首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study confirms for Madeira Island (Portugal) population the Type 1 Diabetes (T1D) susceptible and protective Human leucocyte antigens (HLA) markers previously reported in other populations and adds some local specificities. Among the strongest T1D HLA associations, stands out, as susceptible, the alleles DRB1*04:05 (OR = 7.3), DQB1*03:02 (OR = 6.1) and DQA1*03:03 (OR = 4.5), as well as the haplotypes DRB1*04:05‐DQA1*03:03‐DQB1*03:02 (OR = 100.9) and DRB1*04:04‐DQA1*03:01‐DQB1*03:02 (OR = 22.1), and DQB1*06:02 (OR = 0.07) and DRB1*15:01‐DQA1*01:02‐DQB1*06:02 (OR = 0.04) as protective. HLA‐DQA1 positive for Arginine at position 52 (Arg52) (OR = 15.2) and HLA‐DQB1 negative for Aspartic acid at the position 57 (Asp57) (OR = 9.0) alleles appear to be important genetic markers for T1D susceptibility, with higher odds ratio values than any single allele and than most of the haplotypes. Genotypes generated by the association of markers Arg52 DQA1 positive and Asp57 DQB1 negative increase T1D susceptibility much more than one would expected by a simple additive effect of those markers separately (OR = 26.9). This study also confirms an increased risk for DRB1*04/DRB1*03 heterozygote genotypes (OR = 16.8) and also a DRB1*04‐DQA1*03:01‐DQB1*03:02 haplotype susceptibility dependent on the DRB1*04 allele (DRB1*04:01, OR = 7.9; DRB1*04:02, OR = 3.2; DRB1*04:04, OR = 22.1).  相似文献   

2.
《Human immunology》2023,84(2):69-70
Class II HLA loci DRB1, DQB1 and DPB1 were typed for a total of 939 Gambian participants by locus-specific amplicon sequencing. Participants were from multiple regions of The Gambia and drawn from two studies: a family study aiming to identify associations between host genotype and trachomatous scarring (N = 796) and a cohort study aiming to identify correlates of immunity to trachoma (N = 143). All loci deviated from Hardy-Weinberg equilibrium, likely due to the family-based nature of the study: 608 participants had at least one other family member included in the study population. The most common alleles for HLA-DRB1, DQB1 and DPB1 respectively were DRB1*13:04 (18.8 %), DQB1*03:19 (27.9 %) and DPB1*01:01 (25.4 %). Participants belonged to a variety of ethnicities, including the Mandinka, Fula, Wolof and Jola ethnic groups.  相似文献   

3.
《Human immunology》2023,84(2):67-68
Locus-specific amplicon sequencing was used to HLA type 336 participants of Maasai ethnicity at the HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1 loci. Participants were recruited from three study villages in North Tanzania, for the purpose of investigating risk factors for trachomatous scarring in children. Other than HLA-A, all loci significantly deviated from Hardy-Weinberg equilibrium, possibly due to high relatedness between individuals: 238 individuals shared a house with at least one another participant. The most frequent allele for each locus were A*68:02 (14.3 %), B*53:01 (8.4 %), C*06:02 (19.2 %), DRB1*13:02 (17.7 %), DQB1*02:01 (16.9 %) and DPB1*01:01 (15.7 %), while the most common inferred haplotype was A*68:02 ~ B*18:01 ~ C*07:04 ~ DRB1*08:04 ~ DQB1*04:02 ~ DPB1*04:01 (1.3 %).  相似文献   

4.
《Human immunology》2023,84(3):199-207
In the present study we analyzed the relevance of HLA class II in JAK2 V617F-positive (JAK2 V617F+) myeloproliferative neoplasms (MPNs) focusing on genotype diversity, associations with specific alleles and haplotypes and the level of gene expression. One hundred and thirty-nine JAK2 V617F+ MPN patients and 1083 healthy controls, typed by Next generation sequencing (NGS) were included in the study. Multivariate generalized linear models with age as a covariate were applied for analysis of HLA-II allele and haplotype associations. Publicly available gene expression datasets were used to analyze HLA-II pathway genes expression in CD34+ stem cells (SCs) from MPN patients and healthy controls. We did not observe differences in HLA evolutionary divergence (HED) between JAK2 V617F+ MPNs and healthy controls. Two alleles: HLA-DPB1*03:01, DQB1*04:02 and 4 haplotypes: DPB1*02:01-DQA1*05:05-DQB1*03:01-DRB1*11:01, DPB1*04:02-DQA1*05:05-DQB1*03:01-DRB1*11:03, DPB1*02:01-DQA1*01:04-DQB1*05:03-DRB1*14:04, and DPB1*04:01-DQA1*03:01-DQB1*03:02-DRB1*04:01 had significantly lower frequency in MPN patients compared to controls. Additionally, we observed HLA-II alleles and haplotypes with statistically higher frequencies in JAK2 V617F+ patients. Differential gene expression analysis showed down-regulation of HLA-DRB1, -DRA, -DMA, -DMB, -DOA,-DRB4, CIITA, and CD74 genes in JAK2 V617F+ MPN CD34+ SCs as compared to normal CD34 + SCs. In conclusion, this study provides evidence for the pleiotropic effects of HLA-II genes in JAK2 V617F-driven MPNs.  相似文献   

5.
This study aimed to determine the HLA‐DRB1/HLA‐DQB1 susceptibility and protection pattern for type 1 diabetes (T1D) in a population from Hamadan, north‐west of Iran. A total of 133 patients with T1D were tested for HLA‐DRB1 and HLA‐DQB1 alleles using PCR‐SSP compared to 100 ethnic‐matched healthy controls. Alleles and haplotypes frequencies were compared between both groups. The most susceptible alleles for disease were HLA‐DRB1*03:01, DRB1*04:02, DQB1*02:01 and DQB1*03:02, and protective alleles were HLA‐DRB1*07:01, *11:01, *13:01, *14:01 and DRB1*15 and HLA‐DQB1*06:01, *06:02 and *06:03. Haplotype analysis revealed that patients with T1D had higher frequencies of DRB1*03:01–DQB1*02:01 (OR = 4.86, < 10?7) and DRB1*04:02–DQB1*03:02 (OR = 9.93, < 10?7) and lower frequencies of DRB1*07:01–DQB1*02:01 (P = 0.0005), DRB1*11:01–DQB1*03:01 (P = 0.001), DRB1*13:01–DQB1*06:03 (P = 0.002) and DRB1*15–DQB1*06:01 (P = 0.001) haplotypes compared to healthy controls. Heterozygote combination of both susceptible haplotypes (DR3/DR4) confers the highest risk for T1D (RR = 18.80, P = 4 × 10?5). Additionally, patients with homozygote diplotype, DR3/DR3 and DR4/DR4, showed a similar risk with less extent to heterozygote combination (P = 0.0004 and P = 0.01, respectively). Our findings not only confirm earlier reports from Iranians but also are in line with Caucasians and partly with Asians and some African patients with T1D. Remarkable differences were the identification of DRB1*04:01–DQB1*03:02, DRB1*07:01–DQB1*03:03 and DRB1*16–DQB1*05:02 as neutral and DRB1*13:01–DQB1*06:03 as the most protective haplotypes in this study.  相似文献   

6.
The human leukocyte antigen (HLA) class II DQB1*0201/0202‐DRB1*04 genotype has been identified as predisposing to type 1 diabetes [insulin‐dependent diabetes mellitus (IDDM)] in the Saudi Arabian population (P = 0.0002; odds ratio = 0.67; 95% confidence interval = 0.009–0.381). In this study, we searched for a factor at the DPB1 locus by analysing DPB1 polymorphism using sequence‐based typing in 86 Saudi IDDM patients and control subjects, all carrying the HLA‐DRB1*04/DQB1*02 haplotype or the known susceptibility allele DQB1*0201/0202. Significant protection was conferred by DPB1*0401, which was observed in 17 of 50 control subjects (55%) and 2 of 36 IDDM patients (5%) with the DQB1*0201/0202 allele (P = 0.0012; odds ratio = 8.75; confidence interval = 1.72–59.70). Our data showing a high frequency of the DPB1*0401 allele even in the presence of the predisposing DQB1*02 allele in healthy subjects may indicate a protective effect of this combination of HLA alleles against type 1 diabetes. This finding supports the hypothesis that protective HLA class II genes can override the risk conferred by HLA‐DQ susceptibility alleles. Further studies using larger cohorts of control subjects and patients should be undertaken to confirm this observation.  相似文献   

7.
It is known that certain combinations of alleles within the human leucocyte antigen (HLA) complex are associated with susceptibility or resistance to type 1 diabetes. Variable associations of DR and DQ with type 1 diabetes are documented in Caucasians but rarely in African populations; however, the role of HLA-DP genes in type 1 diabetes remains uncertain. In order to investigate the HLA class II associations with type 1 diabetes in Cameroonians, we used sequence-specific oligonucleotide probing (SSOP) to identify DRB1, DQA1, DQB1 and DPB1 alleles in 10 unrelated C-peptide negative patients with type 1 diabetes and 90 controls from a homogeneous population of rural Cameroon. We found a significantly higher frequency of the alleles DRB1*03 (χ2 = 17.9; P = 0.001), DRB1*1301 (χ2 = 37.4; P < 0.0001), DQA1*0301 (χ2 = 18.5; P = 0.001) and DQB1*0201 (χ2 = 37.4; P < 0.001) in diabetes patients compared to the control group. The most frequent alleles in the control population were DQA1*01, DQB1*0602 and DRB1*15. The DRB1*04 allele was not significantly associated with type I diabetes in our study population. We observed no significant difference between patients and controls in DPB1 allele frequency. In conclusion, the data in Cameroonian diabetes patients suggest the existence of HLA class II predisposing and specific protective markers, but do not support previous reports of a primary association between HLA-DP polymorphism and development of type I diabetes .  相似文献   

8.
Three novel HLA‐Class II alleles, DRB1*03:112, DQB1*03:02:16 and DQB1*03:139, are described with predicted bearing haplotypes of A*02:01, B*40:01, C*03:04, DRB1*03:112, DQB1*02:01; A*23:01, B*15:01, C*03:03, DRB1*04:01, DQB1*03:02:16 and A*01:01, B*44:02, C*05:01/03, DRB1*04:01, DQB1*03:139. Serological tests showed that the DRB1*03:112 and DQB1*03:139 specificities failed to react as expected with some well‐documented monoclonal antibodies. Subsequent examination of published HLA‐Class II epitopes and inspection of amino acid motifs suggested that epitopes exist that include the positions of their single substitutions (F31C between DRB1*03:01:01:01 and DRB1*03:112, and R48P between DQB1*03:01:01:01 and DQB1*03:139 specificities). This suggests that the reactivity of the monoclonal antibodies used was dependent on these epitopes and that their loss from these rare allele products resulted in their aberrant serology. The new alleles were found after the sequence‐based typing of 32 530 random UK European routine blood donors suggesting that each has a maximum carriage frequency of 0.0031% in the blood donor population resident in Wales.  相似文献   

9.
Human leukocyte antigen (HLA) class II alleles have been previously associated with cervical cancer. However, these associations vary widely across racial and ethnic groups. Therefore, we evaluated the effect of HLA class II alleles on cervical cancer in a Korean population. HLA-DRB1, HLA-DQB1, and HLA-DQA1 alleles were analyzed in 457 cervical cancer patients and compared to those of 926 control subjects. The odds ratio (OR) of each allele between the patients and controls was calculated using the logistic regression model. Patients, had significantly lower frequencies of HLA-DRB1 and HLA-DQB1 alleles than control subjects: HLA-DRB1*13:02:01 (4.4% vs 8.8%; OR 0.48, 95% confidence interval (CI) 0.27–0.84; p = 0.001), HLA-DRB1*04:06 (2.1% vs 4.7%; OR 0.44, 95% CI 0.20–0.97; p = 0.033), and HLA-DQB1*06:04:01 (2.3% vs 5.0%; OR 0.46, 95% CI 0.22–0.94; p = 0.021). No significant association was observed for HLA-DQA1. Protective associations between HLA-DRB1*13:02, HLA-DRB1*04:06, and HLA-DQB1*06:04 alleles and cervical cancer were found in the Korean population  相似文献   

10.
《Human immunology》2020,81(9):496-498
We studied HLA class I (HLA-A, -B) and class II (HLA-DRB1, -DQB1) alleles by PCR-SSP based typing in 453 Mexicans from the state of Zacatecas living in Zacatecas city (N = 84), Fresnillo (N = 103) and rural communities (N = 266) to obtain information regarding allelic and haplotypic frequencies and their linkage disequilibrium. We find that the most frequent haplotypes for the state of Zacatecas include seven Native American most probable ancestry (A*02 ∼ B*39 ∼ DRB1*04 ∼ DQB1*03:02; A*02 ∼ B*35 ∼ DRB1*08 ∼ DQB1*04; A*24 ∼ B*39 ∼ DRB1*14 ∼ DQB1*03:01; A*02 ∼ B*35 ∼ DRB1*04 ∼ DQB1*03:02; A*24 ∼ B*35 ∼ DRB1*04 ∼ DQB1*03:02; A*68 ∼ B*35 ∼ DRB1*04 ∼ DQB1*03:02 and A*24 ∼ B*35 ∼ DRB1*08 ∼ DQB1*04) and two European MPA haplotypes (HLA ∼ A*01 ∼ B*08 ∼ DRB1*03:01 ∼ DQB1*02 and A*29 ∼ B*44 ∼ DRB1*07 ∼ DQB1*02). Admixture estimates revealed that the main genetic components in the state of Zacatecas are European (47.61 ± 1.85%) and Native American (44.74 ± 1.12%), while the African genetic component was less apparent (7.65 ± 1.12%). Our findings provide a starting point for the study of population immunogenetics of urban and rural populations from the state of Zacatecas and add to the growing knowledge on the population genetics of Northern Mexico.  相似文献   

11.
We studied HLA class I (HLA-A, -B) and class II (HLA-DRB1, -DQB1) alleles by PCR-SSP based typing in a total of 1101 Ecuadorian individuals from three regions of the country, the Coastal region, the Andean region, and the Amazonian region, to obtain information regarding allelic and haplotypic frequencies and their linkage disequilibrium. We find that the most frequent HLA haplotypes with significant linkage disequilibrium in those populations are HLA-A*24~B*35~DRB1*04~DQB1*03:02, A*02~B*35~DRB1*04~DQB1*03:02, A*24~B*35~DRB1*14~DQB1*03:01, A*02~B*35~DRB1*14~DQB1*03:01 and A*02~B*40:02~DRB1*04~DQB1*03:02. The only non-Native American haplotype with frequency >1% shared by all groups was A*29~B*44~DRB1*07~DQB1*02. Admixture estimates obtained by a maximum likelihood method using HLA-B as genetic estimator revealed that the main genetic components for this sample of mixed-ancestry Ecuadorians are Native American (ranging from 52.86% to 63.83%) and European (from 28.95% to 46.54%), while an African genetic component was only apparent in the Coastal region (18.19%). Our findings provide a starting point for the study of population immunogenetics of Ecuadorian populations.  相似文献   

12.
More is now known of the involvement of HLA-DP region in the pathogenesis of the leukemias through several previousstudies showing interference of these molecules in modulating the immune response to pathogens. For evaluation of HLA alleles and haplotypes DPA1*/DPB1* (28 alleles HLA DPA1* and 123 of HLA- DPB1*) Olerup SSP ™PCR (Genovision) was used in 48 patients with ALL, 48 CML, and 48 Venezuelan twins as controls. For HLA/leukemias, a relative risk (RR) > 3 was considered to be a positive association and negative with an RR < 3, with a p corrected P<.05. ALL patients confirmed positive associations with DPA1*0105 allele, and negative with DPA1*010301-010302. In addition, they were positively associated with DPA1*0106 and *0107, with DPA1*020101-020106 being negatively associated with ALL. DPA1*0105, *0108 and *0109 were negatively associated with CML. The observed frequencies of HLA-DPB1* 01:01, 02:01, 03:01, 04:01 and 4:02 alleles in Venezuelan, which twins were between 7 and 16%, were higher than those of leukemic patients. Negative associations of DPB1*2:01, *3:01 and LLA were confined. No positive associations were observed with ALL. Non-confirmed positive associations were observed between DPB1*99:01 and CML. Haplotypes HLA-DPA1*01:03-DPB1*4:01, *2:01, *99:01 were strongly positively associated with CML. DPA1*1:09-DPB1*2:01, *4:01 were negatively associated with the CML. DPA1*1:03-DPB1*4:02; DPA1*01:09-DPB1*2:01, *4:01 and DPA1*02:01-DPB1*04:02 were negatively associated with ALL. The DPB1* single region does not appear to be associated with leukemia in the Venezuelan population. The strong association with several haplotypes DPA*1/DPB1* and LMC suggests massive differences between the pathogenesis of both diseases.  相似文献   

13.
《Human immunology》2021,82(10):719-725
Human leukocyte antigen (HLA) genes with extreme diversity can make a contribution for individual variations to the immune response against SARS-COV-2 infection. This study aimed to explore the distributions of HLA class II alleles frequencies and their relations with disease severity in a group of Iranian COVID-19 patients. This prospective and case-control study was conducted on 144 COVID-19 patients including 46 cases with moderate form, 54 cases with severe and 44 cases with critical disease. HLA-DRB1 and -DQB1 allele families were determined by PCR-SSP method and compared between three groups of the patients and in comparison to 153 ethnic-matched healthy controls. The patients group showed lower frequencies of HLA-DRB1*15 (OR = 0.57, P = 0.06), DRB1*15 ~ DQB1*05 haplotype (P = 0.04) and DRB1*15/DRB1*04 genotype (P = 0.04) in compare with healthy controls. Moderate COVID-19 patients had higher frequencies of HLA-DRB1*04 (P = 0.03), HLA-DRB1*10 (P = 0.05) and DRB1*04/DRB1*11 genotype (P = 0.01). Also, a higher significantly frequency of HLA-DRB1*03 allele group was observed in the critical patients versus controls (P = 0.01). Multiple logistic regression analysis revealed that the presence of DRB1*04 allele group was negatively associated with development of severe and critical disease (OR: 0.289, P = 0.005). Our results indicate a possible contribution of some HLA class II alleles in disease severity and clinical features of COVID-19 disease.  相似文献   

14.
《Human immunology》2019,80(11):943-947
Chronic kidney disease (CKD) is becoming a global public health problem and usually cause End-Stage Renal Disease (ESRD) in the end of progression. To analyze the associations of HLA-A, -B, -C, -DRB1 and -DQB1 alleles at high resolution with ESRD in Jiangsu province of China, a total of 499 unrelated patients with ESRD from the First Affiliated Hospital with Nanjing Medical University and 1584 healthy controls from Jiangsu Branch of Chinese Marrow Donor Program (CMDP) were genotyped at HLA-A, -B, -C, -DRB1 and -DQB1 loci. Statistical analysis was applied to compare the differences of HLA allele frequencies between patients with ESRD and healthy controls. As results, no protective allele at A locus was found and the susceptible alleles were A*11:01 and A*31:01. At B locus, B*15:01, B*55:02 and B*39:05 emerged as susceptible alleles, whereas no protective allele was found. At C locus, C*06:02 and C*07:01 emerged as protective alleles and no susceptible allele was found. At DRB1 locus, six alleles including DRB1*03:01, DRB1*04:03, DRB1*04:04, DRB1*04:05, DRB1*11:01 and DRB1*12:02 emerged as susceptible alleles, while DRB1*15:01 emerged as a protective allele. At DQB1 locus, DQB1*02:01, DQB1*03:01, DQB1*03:02 and DQB1*04:01 emerged as susceptible alleles, while DQB1*06:02 and DQB1*06:09 emerged as protective alleles. Haplotype A*11:01-C*03:03-B*15:01-DRB1*11:01-DQB1*03:01 containing four susceptible alleles was regarded as the most susceptible haplotype. The susceptible alleles and haplotypes might be used as some important risk classification markers. Besides, in the consanguineous renal transplantation, it would be very beneficial for the long-term survival of renal transplant patients to avoid the susceptible alleles and haplotypes in selecting optimal donors.  相似文献   

15.
《Human immunology》2023,84(3):163-171
AimsThe HLA system has been implicated as an underlying determinant for modulating the immune response to SARS-CoV-2. In this study, we aimed to determine the association of patients’ HLA genetic profiles with the disease severity of COVID-19 infection.MethodsProspective study was conducted on COVID-19 patients (n = 40) admitted to hospitals in Saskatoon, Canada, between March and December 2020. Next-generation sequencing was performed on the patient samples to obtain high-resolution HLA typing profiles. The statistical association between HLA allelic frequency and disease severity was examined. The disease severity was categorized based on the length of hospital stay and intensive care needs or demise during the hospital stay.ResultsHLA allelic frequencies of the high and low-severity cohorts were normalized against corresponding background allelic frequencies. In the high-severity cohort, A*02:06 (11.8-fold), B*51:01 (2.4-fold), B*15:01(3.1-fold), C*01:02 (3.3-fold), DRB1*08:02 (31.2-fold), DQ*06:09 (11-fold), and DPB1*04:02(4-fold) were significantly overrepresented (p < 0.05) making these deleterious alleles. In the low-severity cohort, A*24:02 (2.8-fold), B*35:01 (2.8-fold), DRB1*04:07 (5.3-fold), and DRB1*08:11 (22-fold) were found to be significantly overrepresented (p < 0.05) making these protective alleles. These above alleles interact with NK cell antiviral activity via the killer immunoglobulin-like receptors (KIR). The high-severity cohort had a higher predilection for HLA alleles associated with KIR subgroups; Bw4-80I (1.1-fold), and C1 (1.6-fold) which promotes NK cell inhibition, while the low-severity cohort had a higher predilection for Bw4-80T (1.6-fold), and C2 (1.6-fold) which promote NK cell activation.ConclusionIn this study, the HLA allelic repository with the distribution of deleterious and protective alleles was found to correlate with the severity of the clinical course in COVID-19. Moreover, the interaction of specific HLA alleles with the KIR-associated subfamily modulates the NK cell-mediated surveillance of SARS-CoV-2. Both deleterious HLA alleles and inhibitory KIR appear prominently in the severe COVID-19 group focusing on the importance of NK cells in the convalescence of COVID-19.  相似文献   

16.
The association between HLA loci and haematological malignancy has been reported in certain populations. However, there are limited data for HLA loci at a high-resolution level with haematological malignancy in China. In this study, a total of 1115 patients with haematological malignancies (including 490 AML, 410 acute lymphoblastic leukaemia (ALL), 122 myelodysplastic syndrome [MDS] and 93 non-Hodgkin's lymphoma [NHL]) and 1836 healthy individuals as a control group in the Han population of Zhejiang Province, China, were genotyped for HLA-A, HLA-C, HLA-B, HLA-DRB1 and HLA-DQB1 loci at high resolution. The possible association between HLA alleles and haplotypes and haematologic malignancy was analysed. The allele frequencies (AFs) of HLA-A*02:05, HLA-A*02:06, HLA-A*32:01, HLA-B*35:03, HLA-B*54:01, HLA-B*55:07, HLA-DRB1*04:05, HLA-DRB1*15:01, HLA-DQB1*04:01 and HLA-DQB1*06:02 in the MDS patients were much higher than those in the control group (P < 0.05), while the AFs of HLA-C*07:02, HLA-DRB1*03:01, HLA-DRB1*14:54, HLA-DQB1*02:01 and HLA-DQB1*05:03 were obviously lower than those in the control group (p < .05). Interestingly, the differences in these HLA alleles in patients with MDS were not significant after applying Bonferroni correction (Pc > .05), except for HLA-A*02:06 (Pc < .01). There were 13, 6 and 10 HLA alleles with uncorrected significant differences (p < .05) among patients with AML, ALL and NHL, respectively, compared with those in the control group, but the differences in these HLA alleles were not significant after correction (Pc > .05). Compared to those of the control group, there were some haplotypes over 1.00% frequency in patients with AML, MDS and NHL patients with uncorrected significant differences (p < .05). However, none of them showed a significant difference after correction as well (Pc > .05). The study reveals that HLA-A*02:06 may lead to susceptibility to MDS, but none of the HLA alleles were associated with AML, ALL or NHL after correction. These data will help to further understand the role of HLA loci in the pathogenesis of haematological malignancy in China.  相似文献   

17.
《Human immunology》2020,81(8):437-444
HLA genotyping by next-generation sequencing (NGS) has evolved with significant advancements in the last decade. Here we describe full-length HLA genotyping of 11 loci in 612 individuals comprising a dengue vaccine cohort from Cebu province in the Philippines. The multi-locus individual tagging NGS (MIT-NGS) method that we developed initially for genotyping 4–6 loci in one MiSeq run was expanded to 11 loci including HLA-A, B, C, DPA1, DPB1, DQA1, DQB1, DRB1, and DRB3/4/5. This change did not affect the overall coverage or depth of the sequencing reads. HLA alleles with frequencies greater than 10% were A*11:01:01, A*24:02:01, A*24:07:01, A*34:01:01, B*38:02:01, B*15:35, B*35:05:01, C*07:02:01, C*04:01:01, DPA1*02:02:02, DPB1*05:01:01, DPB1*01:01:01, DQA1*01:02:01, DQA1*06:01:01, DQB1*05:02:01, DQB1*03:01:01, DRB1*15:02:01, DRB1*12:02:01, DRB3*03:01:03, DRB4*01:03:01, and DRB5*01:01:01. Improvements in sequencing library preparation provide uniform and even coverage across all exons and introns. This has led to a marked reduction in allele imbalance and dropout. Furthermore, including more loci, such as DRB3/4/5, decreases cross-mapping and incorrect allele assignment at the DRB1 locus. The increased number of loci sequenced for each sample does not reduce the number of samples that can be multiplexed on a single MiSeq run and is therefore more cost-efficient. We believe that such improvements will help HLA genotyping by NGS to gain momentum over other conventional methods by increasing confidence in the calls.  相似文献   

18.
The present study aimed to analyse the frequencies of human leukocyte antigen HLA‐ABCDQB1 and HLA‐DRB1 alleles and haplotypes in a subset of 3,732 Han population from Hubei of China. All samples were typed in the HLA‐ABCDQB1 and HLA‐DRB1 loci using the sequence‐based typing method; subsequently, the HLA polymorphisms were analysed. A total of 47 HLA‐A, 89 HLA‐B, 43 HLA‐C, 49 HLA‐DRB1 and 24 HLA‐DQB1 alleles were identified in the Hubei Han population. The top three most frequent alleles in the HLA‐ABCDQB1 and HLA‐DRB1 were A*11:01 (0.2617), A*24:02 (0.1590), A*02:07 (0.1281); B*46:01 (0.1502), B*40:01 (0.1409) and B*58:01 (0.0616); C*01:02 (0.2023), C*07:02 (0.1691) and C*03:04 (0.1175); and DQB1*03:01 (0.2000), DQB1*03:03 (0.1900), DQB1*06:01 (0.1187); DRB1*09:01 (0.1790), DRB1*15:01 (0.1062) and DRB1*12:02 (0.0841), respectively. Meanwhile, the three most frequent two‐loci haplotypes were A*02:07‐C*01:02 (0.0929), B*46:01‐C*01:02 (0.1366) and DQB1*03:03‐DRB1*09:01 (0.1766). The three most frequent three‐loci haplotypes were A*02:07‐B*46:01‐C*01:02 (0.0883), B*46:01‐DQB1*03:03‐DRB1*09:01 (0.0808) and C*01:02‐DQB1*03:03‐DRB1*09:01 (0.0837). The three most frequent four‐loci haplotypes were A*02:07‐B*46:01‐C*01:02‐DQB1*03:03 (0.0494), B*46:01‐DRB1*09:01‐C*01:02‐DQB1*03:03 (0.0729) and A*02:07‐B*46:01‐DQB1*03:03‐DRB1*09:01 (0.0501). The most frequent five‐loci haplotype was A*02:07‐B*46:01‐C*01:02‐DQB1*03:03‐DRB1*09:01 (0.0487). Heat maps and multiple correspondence analysis based on the frequencies of HLA specificity indicated that the Hubei Han population might be described into Southern Chinese populations. Our results lay a certain foundation for future population studies, disease association studies and donor recruitment strategies.  相似文献   

19.
In the present study, DNA typing for HLA-A, C, B, DRB1, DRB3, DRB4, DRB5, DQA1, DQB1, and DPB1 was performed for 246 healthy, unrelated Greek volunteers of 20-59 years of age. Phenotype, genotype frequencies, Hardy-Weinberg equilibrium fit, and 3-locus haplotype frequencies for HLA-A, C, B, HLA-A, B, DRB1, HLA-DRB1, DQA1, DQB1, and HLA-DRB1, DQB1, DPB1 were calculated. Furthermore, linkage disequilibrium, deltas, relative deltas and p-values for significance of the deltas were defined. The population studied is in Hardy-Weinberg equilibrium, and many MHC haplotypes are in linkage disequilibrium. The most frequent specificities were HLA-A*02 (phenotype frequency = 44.3%) followed by HLA-A*24 (27.2%), HLA-B*51 (28.5%), HLA-B*18 (26.8%) and HLA-B*35 (26.4%) and HLA-Cw*04 (30.1%) and HLA-Cw*12 (26.8%). The most frequent MHC class II alleles were HLA-DRB1*1104 (34.1%), HLA-DQB1*0301 (54.5%) and HLA-DPB1*0401 with a phenotype frequency of 59.8%. The most prominent HLA-A, C, B haplotypes were HLA-A*24, Cw*04, B*35, and HLA-A*02, Cw*04, B*35, each of them observed in 21/246 individuals. The most frequent HLA-A, B, DRB1 haplotype was HLA-A*02, B*18, DRB1*1104 seen in 20/246 individuals, while the haplotype HLA-DRB1*1104, DQB1*0301, DPB1*0401 was found in 49/246 individuals. Finally, the haplotype DRB1*1104, DQA1*0501, DQB1*0301 was observed in 83/246 individuals. These results can be used for the estimation of the probability of finding a suitable haplotypically identical related or unrelated stem cell donor for patients of Greek ancestry. In addition, they can be used for HLA and disease association studies, genetic distance studies in the Balkan and Mediterranean area, paternity cases, and matching probability calculations for the optimal allocation of kidneys in Greece.  相似文献   

20.
Although the HLA region contributes to one-third of the genetic factors affecting rheumatoid arthritis (RA), there are few reports on the association of the disease with any of the HLA loci other than the DRB1. In this study we examined the association between RA and the alleles of the six classical HLA loci including DRB1. Six HLA loci (HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1) of 1659 Japanese subjects (622 cases; 488 anti-cyclic citrullinated peptides (CCP) antibody (Ab) positive (82.6%); 103 anti-CCP Ab negative (17.4%); 31 not known and 1037 controls) were genotyped. Disease types and positivity/negativity for CCP autoantibodies were used to stratify the cases. Statistical and genetic assessments were performed by Fisher's exact tests, odds ratio, trend tests and haplotype estimation. None of the HLA loci were significantly associated with CCP sero-negative cases after Bonferroni correction and we therefore limited further analyses to using only the anti CCP-positive RA cases and both anti-CCP positive and anti-CCP negative controls. Some alleles of the non-DRB1 HLA loci showed significant association with RA, which could be explained by linkage disequilibrium with DRB1 alleles. However, DPB1*02:01, DPB1*04:01 and DPB1*09:01 conferred RA risk/protection independently from DRB1. DPB1*02:01 was significantly associated with the highly erosive disease type. The odds ratio of the four HLA-loci haplotypes with DRB1*04:05 and DQB1*04:01, which were the high-risk HLA alleles in Japanese, varied from 1.01 to 5.58. C*07:04, and B*15:18 showed similar P-values and odds ratios to DRB1*04:01, which was located on the same haplotype. This haplotype analysis showed that the DRB1 gene as well as five other HLA loci is required for a more comprehensive understanding of the genetic association between HLA and RA than analyzing DRB1 alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号