首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although leukocytes infiltrate the kidney during ischemic acute kidney injury (AKI) and release interleukin 6 (IL6), their mechanism of activation is unknown. Here, we tested whether Toll-like receptor 4 (TLR4) on leukocytes mediated this activation by interacting with high-mobility group protein B1 (HMGB1) released by renal cells as a consequence of ischemic kidney injury. We constructed radiation-induced bone marrow chimeras using C3H/HeJ and C57BL/10ScNJ strains of TLR4 (-/-) mice and their respective TLR4 (+/+) wild-type counterparts and studied them at 4?h after an ischemic insult. Leukocytes adopted from TLR4 (+/+) mice infiltrated the kidneys of TLR4 (-/-) mice, and TLR4 (-/-) leukocytes infiltrated the kidneys of TLR4 (+/+) mice but caused little functional renal impairment in each case. Maximal ischemic AKI required both radiosensitive leukocytes and radioresistant renal parenchymal and endothelial cells from TLR4 (+/+) mice. Only TLR4 (+/+) leukocytes produced IL6 in vivo and in response to HMGB1 in vitro. Thus, following infiltration of the injured kidney, leukocytes produce IL6 when their TLR4 receptors interact with HMGB1 released by injured renal cells. This underscores the importance of TLR4 in the pathogenesis of ischemic AKI.  相似文献   

2.
Chen et al. demonstrate endothelial expression of Toll-like receptor 4 (TLR4) in the outer medulla of the kidney early in the course of ischemic acute kidney injury. Furthermore, they provide data that support the hypothesis that activation of endothelial TLR4 in the early extension phase of AKI by damage-associated molecular pattern molecules released from injured tubules results in endothelial activation. This activation can serve to amplify inflammation and tubular damage.  相似文献   

3.
《Renal failure》2013,35(3):469-475
Abstract

Acute kidney injury (AKI) leads to chronic kidney disease. The mechanisms involved with recovery from AKI are poorly understood and molecular mediators responsible for healing and restoration of kidney function are understudied. We previously discovered differential expression of matrix metalloproteinase-8 (MMP-8) mRNA and protein in patients with severe sepsis associated AKI versus sepsis without AKI. Here, we demonstrate the involvement of MMP-8 in purely ischemic AKI. Mice subjected to 30?min of bilateral renal ischemia developed increased plasma creatinine and MMP-8 expression within 24?h versus sham controls. After an initial surge and subsequent return toward baseline, both kidney MMP-8 expression and activity exhibited a late increase (Days 5–7 post-ischemia reperfusion) in mice subjected to AKI. Neutrophil infiltration of the kidney was significantly higher after AKI in wild-type mice than in MMP-8 null mice, starting at 4 days. Additionally, MMP-8 null mice subjected to AKI demonstrated a persistent histopathologic and functional injury and worsened health (greater overall weight loss) versus wild-type cohorts after seven days. Taken together, our findings suggest that MMP-8 is involved with restoration of baseline kidney health after ischemic kidney injury and that a potential mechanism involves the interaction of MMP-8 and neutrophil recruitment to the site of injury.  相似文献   

4.
The molecular mechanisms of acute kidney injury (AKI) remain unclear. Toll-like receptors (TLRs), widely expressed on leukocytes and kidney epithelial cells, regulate innate and adaptive immune responses. The present study examined the role of TLR signaling in cisplatin-induced AKI. Cisplatin-treated wild-type mice had significantly more renal dysfunction, histologic damage, and leukocytes infiltrating the kidney than similarly treated mice with a targeted deletion of TLR4 [Tlr4(-/-)]. Levels of cytokines in serum, kidney, and urine were increased significantly in cisplatin-treated wild-type mice compared with saline-treated wild-type mice and cisplatin-treated Tlr4(-/-) mice. Activation of JNK and p38, which was associated with cisplatin-induced renal injury in wild-type mice, was significantly blunted in Tlr4(-/-) mice. Using bone marrow chimeric mice, it was determined that renal parenchymal TLR4, rather than myeloid TLR4, mediated the nephrotoxic effects of cisplatin. Therefore, activation of TLR4 on renal parenchymal cells may activate p38 MAPK pathways, leading to increased production of inflammatory cytokines, such as TNF-alpha and subsequent kidney injury. Targeting the TLR4 signaling pathways may be a feasible therapeutic strategy to prevent cisplatin-induced AKI in humans.  相似文献   

5.
Chen et al. confirmed the role of Toll-like receptor 4 (TLR4) in ischemic kidney injury using mice harboring spontaneous disabling mutations of the receptor and generated chimeras between TLR4-/- and TLR4+/+ mice. The major findings demonstrate the necessity of TLR4 in leukocytes, as well as in epithelial and endothelial cells, for the full-blown ischemic response and strongly suggest that the release of high-mobility group box 1 protein (HMGB1) from injured epithelia and/or endothelia activates leukocytes to generate proinflammatory cytokines, further exacerbating the injury to ischemic kidneys. These important findings provide an excellent platform for discussing the complexity of danger/alarm signaling in the kidney.  相似文献   

6.
Maladaptive role of IL-6 in ischemic acute renal failure   总被引:4,自引:0,他引:4  
The role of IL-6 was investigated in murine ischemic acute renal failure. The renal pedicles were clamped for 17 min, and the mice were studied at various times after reperfusion. We found that serum IL-6 increased after murine ischemic renal injury. This increase was associated with increased IL-6 mRNA in the ischemic kidney but not in the contralateral kidney or the liver. Maximal IL-6 production occurred at 4 to 8 h and decreased to baseline by 24 h. Reperfusion of the kidney was required for IL-6 production. In situ hybridization and immunohistochemistry showed that macrophages infiltrated areas adjacent to the vascular bundles in the outer medulla within hours of reperfusion and showed that these macrophages produced IL-6 mRNA. For understanding how macrophages were stimulated to produce IL-6, an in vitro model in which S3 proximal tubular cells were injured by reactive oxygen species was set up. These injured cells released molecules that activated macrophages to produce IL-6 in vitro. IL-6 that was produced in response to renal ischemia was maladaptive because transgenic knockout of IL-6 ameliorated renal injury as measured by serum creatinine and histology. IL-6 transgenic knockout mice were lethally irradiated, and their bone marrow was reconstituted with wild-type IL-6 cells. Such bone marrow transfers abolished the protective effects of transgenic IL-6 knockout. It is concluded that macrophages infiltrate the area of the vascular bundles of the outer medulla, these macrophages produce IL-6, and this IL-6 exacerbates ischemic murine acute renal failure.  相似文献   

7.
T cells as mediators in renal ischemia/reperfusion injury   总被引:13,自引:0,他引:13  
Inflammation has been established to contribute substantially to the pathogenesis of ischemia/reperfusion (I/R) with a central role for particular cells, adhesion molecules, and cytokines. Until recently, most of the research trying to unravel the pathogenesis of I/R injury has been focused on the role of neutrophils. However, recent studies have brought evidence that T cells and macrophages are also important leukocyte mediators of renal and extrarenal (liver) I/R injury. In vivo depletion of CD4+ cells but not CD8+ cells in wild-type mice was protective in I/R of the kidney. A marked preservation of liver function was also found after I/R in T-cell deficient athymic mice. Blocking the b130/CD28 costimulatory pathway by CTLA-4 Ig (recombinant fusion protein) ameliorated renal dysfunction and decreased mononuclear cell infiltration in I/R of the kidney. b130-1 expression was found limited to the membrane of the endothelial cells of the ascending vasa recta, resulting in trapping of CD28-expressing CD4 T cells. This trapping of leukocytes results in the upstream congestion in the ascending arterial vasa recta, generating the since more than 150 years described medullary vascular congestion of the kidney soon after ischemic injury. It seems worthwhile to study a combination therapy using anti-inflammatory/anti-adhesion molecules in the early phase of I/R.  相似文献   

8.
《Renal failure》2013,35(4):694-698
Abstract

Acute kidney injury (AKI) is one of the most common complications in patients with severe sepsis. The development of septic AKI increases patients’ mobility and even mortality. Toll-like receptor 2 (TLR2), as a membrane surface receptor for bacterial, fungal, viral and certain endogenous substances, has been described to contribute to the development of septic AKI; however, the renal cell types associating TLR2 overactivation in septic AKI has not been described. In the current study, we investigated the TLR2 activation patterns in the kidney of lipopolysaccharide-induced septic AKI mice. Our results demonstrated that mRNA level of TLR2 significantly increased in the kidney of lipopolysaccharide-treated mice. Immunohistochemistry revealed the overactivation of TLR2 in the glomeruli. Double immunofluorescence analysis shows the precise distribution of TLR2 by showing the colocalization of TLR2 in glomeruli with synaptopodin, a podocyte marker, and Tie2, an endothelial marker. In addition, proapoptotic molecules Bax and Caspase-3 were increased in the glomeruli of lipopolysaccharide-treated mice. Together, the current study indicates that TLR2 is overactivated in the glomerular endothelial cells and podocytes in septic AKI mice, while the abundance of Bax and Caspase-3 were increased in the glomeruli of these mice, it may supply a clue that TLR2 induced these cell apoptosis in AKI. This finding provides an alternative mechanism to understand AKI development and potential targets for treatment.  相似文献   

9.
This study analyzes how toll-like receptor 4 (TLR4) signaling in the donor organ affects the ischemia and reperfusion injury (IRI) sequel following liver transplantation. Isogenic orthotopic liver transplantations (OLTs) with rearterialization were performed in groups of wild-type (WT) and TLR4 knockout (KO) mice after donor liver preservation in University of Wisconsin solution at 4 degrees C for 24 hours. Unlike WT OLTs, TLR4-deficient OLTs transplanted to either WT or TLR4 KO recipients suffered significantly less hepatocellular damage, as evidenced by serum alanine aminotransferase levels, and histological Suzuki's grading of liver IRI. Disruption of TLR4 signaling in OLTs decreased local neutrophil sequestration, CD4+ T cell infiltration, interferon (IFN)-gamma-inducible protein 10 (CXCL10) and an intercellular adhesion molecule (ICAM-1), as well as tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-2, and IFN-gamma, yet increased IL-4 and IL-10 expression. The well-functioning OLTs from TLR4 KO donors revealed attenuated activity of capase-3, and enhanced heme oygenase-1 (HO-1) expression, along with decreased levels of apoptotic endothelial cells/hepatocytes, as compared with WT OLTs with intact TLR4 signaling. Thus, the functional sentinel TLR4 complex in the donor organ plays a key role in the mechanism of hepatic IRI after OLT. Disruption of TLR4 pathway downregulated the early proinflammatory responses and ameliorated hepatic IRI. These results provide the rationale to locally modify innate TLR4 signaling in the donor organ to more efficiently control the adaptive posttransplantation IRI-dependent responses.  相似文献   

10.
缺血再灌流肾组织内皮素—1动态变化的实验研究   总被引:7,自引:1,他引:6  
在大鼠肾缺血60分钟再灌注的模型上观察不同时相肾静脉血、肾皮质、外髓和内髓的内皮素1(ET1)浓度变化,肾组织ET1光镜和电镜免疫组织化学变化。结果发现:缺血再灌流肾组织ET1基因表达及分泌明显增强,主要分布在血管内皮细胞及平滑肌细胞、系膜细胞、肾小管上皮细胞。其分布特点与细胞类型和活性有关。本实验结果提示了缺血再灌注肾内ET1的变化规律。  相似文献   

11.
Toll-like receptor 9 (TLR9) enhances proinflammatory responses, but whether it can act in a regulatory capacity remains to be established. In experimental murine AKI induced by cisplatin, Tlr9−/− mice developed enhanced renal injury and exhibited fewer intrarenal regulatory T cells (Tregs) compared with genetically intact mice. A series of reconstitution and depletion studies defined a role for TLR9 in maintaining Treg-mediated homeostasis in cisplatin-induced AKI. When Rag1−/− mice were reconstituted with nonregulatory CD25 splenocytes from wild-type (WT) or Tlr9−/− mice, AKI was similarly enhanced. However, when Rag1−/− mice were reconstituted with CD4+CD25+ regulatory cells, WT CD4+CD25+ cells were more renoprotective and localized to the kidney more efficiently than Tlr9−/− CD4+CD25+ cells. In Treg-depleted Foxp3DTR mice, reconstitution with naive WT CD4+CD25+ cells resulted in less severe AKI than did reconstitution with Tlr9−/− Tregs. Tlr9−/− mice were not deficient in CD4+CD25+ cells, and WT and TLR9-deficient Tregs had similar suppressive function ex vivo. However, expression of adhesion molecules important in Treg trafficking was reduced on peripheral CD4+CD25+ cells from Tlr9−/− mice. In conclusion, we identified a pathway by which TLR9 promotes renal Treg accumulation in AKI.  相似文献   

12.
Inflammation contributes to the pathogenesis of acute kidney injury (AKI). IL-33 is a proinflammatory cytokine, but its role in AKI is unknown. Here we observed increased protein expression of full-length IL-33 in the kidney following induction of AKI with cisplatin. To determine whether IL-33 promotes injury, we administered soluble ST2 (sST2), a fusion protein that neutralizes IL-33 activity by acting as a decoy receptor. Compared with cisplatin-induced AKI in untreated mice, mice treated with sST2 had fewer CD4 T cells infiltrate the kidney, lower serum creatinine, and reduced acute tubular necrosis (ATN) and apoptosis. In contrast, administration of recombinant IL-33 (rIL-33) exacerbated cisplatin-induced AKI, measured by an increase in CD4 T cell infiltration, serum creatinine, ATN, and apoptosis; this did not occur in CD4-deficient mice, suggesting that CD4 T cells mediate the injurious effect of IL-33. Wildtype mice that received cisplatin and rIL-33 also had higher levels of the proinflammatory chemokine CXCL1, which CD T cells produce, in the kidney compared with CD4-deficient mice. Mice deficient in the CXCL1 receptor also had lower serum creatinine, ATN, and apoptosis than wildtype mice following cisplatin-induced AKI. Taken together, IL-33 promotes AKI through CD4 T cell-mediated production of CXCL1. These data suggest that inhibiting IL-33 or CXCL1 may have therapeutic potential in AKI.  相似文献   

13.
AKI is associated with increased morbidity, mortality, and cost of care, and therapeutic options remain limited. Reactive oxygen species are critical for the genesis of ischemic AKI. Stanniocalcin-1 (STC1) suppresses superoxide generation through induction of uncoupling proteins (UCPs), and transgenic overexpression of STC1 inhibits reactive oxygen species and protects from ischemia/reperfusion (I/R) kidney injury. Our observations revealed high AMP-activated protein kinase (AMPK) activity in STC1 transgenic kidneys relative to wild-type (WT) kidneys; thus, we hypothesized that STC1 protects from I/R kidney injury through activation of AMPK. Baseline activity of AMPK in the kidney correlated with the expression of STCs, such that the highest activity was observed in STC1 transgenic mice followed (in decreasing order) by WT, STC1 knockout, and STC1/STC2 double-knockout mice. I/R in WT kidneys increased AMPK activity and the expression of STC1, UCP2, and sirtuin 3. Inhibition of AMPK by administration of compound C before I/R abolished the activation of AMPK, diminished the expression of UCP2 and sirtuin 3, and aggravated kidney injury but did not affect STC1 expression. Treatment of cultured HEK cells with recombinant STC1 activated AMPK and increased the expression of UCP2 and sirtuin 3, and concomitant treatment with compound C abolished these responses. STC1 knockout mice displayed high susceptibility to I/R, whereas pretreatment of STC1 transgenic mice with compound C restored the susceptibility to I/R kidney injury. These data suggest that STC1 is important for activation of AMPK in the kidney, which mediates STC1-induced expression of UCP2 and sirtuin 3 and protection from I/R.  相似文献   

14.
Iron-mediated oxidative stress is implicated in the pathogenesis of renal ischemia–reperfusion injury. Hepcidin is an endogenous acute phase hepatic hormone that prevents iron export from cells by inducing degradation of the only known iron export protein, ferroportin. In this study, we used a mouse model to investigate the effect of renal ischemia–reperfusion injury on systemic iron homeostasis and determine if dynamic modulation of iron homeostasis with hepcidin has therapeutic benefit in the treatment of AKI. Renal ischemia–reperfusion injury induced hepatosplenic iron export through increased ferroportin expression, which resulted in hepatosplenic iron depletion and an increase in serum and kidney nonheme iron levels. Exogenous hepcidin treatment prevented renal ischemia-reperfusion–induced changes in iron homeostasis. Hepcidin also decreased kidney ferroportin expression and increased the expression of cytoprotective H-ferritin. Hepcidin-induced restoration of iron homeostasis was accompanied by a significant reduction in ischemia-reperfusion–induced tubular injury, apoptosis, renal oxidative stress, and inflammatory cell infiltration. Hepcidin–deficient mice demonstrated increased susceptibility to ischemia-reperfusion injury compared with wild-type mice. Reconstituting hepcidin-deficient mice with exogenous hepcidin induced hepatic iron sequestration, attenuated the reduction in renal H-ferritin and reduced renal oxidative stress, apoptosis, inflammation, and tubular injury. Hepcidin-mediated protection was associated with reduced serum IL-6 levels. In summary, renal ischemia–reperfusion injury results in profound alterations in systemic iron homeostasis. Hepcidin treatment restores iron homeostasis and reduces inflammation to mediate protection in renal ischemia–reperfusion injury, suggesting that hepcidin-ferroportin pathway holds promise as a novel therapeutic target in the treatment of AKI.  相似文献   

15.
16.
BACKGROUND: Osteopontin (OPN) is a phosphoprotein that is up-regulated in several experimental models of renal disease, including ischemia/reperfusion injury. OPN has been described as a macrophage chemoattractant, may serve as a survival factor for tubular cells, and is implicated in the development of tubulointerstitial fibrosis. However, the precise role of this protein in renal pathophysiology remains unclear. METHODS: OPN knockout and wild-type mice were subjected to 30 minutes of warm renal ischemia combined with a contralateral nephrectomy, and sacrificed at six different time points, ranging from 12 hours to seven days after reperfusion. Besides functional and morphological parameters of postischemic acute renal failure (ARF), macrophage infiltration, apoptosis and expression of collagen types I and IV were investigated. RESULTS: Postischemic ARF in OPN knockouts and wild-types showed a similar course and severity, without significant differences in either functional or morphological disease parameters. However, macrophage infiltration was significantly diminished in OPN knockouts after five and seven days, in cortex as well as in the outer stripe of the outer medulla (OSOM). Furthermore, OPN knockout mice showed significantly enhanced apoptosis in the injury phase and significantly less collagen I and IV expression in the regeneration phase of postischemic ARF. CONCLUSIONS: There was no influence of OPN protein on the severity or course of functional impairment or morphological injury in the first seven days after an ischemic insult to the kidney. However, our results demonstrate that OPN favors macrophage recruitment to the postischemic kidney, inhibits apoptosis, and stimulates the development of renal fibrosis after an acute ischemic insult.  相似文献   

17.
Leukocyte recruitment contributes to acute kidney injury (AKI), but the mechanisms by which leukocytes promote injury are not completely understood. The degranulation of mast cells releases inflammatory molecules, including TNF, but whether these cells participate in the pathogenesis of AKI is unknown. Here, we induced AKI with cisplatin in mast cell-deficient and wild-type mice. Compared with wild-type mice, deficiency of mast cells attenuated renal injury, reduced serum levels of TNF, and reduced recruitment of leukocytes to the inflamed kidney. Mast cell-deficient mice also exhibited significantly lower intrarenal expression of leukocyte chemoattractants. Mast cell-deficient mice reconstituted with mast cells from wild-type mice exhibited similar cisplastin-induced renal damage and serum levels of TNF as wild-type mice. In contrast, mast cell-deficient mice reconstituted with mast cells from TNF-deficient mice continued to demonstrate significant attenuation of cisplatin-induced renal injury. Furthermore, the mast-cell stabilizer sodium chromoglycate also significantly abrogated renal injury in this model of AKI. Taken together, these results suggest that mast cells mediate AKI through the production of TNF.  相似文献   

18.
BACKGROUND: Changes in neutrophil and endothelial adhesion molecule expression occur during perioperative ischaemia and reperfusion (I/R) injury. We investigated the effects of lidocaine on neutrophil-independent changes in neutrophil and endothelial adhesion molecule expression associated with tourniquet-induced I/R. METHODS: Plasma was obtained from venous blood samples (tourniquet arm) taken before (baseline), during, 15 min, 2 and 24 h following tourniquet release in seven patients undergoing elective upper limb surgery with tourniquet application. Isolated neutrophils from healthy volunteers (n = 7) were pretreated in the presence or absence of lidocaine (0.005, 0.05 and 0.5 mg mL(-1) for 1 h, and then incubated with I/R plasma for 2 h. Human umbilical vein endothelial cells (HUVECs) were pretreated in the presence or absence of lidocaine (0.005, 0.05 and 0.5 mg mL(-1)) for 1 h, and then incubated with the plasma for 4 h. Adhesion molecule expression was estimated using flow cytometry. Data were analysed using ANOVA and post hoc Student-Newman-Keuls tests. RESULTS: I/R plasma (withdrawn 15 min following tourniquet release) increased isolated neutrophil CD11b (P = 0.03), CD18 (P = 0.01) and endothelial intercellular adhesion molecule-1 (ICAM-1) (P = 0.008) expression compared to baseline. CD11b, CD18 and ICAM-1 expression on lidocaine (0.005 mg mL(-1)) treated neutrophils was similar to control. CD11b (P < 0.001), CD18 (P = 0.03) and ICAM-1 (P = 0.002) expression on lidocaine (0.05 mg mL(-1)) treated neutrophils and HUVECs was less than that on controls. CONCLUSION: Increased in vitro neutrophil and endothelial cell adhesion molecule expression on exposure to plasma obtained during the early reperfusion phase is diminished by lidocaine at greater than clinically relevant plasma concentrations.  相似文献   

19.
20.
Phenotypic changes induced by extracellular vesicles have been implicated in mesenchymal stromal cell–promoted recovery of AKI. MicroRNAs are potential candidates for cell reprogramming toward a proregenerative phenotype. The aim of this study was to evaluate whether microRNA deregulation inhibits the regenerative potential of mesenchymal stromal cells and derived extracellular vesicles in a model of glycerol-induced AKI in severe combined immunodeficient mice. We generated mesenchymal stromal cells depleted of Drosha to alter microRNA expression. Drosha-knockdown cells produced extracellular vesicles that did not differ from those of wild-type cells in quantity, surface molecule expression, and internalization within renal tubular epithelial cells. However, these vesicles showed global downregulation of microRNAs. Whereas wild-type mesenchymal stromal cells and derived vesicles administered intravenously induced morphologic and functional recovery in AKI, the Drosha-knockdown counterparts were ineffective. RNA sequencing analysis showed that kidney genes deregulated after injury were restored by treatment with mesenchymal stromal cells and derived vesicles but not with Drosha-knockdown cells and vesicles. Gene ontology analysis showed in AKI an association of downregulated genes with fatty acid metabolism and upregulated genes with inflammation, matrix-receptor interaction, and cell adhesion molecules. These alterations reverted after treatment with wild-type mesenchymal stromal cells and extracellular vesicles but not after treatment with the Drosha-knockdown counterparts. In conclusion, microRNA depletion in mesenchymal stromal cells and extracellular vesicles significantly reduced their intrinsic regenerative potential in AKI, suggesting a critical role of microRNAs in recovery after AKI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号