首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
Glutaraldehyde-inactivated cells and cell-wall fractions of Candida albicans were studied for their capacity to induce or inhibit the in-vitro proliferation of human peripheral blood mononuclear cells (PBMC), as measured by 3H-thymidine incorporation. Both the intact cells (CA) and a phosphorylated gluco-mannan-protein complex of the cell wall (GMP), in microgram doses, were strong inducers of PBMC proliferation, with a peak of activity at 6-9 days of culture and varying with the PBMC donor. A significant but much lower proliferation was observed on exposure of PBMC to a low-protein (less than 3% by weight) mannan component (M) of the cell wall. Both a hot-alkali extracted mannan-protein complex (M-alk), comparable to GMP in crude chemical composition, and an alkali-insoluble cell-wall glucan (GG) were inactive. None of the Candida fractions induced a lymphoproliferation of umbilical cord blood cells and all fractions, except GG, were equally effective in binding human anti-Candida antibodies as shown by a sensitive ELISA-inhibition assay. Moreover, a monoclonal antibody against the class II determinant of the HLA complex inhibited PBMC proliferation irrespective of the Candida antigen used. Taken together, the data shows that in inducing lymphoproliferation, Candida fractions act as specific antigens rather than as non-specific mitogens. Use of intact Candida cells and chemically-defined cell-wall components appears preferable to use of undefined antigenic mixtures as stimulators of PBMC proliferation.  相似文献   

2.
The cell wall of Candida albicans not only is the structure in which many biological functions essential for the fungal cells reside but also is a significant source of candidal antigens. The major cell wall components that elicit a response from the host immune system are proteins and glycoproteins, the latter being predominantly mannoproteins. Both the carbohydrate and protein moieties are able to trigger immune responses. Although cell-mediated immunity is often considered to be the most important line of defense against candidiasis, cell wall protein and glycoprotein components also elicit a potent humoral response from the host that may include some protective antibodies. Proteins and glycoproteins exposed at the most external layers of the wall structure are involved in several types of interactions of fungal cells with the exocellular environment. Thus, coating of fungal cells with host antibodies has the potential to influence profoundly the host-parasite interaction by affecting antibody-mediated functions such as opsonin-enhanced phagocytosis and blocking the binding activity of fungal adhesins for host ligands. In this review, the various members of the protein and glycoprotein fraction of the C. albicans cell wall that elicit an antibody response in vivo are examined. Although a number of proteins have been shown to stimulate an antibody response, for some of these species the response is not universal. On the other hand, some of the studies demonstrate that certain cell wall antigens and anti-cell wall antibodies may be the basis for developing specific and sensitive serologic tests for the diagnosis of candidasis, particularly the disseminated form. In addition, recent studies have focused on the potential for antibodies to cell wall protein determinants to protect the host against infection. Hence, a better understanding of the humoral response to cell wall antigens of C. albicans may provide the basis for the development of (i) effective procedures for the serodiagnosis of disseminated candidiasis and (ii) novel prophylactic (vaccination) and therapeutic strategies for the management of this type of infection.  相似文献   

3.
The canyon hypothesis   总被引:5,自引:0,他引:5  
The three-dimensional structure of human rhinovirus 14 has a deep surface depression or "canyon" encircling each of the twelve fivefold vertices. The canyon's surface is inaccessible to the broad antigen binding region of antibodies, permitting conservation of residues that might be required for host cell receptor recognition without danger of attack by the host's immune system. In contrast, the exposed surface features, where neutralizing antibodies are known to bind, change rapidly under pressure from the host's immune system. It was, therefore, hypothesized that this depression was the site of receptor attachment. Similar, but smaller, depressions had been observed previously on both the hemagglutinin and neuraminidase spikes of influenza virus. These have also been shown to be the site of host cell interaction. Although support for the canyon hypothesis was only circumstantial in the first place, there are now extensive confirmatory data. These include site-specific mutations of residues in the canyon and conformational changes induced in the canyon by the binding of small organic molecules, all of which alter receptor attachment. The strategy used in human rhinovirus 14 to protect the viral receptor attachment site from immune surveillance may be utilized not only in other picornaviruses but also in many other types of viruses including human immunodeficiency virus.  相似文献   

4.
Chitin is a skeletal cell wall polysaccharide of the inner cell wall of fungal pathogens. As yet, little about its role during fungus-host immune cell interactions is known. We show here that ultrapurified chitin from Candida albicans cell walls did not stimulate cytokine production directly but blocked the recognition of C. albicans by human peripheral blood mononuclear cells (PBMCs) and murine macrophages, leading to significant reductions in cytokine production. Chitin did not affect the induction of cytokines stimulated by bacterial cells or lipopolysaccharide (LPS), indicating that blocking was not due to steric masking of specific receptors. Toll-like receptor 2 (TLR2), TLR4, and Mincle (the macrophage-inducible C-type lectin) were not required for interactions with chitin. Dectin-1 was required for immune blocking but did not bind chitin directly. Cytokine stimulation was significantly reduced upon stimulation of PBMCs with heat-killed chitin-deficient C. albicans cells but not with live cells. Therefore, chitin is normally not exposed to cells of the innate immune system but is capable of influencing immune recognition by blocking dectin-1-mediated engagement with fungal cell walls.  相似文献   

5.
Immune regulation in candidiasis is inferred from studies of both human and animal infection, with a suppressive role suggested for cell wall polysaccharide. To study the immunosuppressive potential of Candida albicans in a murine model, whole blastoconidia or purified cell wall components of C. albicans were tested for their effects on the development of acquired immune responses by superimposing a pretreatment regimen upon an established immunization protocol. CBA/J or BALB/cByJ mice were pretreated twice intravenously with 100 micrograms of mannan (MAN), 100 or 200 micrograms of glycoprotein (GP), or 5 X 10(7) heat-killed C. albicans blastoconidia, followed 1 week later by an immunization protocol of two cutaneous inoculations of viable C. albicans blastoconidia given 2 weeks apart. Delayed hypersensitivity (DTH) to GP or to a membrane-derived antigen, B-HEX, was tested 7 days after the second inoculation, and lymphocyte stimulation was tested with mitogens and Candida antigens after 12 days. To assess protection, mice were challenged intravenously with viable C. albicans blastoconidia 14 days after the second cutaneous inoculation and sacrificed 28 days later for quantitative culture of kidneys and brains. Sera were obtained for enzyme-linked immunosorbent assays at selected intervals. Pretreatment with GP resulted in specific in vivo suppression of DTH to GP but not to B-HEX antigen and specific in vitro suppression of lymphocyte stimulation to GP but not to other Candida antigens or mitogens. MAN and heat-killed C. albicans blastoconidia had no such effects. GP pretreatment also diminished the protective effect of immunization against challenge, demonstrable in the brain, while not altering significantly the production of antibody in response to infection. Contrary to clinical evidence, MAN was not immunosuppressive in this model, and in fact, the immunosuppressive potential of GP, which is composed largely of MAN, was found to be dependent upon the presence of its heat-labile protein moiety.  相似文献   

6.
The wall of intact tissue cysts in the brains of mice with congenital toxoplasmosis was investigated using light and electron microscopy. Impregnation of the wall with reduced silver salts and protargol silver suggested that it was composed, at least in part, of components derived from the neuronal cytoskeleton. Electron microscopy extended these observations and revealed that intact cysts were separated from the extracellular compartment by a layer of neurofibrillae enclosed within the host cell membrane. It is suggested that this may be a means whereby intact Toxoplasma tissue cysts are protected from the host's immune response.  相似文献   

7.
Pathologies attributable to fungal infections represent a growing concern in both developed and developing countries. Initially discovered as opportunistic pathogens of immunocompromised hosts, fungi such as Candida albicans are now being placed at the centre of a more complex and dynamic picture in which the outcome of an infection is the result of an intricate network of molecular interactions between the fungus, the host and the commensal microflora co-inhabiting various host niches, and especially the gastrointestinal (GI) tract. The complexity of the host-fungal interaction begins with the numerous pathogen-associated molecular patterns (PAMPs) present on the fungal cell wall that are recognized by multiple pathogen-recognition receptors (PRRs), expressed by several types of host cells. PAMP-PRR interactions elicit a variety of intracellular signalling pathways leading to a wide array of immune responses, some of which promote fungal clearance while others contribute to pathogenesis. The picture is further complicated by the fact that numerous commensal bacteria normally co-inhabiting the host's GI tract produce molecules that either directly modulate the survival and virulence of commensal fungi such as C. albicans or indirectly modulate the host's antifungal immune responses. On top of this complexity, this host-microbiome-fungal interaction exhibits features of a dynamic system, in which the same fungi can easily switch between different morphological forms presenting different PAMPs at different moments of time. Furthermore, fungal pathogens can rapidly accumulate genomic alterations that further modify their recognition by the immune system, their virulence and their resistance to antifungal compounds. Thus, based on available molecular data alone, it is currently difficult to construct a coherent model able to explain the balance between commensalism and virulence and to predict the outcome of a fungal infection. Here, we review current advances in our understanding of this complex and dynamic system and propose new avenues of investigation to assemble a more complete picture of the host-fungal interaction, integrating microbiological and immunological data under the lens of systems biology and evolutionary genomics.  相似文献   

8.
The Candida albicans cell wall is the immediate point of contact with the host and is implicated in the host-fungal interaction and virulence. To date, a number of cell wall proteins have been identified and associated with virulence. Analysis of the C. albicans genome has identified the IFF gene family as encoding the largest family of cell wall-related proteins. This family is also conserved in a range of other Candida species. Iff11 differs from other family members in lacking a GPI anchor, and we have demonstrated it to be O glycosylated and secreted in C. albicans. A null mutant lacking IFF11 was hypersensitive to cell wall-damaging agents, suggesting a role in cell wall organization. In a murine model of systemic infection the null mutant was highly attenuated in virulence, and survival-standardized infections suggest it is required to establish an infection. This work provides the first evidence of the importance of this gene family in the host-fungal interaction and virulence.  相似文献   

9.
Production of reactive oxygen species (ROS) is an important aspect of phagocyte-mediated host responses. Since phagocytes play a crucial role in the host response to Candida albicans, we examined the ability of Candida to modulate phagocyte ROS production. ROS production was measured in the murine macrophage cell line J774 and in primary phagocytes using luminol-enhanced chemiluminescence. J774 cells, murine polymorphonuclear leukocytes (PMN), human monocytes, and human PMN treated with live C. albicans produced significantly less ROS than phagocytes treated with heat-killed C. albicans. Live C. albicans also suppressed ROS production in murine bone marrow-derived macrophages from C57BL/6 mice, but not from BALB/c mice. Live C. albicans also suppressed ROS in response to external stimuli. C. albicans and Candida glabrata suppressed ROS production by phagocytes, whereas Saccharomyces cerevisiae stimulated ROS production. The cell wall is the initial point of contact between Candida and phagocytes, but isolated cell walls from both heat-killed and live C. albicans stimulated ROS production. Heat-killed C. albicans has increased surface exposure of 1,3-beta-glucan, a cell wall component that can stimulate phagocytes. To determine whether surface 1,3-beta-glucan exposure accounted for the difference in ROS production, live C. albicans cells were treated with a sublethal dose of caspofungin to increase surface 1,3-beta-glucan exposure. Caspofungin-treated C. albicans was fully able to suppress ROS production, indicating that suppression of ROS overrides stimulatory signals from 1,3-beta-glucan. These studies indicate that live C. albicans actively suppresses ROS production in phagocytes in vitro, which may represent an important immune evasion mechanism.  相似文献   

10.
Using in vitro assays, this study was undertaken to determine whether the components of Lasso® herbicide formulation had an effect on the human immune system. Mononuclear cells from human peripheral blood were exposed to analytical alachlor, alachlor conjugated to human serum albumin or Lasso formulation over a concentration range from .01 uM-1.0 uM. The effects of the test materials on the following immunological functions were determined: lymphocyte proliferation induced by mitogen or antigen; antibody synthesis of IgG and IgM isotypes in pokeweed stimulated monouclear cell cultures; cytotoxic T cell proliferation; lysis of target cells by natural killer cells and lymphokine activated killer cells. The data demonstrated that the test compounds had no significant, dose related effect on the function of immunocompetent cells. Hence, the data suggest that the components of the Lasso formulation have no effect on the human immune system.  相似文献   

11.
12.
Mucosal candidiasis is one of the first opportunistic diseases in HIV-infected subjects. In order to understand the relationship between this disease and immunodeficiency to chemically defined, immunodominant Candida antigens, a mannoprotein fraction from C. albicans cell wall (GMP) was used to analyse proliferative and non-MHC-restricted cytotoxic responses of peripheral blood mononuclear cells (PBMC) from normal and HIV-infected subjects. In the former, GMP induced extensive blastogenesis, generation of powerful cytotoxicity against a tumour cell line (K562), and production of substantial amounts of interferon-gamma (IFN-gamma). Cultured PBMC from HIV-infected subjects manifested an early decreased ability for proliferative as well as differentiative cytotoxic responses to the candidal mannoproteins. This inability became clearly evident in subjects with stage III (CDC) of the disease, was total in CDC stage IV and occurred even in some subjects with a normal number of CD4+ cells. Low or absent response to GMP correlated with lack of response to tetanus toxoid. In contrast, both lymphoproliferative and cytotoxic responses to exogenous IL-2 was highly preserved at all stages of infection. The production of IFN-gamma in GMP-stimulated PBMC cultures critically fell to negligible values in most of the subjects in CDC stages II and III. Thus, the lowered or absent cell-mediated immune responses to candidal mannoprotein may be one factor to explain the early, elevated susceptibility of HIV-infected subjects to mucosal candidiasis. This study also shows that our mannoprotein preparation may be used as a probe to detect the overall efficiency of T cell responses in the above subjects.  相似文献   

13.
Monocytes and macrophages are the cell types most commonly associated with the innate immune response against Candida albicans infection. Interactions between the host immune system and Candida organisms have been investigated for planktonic Candida cells, but no studies have addressed these interactions in a biofilm environment. In this study, for the first time, we evaluated the ability of C. albicans to form biofilms in the presence or absence of adherent peripheral blood mononuclear cells (PBMCs; enriched for monocytes and macrophages by adherence). Our analyses using scanning electron and confocal scanning laser microscopy showed that the presence of PBMCs enhanced the ability of C. albicans to form biofilms and that the majority of PBMCs were localized to the basal and middle layers of the biofilm. In contrast to the interactions of PBMCs with planktonic C. albicans, where PBMCs phagocytose fungal cells, PBMCs did not appear to phagocytose fungal cells in biofilms. Furthermore, time-lapse laser microscopy revealed dynamic interactions between C. albicans and PBMCs in a biofilm. Additionally, we found that (i) only viable PBMCs influence Candida biofilm formation, (ii) cell surface components of PBMCs did not contribute to the enhancement of C. albicans biofilm, (iii) the biofilm-enhancing effect of PBMCs is mediated by a soluble factor released into the coculture medium of PBMCs with C. albicans, and (iv) supernatant collected from this coculture contained differential levels of pro- and anti-inflammatory cytokines. Our studies provide new insight into the interaction between Candida biofilm and host immune cells and demonstrate that immunocytes may influence the ability of C. albicans to form biofilms.  相似文献   

14.
Different cell wall components from Candida albicans have been shown to stimulate murine macrophages for tumor necrosis factor alpha (TNF-alpha) secretion. All of these molecules contain beta-1,2-oligomannosides. In order to examine their role in TNF-alpha production, acid-labile oligosaccharides, released from C. albicans VW32 cell wall phosphopeptidomannan by mild acid hydrolysis, and previously shown to correspond to homopolymers of beta-1,2-linked mannopyranosyl units, were separated by gel filtration chromatography according to their degree of polymerization. Murine macrophages incubated with purified oligomannosides (M2 to M8) released TNF-alpha to an extent which was dependent on, although not directly correlated with, the length of the mannosyl chain. Slight activity was observed with M4 and M5; M6 and M7 had virtually no effect, whereas M8 was associated with strong TNF-alpha release. This effect of M8 was dose dependent and was not altered by polymyxin B, known to interfere with lipopolysaccharide-induced TNF-alpha production. These results suggest that stimulation of TNF-alpha release by C. albicans glycoconjugates containing beta-1,2-linked oligomannosides may be due, at least in part, to the presence of these components.  相似文献   

15.
Abstract

Using in vitro assays, this study was undertaken to determine whether the components of Lasso® herbicide formulation had an effect on the human immune system. Mononuclear cells from human peripheral blood were exposed to analytical alachlor, alachlor conjugated to human serum albumin or Lasso formulation over a concentration range from. 01 uM-1.0 uM. The effects of the test materials on the following immunological functions were determined: lymphocyte proliferation induced by mitogen or antigen; antibody synthesis of IgG and IgM isotypes in pokeweed stimulated monouclear cell cultures; cytotoxic T cell proliferation; lysis of target cells by natural killer cells and lymphokine activated killer cells. The data demonstrated that the test compounds had no significant, dose related effect on the function of immunocompetent cells. Hence, the data suggest that the components of the Lasso formulation have no effect on the human immune system.  相似文献   

16.
Toll-like receptors as key mediators in innate antifungal immunity.   总被引:8,自引:0,他引:8  
The Toll protein of Drosophila is a transmembrane receptor involved in dorsoventral polarization during embryonic development and recognition of infection. In mammals, Toll-like receptors (TLRs) constitute a novel protein family involved in innate immunity and respond to a wide spectrum of microorganisms, including fungi, bacteria, viruses, and protozoa. Specific agonists for nine of the ten members of the human TLR family have been described to date. TLRs as well as the TLR-associated adaptor molecule MyD88 have been implicated in the recognition of the fungal pathogens Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and Pneumocystis carinii. Moreover, several pathogen associated molecular patterns (PAMPs) located in the cell wall or cell surface of fungi have been identified as potential ligands. Yeast zymosan activates TLR2/ TLR6 heterodimers, whereas Saccharomyces cerevisiae- and C. albicans-derived mannan seems to be detected by TLR4. Phospholipomannan, present in the cell surface of C. albicans has been shown to be recognized by TLR2, while TLR4 mainly interacts with glucuronoxylomannan, the major capsular polysaccharide of C. neoformans. MyD88 has been implicated in TLR signalling of linear (1 --> 3)-beta-D-glucan, and of beta-glucan from P. carinii. These data point towards the ability of the innate immune system to utilize TLRs that are specific to different types and components of pathogenic fungi. Recent evidence further suggests that TLRs cooperate with other immune receptors involved in fungal recognition and that the selective induction of adaptor proteins finally leads to distinct signalling events upon fungal challenge.  相似文献   

17.
Propranolol at concentrations of 1 x 10(-6) to 1 x 10(-4) M consistently increased neutrophil motility as measured in Boyden chambers. The effects were not due solely to stimulation of random migration and chemokinesis but also of directional motility. Propranolol, over a similar concentration range, caused inhibition of post-phagocytic cell metabolic activity (hexose monophosphate shunt, nitro-blue tetrazolium reduction and protein iodination) without any detectable effect on the ingestion rate of Candida albicans. Atenolol had no effect on any of these neutrophil functions. Both drugs were without effect on glycolysis and intracellular cyclic AMP levels. Propranolol however, at concentrations which stimulated cell motility, caused increased intracellular cyclic GMP levels. It is suggested that propranolol may stimulate neutrophil motility by promoting increased intracellular cyclic GMP levels or by decreasing neutrophil superoxide production.  相似文献   

18.
In fungi, the cell wall is a scaffold, an armor and an environmental gate. Sugar polymers including protein-O- or N-linked glycosyl chains or polysaccharides such as glucan or chitin are essential components to maintain cell wall functions. We describe mechanisms in the human fungal pathogen Candida albicans, by which the integrity of glycostructures are sensed and regulated. The results stress the importance of membrane sensors and MAP kinase pathways in the maintenance of cell wall structure and function.  相似文献   

19.
Candida albicans is an opportunistic human pathogen causing both superficial and disseminated diseases. It is a dimorphic fungus, switching between yeast and hyphal forms, depending on cues from its microenvironment. Hyphae play an important role in the pathogenesis of candidiasis. The host's response to Candida infection is multifaceted and includes the participation of granulocytes as key effector cells. The aim of this investigation was to study host gene expression during granulocyte-Candida interaction. Effector cells were generated by the granulocytic differentiation of HL60 cells. The resulting cell population was shown to be morphologically and functionally equivalent to granulocytes and is therefore referred to as HL60 granulocytoids for the purposes of this study. Gene expression profiles were determined 1 h after hosts were infected with C. albicans. Three Candida-granulocytoid ratios were chosen to reflect different degrees of HL60 granulocytoid inhibition of C. albicans. The data demonstrate that at the high pathogen-host ratio, C. albicans modulated the HL60 granulocytoid's response by downregulating the expression of known antimicrobial genes. In addition, looking at the expression of a large number of genes, not all of which have necessarily been implicated in candidastatic or candidacidal mechanisms, it has been possible to describe the physiological response of the HL60 granulocytoid to an infectious challenge with C. albicans. Finally, some of the observed changes in HL60 granulocytoid gene expression were investigated in freshly isolated human polymorphonuclear leukocytes infected with C. albicans. Similar changes were seen in these primary human cells, lending support to the validity of this model.  相似文献   

20.
The co-evolution of a wide range of helminth parasites and vertebrates represented a constant pressure on the host's immune system and a selective force for shaping the immune response. Modulation of the immune system by parasites is accomplished partly by dendritic cells. When exposed to helminth parasites or their products, dendritic cells do not become classically mature and are potent inducers of Th2 and regulatory responses. Treating animals with helminths (eggs, larvae, extracts) causes dampening or in some cases prevention of allergic or autoimmune diseases. Trichinella spiralis (T. spiralis) possess a capacity to retune the immune cell repertoire, acting as a moderator of the host response not only to itself but also to third party antigens. In this review, we will focus on the ability of T. spiralis-stimulated dendritic cells to polarize the immune response toward Th2 and regulatory mode in vitro and in vivo and also on the capacity of this parasite to modulate autoimmune disease--such as experimental autoimmune encephalomyelitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号