treated sheep (P = 0.007). The finding that exogenous rhmet-leptin regulates LH and GH secretion in sheep indicates that this fat-derived hormone conveys information about nutrition to mechanisms controlling neuroendocrine function in ruminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号