首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
A series of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing the hydrophilic oligo(para-phenylene ethynylene) with two 3,6,9-trioxadec-1-yloxy chains was designed and synthesized. The mononuclear alkynylplatinum(II) terpyridine complex was found to display a very strong tendency toward the formation of supramolecular structures. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would lead to the formation of nanotubes or helical ribbons. These desirable nanostructures were found to be governed by the steric bulk on the platinum(II) terpyridine moieties, which modulates the directional metal−metal interactions and controls the formation of nanotubes or helical ribbons. Detailed analysis of temperature-dependent UV-visible absorption spectra of the nanostructured tubular aggregates also provided insights into the assembly mechanism and showed the role of metal−metal interactions in the cooperative supramolecular polymerization of the amphiphilic platinum(II) complexes.Square-planar d8 platinum(II) polypyridine complexes have long been known to exhibit intriguing spectroscopic and luminescence properties (154) as well as interesting solid-state polymorphism associated with metal−metal and π−π stacking interactions (114, 25). Earlier work by our group showed the first example, to our knowledge, of an alkynylplatinum(II) terpyridine system [Pt(tpy)(C ≡ CR)]+ that incorporates σ-donating and solubilizing alkynyl ligands together with the formation of Pt···Pt interactions to exhibit notable color changes and luminescence enhancements on solvent composition change (25) and polyelectrolyte addition (26). This approach has provided access to the alkynylplatinum(II) terpyridine and other related cyclometalated platinum(II) complexes, with functionalities that can self-assemble into metallogels (2731), liquid crystals (32, 33), and other different molecular architectures, such as hairpin conformation (34), helices (3538), nanostructures (3945), and molecular tweezers (46, 47), as well as having a wide range of applications in molecular recognition (4852), biomolecular labeling (4852), and materials science (53, 54). Recently, metal-containing amphiphiles have also emerged as a building block for supramolecular architectures (4244, 5559). Their self-assembly has always been found to yield different molecular architectures with unprecedented complexity through the multiple noncovalent interactions on the introduction of external stimuli (4244, 5559).Helical architecture is one of the most exciting self-assembled morphologies because of the uniqueness for the functional and topological properties (6069). Helical ribbons composed of amphiphiles, such as diacetylenic lipids, glutamates, and peptide-based amphiphiles, are often precursors for the growth of tubular structures on an increase in the width or the merging of the edges of ribbons (64, 65). Recently, the optimization of nanotube formation vs. helical nanostructures has aroused considerable interests and can be achieved through a fine interplay of the influence on the amphiphilic property of molecules (66), choice of counteranions (67, 68), or pH values of the media (69), which would govern the self-assembly of molecules into desirable aggregates of helical ribbons or nanotube scaffolds. However, a precise control of supramolecular morphology between helical ribbons and nanotubes remains challenging, particularly for the polycyclic aromatics in the field of molecular assembly (6469). Oligo(para-phenylene ethynylene)s (OPEs) with solely π−π stacking interactions are well-recognized to self-assemble into supramolecular system of various nanostructures but rarely result in the formation of tubular scaffolds (7073). In view of the rich photophysical properties of square-planar d8 platinum(II) systems and their propensity toward formation of directional Pt···Pt interactions in distinctive morphologies (2731, 3945), it is anticipated that such directional and noncovalent metal−metal interactions might be capable of directing or dictating molecular ordering and alignment to give desirable nanostructures of helical ribbons or nanotubes in a precise and controllable manner.Herein, we report the design and synthesis of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing hydrophilic OPEs with two 3,6,9-trioxadec-1-yloxy chains. The mononuclear alkynylplatinum(II) terpyridine complex with amphiphilic property is found to show a strong tendency toward the formation of supramolecular structures on diffusion of diethyl ether in dichloromethane or dimethyl sulfoxide (DMSO) solution. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would result in nanotubes or helical ribbons in the self-assembly process. To the best of our knowledge, this finding represents the first example of the utilization of the steric bulk of the moieties, which modulates the formation of directional metal−metal interactions to precisely control the formation of nanotubes or helical ribbons in the self-assembly process. Application of the nucleation–elongation model into this assembly process by UV-visible (UV-vis) absorption spectroscopic studies has elucidated the nature of the molecular self-assembly, and more importantly, it has revealed the role of metal−metal interactions in the formation of these two types of nanostructures.  相似文献   

3.
4.
D1 and D2 dopamine receptors (D1DRs and D2DRs) may contribute differently to various aspects of memory and cognition. The D1DR system has been linked to functions supported by the prefrontal cortex. By contrast, the role of the D2DR system is less clear, although it has been hypothesized that D2DRs make a specific contribution to hippocampus-based cognitive functions. Here we present results from 181 healthy adults between 64 and 68 y of age who underwent comprehensive assessment of episodic memory, working memory, and processing speed, along with MRI and D2DR assessment with [11C]raclopride and PET. Caudate D2DR availability was positively associated with episodic memory but not with working memory or speed. Whole-brain analyses further revealed a relation between hippocampal D2DR availability and episodic memory. Hippocampal and caudate D2DR availability were interrelated, and functional MRI-based resting-state functional connectivity between the ventral caudate and medial temporal cortex increased as a function of caudate D2DR availability. Collectively, these findings indicate that D2DRs make a specific contribution to hippocampus-based cognition by influencing striatal and hippocampal regions, and their interactions.Dopamine (DA) plays a key role in several cognitive processes (14). Reductions of D1 and D2 DA receptors (D1DRs and D2DRs) in aging (57) have been linked to age-related cognitive deficits (8, 9). The D1DR system has been related to functions supported by the prefrontal cortex (PFC), such as working memory and executive functions (1012), which may reflect the relatively high density of D1DRs in the PFC (13). However, the role of D2DRs is far less clear. D2DRs are present in the PFC at very low densities (13), and evidence supporting a role for the D2DR system in working memory and executive functions is elusive (10). Pharmacological (14, 15) and PET studies assessing striatal D2DR availability (or binding potential to nondisplacable tissue uptake; BPND) with [11C]raclopride (16, 17) have yielded mixed findings in relation to cognition. It has been hypothesized that D2DRs make a specific contribution to hippocampus-based cognitive functions (10, 18, 19). Supporting these claims, positive links between D2DR BPND and episodic memory are commonly observed (2023). PET imaging of hippocampal D2DR BPND also provides support for this hypothesis, although some studies indicate that hippocampal D2DRs may be related to both episodic memory and PFC-based executive functions (22, 23), including verbal working memory (24). Medial temporal lobe regions have been implicated in working memory (25, 26), and D2DR-mediated modulation may be exerted via hippocampal–cortical pathways (27). In addition, a [11C]raclopride task-activation PET study demonstrated contributions of striatal D2DRs to a verbal working-memory task (11).Taken together, the specific role of the D2DR system in cognition remains unclear, likely due to the fact that past studies included small and age-heterogeneous samples and lacked comprehensive test batteries that allowed systematic comparison of the role of D2DRs in different cognitive functions. Here we present results from the Cognition, Brain, and Aging (COBRA) study that include assessment of episodic memory, working memory, and processing speed, in combination with [11C]raclopride PET and MRI of 181 healthy adults between 64 and 68 y of age (28). The main analyses concerned caudate D2DR–cognition associations, as this striatal region has been implicated in cognitive functioning (11, 12, 29, 30). Subsequently, whole-brain analyses were conducted to examine extrastriatal (especially hippocampal) D2DRs in relation to cognition. Finally, resting-state functional connectivity patterns were analyzed in relation to D2DR BPND, with special focus on interactions between the ventral caudate (31) and medial temporal cortex regions (32, 33).  相似文献   

5.
Intestinal CD103 dendritic cells (DCs) are pathogenic for colitis. Unveiling molecular mechanisms that render these cells proinflammatory is important for the design of specific immunotherapies. In this report, we demonstrated that mesenteric lymph node CD103 DCs express, among other proinflammatory cytokines, high levels of osteopontin (Opn) during experimental colitis. Opn expression by CD103 DCs was crucial for their immune profile and pathogenicity, including induction of T helper (Th) 1 and Th17 cell responses. Adoptive transfer of Opn-deficient CD103 DCs resulted in attenuated colitis in comparison to transfer of WT CD103 DCs, whereas transgenic CD103 DCs that overexpress Opn were highly pathogenic in vivo. Neutralization of secreted Opn expressed exclusively by CD103 DCs restrained disease severity. Also, Opn deficiency resulted in milder disease, whereas systemic neutralization of secreted Opn was therapeutic. We determined a specific domain of the Opn protein responsible for its CD103 DC-mediated proinflammatory effect. We demonstrated that disrupting the interaction of this Opn domain with integrin α9, overexpressed on colitic CD103 DCs, suppressed the inflammatory potential of these cells in vitro and in vivo. These results add unique insight into the biology of CD103 DCs and their function during inflammatory bowel disease.Inflammatory bowel diseases (IBDs), including Crohn disease (CD) and ulcerative colitis (UC), are caused by excessive inflammatory responses to commensal microflora and other antigens present in the intestinal lumen (1). Intestinal dendritic cells (DCs) contribute to these inflammatory responses during human IBD, as well as in murine colitis models (2). DCs that reside in draining mesenteric lymph nodes (MLNs) are also crucial mediators of colitis induction (3) and may be grouped based on their surface CD103 (integrin αE) expression as CD11chighCD103+ (CD103+ DCs) and CD11chighCD103 (CD103 DCs) (46). CD103+ DCs are considered important mediators of gut homeostasis in steady state (4, 5, 79), and their tolerogenic properties are conserved between mice and humans (5). However, their role during intestinal inflammation is not well defined. Instead, CD103 DC function has been described mostly during chronic experimental colitis (1012). These cells secrete IL-23, IL-6, and IL-12 (1012), contributing to the development of T helper (Th) 17 and Th1 cells, and are highly inflammatory during CD4+ T-cell transfer colitis (12) and during 2,4,6 trinitrobenzene sulfonic acid (TNBS)-induced chronic colitis (11). MLN CD103 DCs cultured in the presence of LPS, a Toll-like receptor (TLR) 4 agonist, or R848, a TLR7 agonist, express higher levels of TNF-α and IL-6 (7, 12). In fact, these cells secrete IL-23 and IL-12 even in the absence of TLR stimulation (10). Both MLN CD103 and CD103+ DC subsets are present in acute colitis (11, 13); however, their function, as well as their cytokine profile, during this phase of disease, reflecting colitis initiation, remains unknown.Recent studies suggest a proinflammatory role for the cytokine osteopontin (Opn) in TNBS- and dextran sulfate sodium (DSS)-induced colitis (14, 15), which are the models for CD and UC, respectively. Opn is expressed by DCs and other immune cell types, such as lymphocytes, during autoimmune responses (1622), and its expression by DCs during autoimmunity contributes to disease severity (1719, 21, 23). In addition, Opn expression is highly up-regulated in intestinal immune and nonimmune cells and in the plasma of patients with CD and UC (2429), as well as in the colon and plasma of mice with experimental colitis (14, 15, 27, 30). Increased plasma Opn levels are related to the severity of CD inflammation (29), and certain Opn gene (Spp1) haplotypes are modifiers of CD susceptibility (31), indicating that Opn could be used as an IBD biomarker (27). In general, Opn affects DC biology during several inflammatory conditions (1721, 3237) and could be a potential therapeutic target in IBD.In this study, we initially asked whether Opn was expressed by MLN CD103 and CD103+ DCs during colitis. We found that CD103 DCs express excessive levels of Opn in addition to other proinflammatory cytokines. Conversely, CD103+ DCs express profoundly lower levels of Opn and are noninflammatory. Using adoptive transfer of purified specific DC subsets, we determined that MLN CD103 DCs are critical mediators of acute intestinal inflammation and that their Opn expression is essential for their proinflammatory properties in both acute and chronic colitis. Furthermore, Opn-deficient and Opn-neutralized mice developed significantly milder disease. In addition, we constructed transgenic (Tg) mice overexpressing Opn only in DCs. These mice developed exaggerated colitis, and adoptive transfer of their CD103 DCs into recipient mice dramatically exacerbated disease. Because Opn protein contains several domains interacting with various receptors, we defined a specific Opn domain significant for inducing proinflammatory properties in CD103 DCs. Blockade of the interaction of this Opn domain [containing functional Ser-Leu-Ala-Tyr-Gly-Leu-Arg (SLAYGLR) sequence] with integrin α9 expressed on CD103 DCs abrogated their proinflammatory profile and colitogenic effects in vivo.  相似文献   

6.
Epstein-Barr virus (EBV) infection causes both Hodgkin’s lymphoma (HL) and non-Hodgkin’s lymphoma (NHL). The present study reveals that EBV-induced HL and NHL are intriguingly associated with a repopulated immune cell profile in humanized mice. Newborn immunodeficient NSG mice were engrafted with human cord blood CD34+ hematopoietic stem cells (HSCs) for a 8- or 15-wk reconstitution period (denoted 8whN and 15whN, respectively), resulting in human B-cell and T-cell predominance in peripheral blood cells, respectively. Further, novel humanized mice were established via engraftment of hCD34+ HSCs together with nonautologous fetal liver-derived mesenchymal stem cells (MSCs) or MSCs expressing an active notch ligand DLK1, resulting in mice skewed with human B or T cells, respectively. After EBV infection, whereas NHL developed more frequently in B-cell–predominant humanized mice, HL was seen in T-cell–predominant mice (P = 0.0013). Whereas human splenocytes from NHL-bearing mice were positive for EBV-associated NHL markers (hBCL2+, hCD20+, hKi67+, hCD20+/EBNA1+, and EBER+) but negative for HL markers (LMP1, EBNA2, and hCD30), most HL-like tumors were characterized by the presence of malignant Hodgkin’s Reed–Sternberg (HRS)-like cells, lacunar RS (hCD30+, hCD15+, IgJ, EBER+/hCD30+, EBNA1+/hCD30+, LMP+/EBNA2, hCD68+, hBCL2, hCD20-/weak, Phospho STAT6+), and mummified RS cells. This study reveals that immune cell composition plays an important role in the development of EBV-induced B-cell lymphoma.Epstein Barr virus (EBV) infects human B lymphocytes and epithelial cells in >90% of the human population (1, 2). EBV infection is widely associated with the development of diverse human disorders that include Hodgkin’s lymphoma (HL) and non-Hodgkin’s lymphomas (NHL), including diffused large B-cell lymphoma (DLBCL), follicular B-cell lymphoma (FBCL), endemic Burkitt’s lymphoma (BL), and hemophagocytic lymphohistiocytosis (HLH) (3).HL is a malignant lymphoid neoplasm most prevalent in adolescents and young adults (46). Hodgkin/Reed–Sternberg (HRS) cells are the sole malignant cells of HL. HRS cells are characterized by CD30+/CD15+/BCL6/CD20+/− markers and appear large and multinucleated owing to multiple nuclear divisions without cytokinesis. Although HRS cells are malignant in the body, surrounding inflammatory cells greatly outnumber them. These reactive nonmalignant inflammatory cells, including lymphocytes, histiocytes, eosinophils, fibroblasts, neutrophils, and plasma cells, compose the vast majority of the tumor mass. The presence of HRS cells in the context of this inflammatory cellular background is a critical hallmark of the HL diagnosis (4). Approximately 50% of HL cases are EBV-associated (EBVaHL) (711). EBV-positive HRS cells express EBV latent membrane protein (LMP) 1 (LMP1), LMP2A, LMP2B, and EBV nuclear antigen (EBNA) 1 (EBNA1), but lack EBNA2 (latency II marker) (12). LMP1 is consistently expressed in all EBV-associated cases of classical HL (13, 14). LMP1 mimics activated CD40 receptors, induces NF-κB, and allows cells to become malignant while escaping apoptosis (15).The etiologic role of EBV in numerous disorders has been studied in humanized mouse models in diverse experimental conditions. Humanized mouse models recapitulate key characteristics of EBV infection-associated disease pathogenesis (1624). Different settings have given rise to quite distinct phenotypes, including B-cell type NHL (DLBCL, FBCL, and unspecified B-cell lymphomas), natural killer/T cell lymphoma (NKTCL), nonmalignant lymphoproliferative disorder (LPD), extremely rare HL, HLH, and arthritis (1624). Despite considerable efforts (1624), EBVaHL has not been properly produced in the humanized mouse setting model, owing to inappropriate animal models and a lack of in-depth analyses. After an initial report of infected humanized mice, HRS-like cells appeared to be extremely rare in the spleens of infected humanized mice; however, the findings were inconclusive (18). Here we report direct evidence of EBVaHL or HL-like neoplasms in multiple humanized mice in which T cells were predominant over B cells. Our study demonstrates that EBV-infected humanized mice display additional EBV-associated pathogenesis, including DLBCL and hemophagocytic lymphohistiocytosis (16, 17).  相似文献   

7.
In a fundamental process throughout nature, reduced iron unleashes the oxidative power of hydrogen peroxide into reactive intermediates. However, notwithstanding much work, the mechanism by which Fe2+ catalyzes H2O2 oxidations and the identity of the participating intermediates remain controversial. Here we report the prompt formation of O=FeIVCl3 and chloride-bridged di-iron O=FeIV·Cl·FeIICl4 and O=FeIV·Cl·FeIIICl5 ferryl species, in addition to FeIIICl4, on the surface of aqueous FeCl2 microjets exposed to gaseous H2O2 or O3 beams for <50 μs. The unambiguous identification of such species in situ via online electrospray mass spectrometry let us investigate their individual dependences on Fe2+, H2O2, O3, and H+ concentrations, and their responses to tert-butanol (an ·OH scavenger) and DMSO (an O-atom acceptor) cosolutes. We found that (i) mass spectra are not affected by excess tert-butanol, i.e., the detected species are primary products whose formation does not involve ·OH radicals, and (ii) the di-iron ferryls, but not O=FeIVCl3, can be fully quenched by DMSO under present conditions. We infer that interfacial Fe(H2O)n2+ ions react with H2O2 and O3 >103 times faster than Fe(H2O)62+ in bulk water via a process that favors inner-sphere two-electron O-atom over outer-sphere one-electron transfers. The higher reactivity of di-iron ferryls vs. O=FeIVCl3 as O-atom donors implicates the electronic coupling of mixed-valence iron centers in the weakening of the FeIV–O bond in poly-iron ferryl species.High-valent FeIV=O (ferryl) species participate in a wide range of key chemical and biological oxidations (14). Such species, along with ·OH radicals, have long been deemed putative intermediates in the oxidation of FeII by H2O2 (Fenton’s reaction) (5, 6), O3, or HOCl (7, 8). The widespread availability of FeII and peroxides in vivo (912), in natural waters and soils (13), and in the atmosphere (1418) makes Fenton chemistry and FeIV=O groups ubiquitous features in diverse systems (19). A lingering issue regarding Fenton’s reaction is how the relative yields of ferryls vs. ·OH radicals depend on the medium. For example, by assuming unitary ·OH radical yields, some estimates suggest that Fenton’s reaction might account for ∼30% of the ·OH radical production in fog droplets (20). Conversely, if Fenton’s reaction mostly led to FeIV=O species, atmospheric chemistry models predict that their steady-state concentrations would be ∼104 times larger than [·OH], thereby drastically affecting the rates and course of oxidative chemistry in such media (20). FeIV=O centers are responsible for the versatility of the family of cytochrome P450 enzymes in catalyzing the oxidative degradation of a vast range of xenobiotics in vivo (2128), and the selective functionalization of saturated hydrocarbons (29). The bactericidal action of antibiotics has been linked to their ability to induce Fenton chemistry in vivo (9, 3034). Oxidative damage from exogenous Fenton chemistry likely is responsible for acute and chronic pathologies of the respiratory tract (3538).Despite its obvious importance, the mechanism of Fenton’s reaction is not fully understood. What is at stake is how the coordination sphere of Fe2+ (3946) under specific conditions affects the competition between the one-electron transfer producing ·OH radicals (the Haber–Weiss mechanism) (47), reaction R1, and the two-electron oxidation via O-atom transfer (the Bray–Gorin mechanism) into FeIVO2+, reaction R2 (6, 23, 26, 27, 45, 4851):Ozone reacts with Fe2+ via analogous pathways leading to (formally) the same intermediates, reactions R3a, R3b, and R4 (8, 49, 52, 53):At present, experimental evidence about these reactions is indirect, being largely based on the analysis of reaction products in bulk water in conjunction with various assumptions. Given the complex speciation of aqueous Fe2+/Fe3+ solutions, which includes diverse poly-iron species both as reagents and products, it is not surprising that classical studies based on the identification of reaction intermediates and products via UV-absorption spectra and the use of specific scavengers have fallen short of fully unraveling the mechanism of Fenton’s reaction. Herein we address these issues, focusing particularly on the critically important interfacial Fenton chemistry that takes place at boundaries between aqueous and hydrophobic media, such as those present in atmospheric clouds (16), living tissues, biomembranes, bio-microenvironments (38, 54, 55), and nanoparticles (56, 57).We exploited the high sensitivity, surface selectivity, and unambiguous identification capabilities of a newly developed instrument based on online electrospray mass spectrometry (ES-MS) (5862) to identify the primary products of reactions R1R4 on aqueous FeCl2 microjets exposed to gaseous H2O2 and O3 beams under ambient conditions [in N2(g) at 1 atm at 293 ± 2 K]. Our experiments are conducted by intersecting the continuously refreshed, uncontaminated surfaces of free-flowing aqueous microjets with reactive gas beams for τ ∼10–50 μs, immediately followed (within 100 μs; see below) by in situ detection of primary interfacial anionic products and intermediates via ES-MS (Methods, SI Text, and Figs. S1 and S2). We have previously demonstrated that online mass spectrometric sampling of liquid microjets under ambient conditions is a surface-sensitive technique (58, 6267).  相似文献   

8.
To determine the role of glucagon action in diet-induced and genetic type 2 diabetes (T2D), we studied high-fat-diet–induced obese (DIO) and leptin receptor-defective (LepR−/−) rodents with and without glucagon receptors (GcgRs). DIO and LepR−/−,GcgR+/+ mice both developed hyperinsulinemia, increased liver sterol response element binding protein 1c, and obesity. DIO GcgR+/+ mice developed mild T2D, whereas LepR−/−,GcgR+/+ mice developed severe T2D. High-fat–fed (HFF) glucagon receptor-null mice did not develop hyperinsulinemia, increased liver sterol response element binding protein 1c mRNA, or obesity. Insulin treatment of HFF GcgR−/ to simulate HFF-induced hyperinsulinemia caused obesity and mild T2D. LepR−/−,GcgR−/− did not develop hyperinsulinemia or hyperglycemia. Adenoviral delivery of GcgR to GcgR−/−,LepR−/− mice caused the severe hyperinsulinemia and hyperglycemia of LepR−/− mice to appear. Spontaneous disappearance of the GcgR transgene abolished the hyperinsulinemia and hyperglycemia. In conclusion, T2D hyperglycemia requires unsuppressible hyperglucagonemia from insulin-resistant α cells and is prevented by glucagon suppression or blockade.The prevalence of type 2 diabetes (T2D) in the United States was 29.1 million in 2012, and 37% of adults were identified as prediabetic (1). T2D is now present on every continent (2). Despite the magnitude of this threat to world physical and fiscal health, our understanding of the pathogenic pathway is vague and is based largely on epidemiologic correlations. For example, the correlation between T2D and obesity is so high that most obese Americans can be considered prediabetic, but the precise mechanism of this relationship is unknown. Although the “lipotoxic” effects of ectopic lipids were first suggested in 1994 (3) to link diet-induced obesity to T2D and other components of the metabolic syndrome (311), the relationship between IR and T2D is still poorly understood. Proposed hypothetical links range from beta cell “glucotoxicity” (12) to the action of modifier genes (13) to failure of redox control (14).It has recently been shown that glucagon receptor-null mice remain normoglycemic and nonketotic despite total insulin deficiency but that transduction of a glucagon receptor cDNA into their liver makes them severely diabetic (15, 16). This proves that, whether or not insulin action is present, suppression of glucagon action prevents hyperglycemia. It has long been known that insulin suppression of glucagon regulates alpha cell secretion (17, 18). Although the presence of hyperglucagonemia was established unequivocally in type 1 diabetes (T1D) (15, 16), direct evidence that it is essential for the hyperglycemia of T2D is lacking. However, it has long been known that glucagon is elevated in T2D (17, 19, 20) and is resistant to suppression by insulin.  相似文献   

9.
Being activated by depolarizing voltages and increases in cytoplasmic Ca2+, voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, including hypertension, asthma, cancer, epilepsy, and diabetes. Several gating processes, allosterically coupled to each other, control BK channel activity and are potential targets for regulation by auxiliary β-subunits that are expressed together with the α (BK)-subunit in almost every tissue type where they are found. By measuring gating currents in BK channels coexpressed with chimeras between β1 and β3 or β2 auxiliary subunits, we were able to identify that the cytoplasmic regions of β1 are responsible for the modulation of the voltage sensors. In addition, we narrowed down the structural determinants to the N terminus of β1, which contains two lysine residues (i.e., K3 and K4), which upon substitution virtually abolished the effects of β1 on charge movement. The mechanism by which K3 and K4 stabilize the voltage sensor is not electrostatic but specific, and the α (BK)-residues involved remain to be identified. This is the first report, to our knowledge, where the regulatory effects of the β1-subunit have been clearly assigned to a particular segment, with two pivotal amino acids being responsible for this modulation.High-conductance voltage- and calcium-activated potassium (BK) channels are homotetrameric proteins of α-subunits encoded by the slo1 gene (1). These channels are expressed in virtually all mammalian tissues, where they detect and integrate membrane voltage and calcium concentration changes dampening the responsiveness of cells when confronted with excitatory stimuli. They are abundant in the CNS and nonneuronal tissues, such as smooth muscle or hair cells. This wide distribution is associated with an outstandingly large functional diversity, in which BK channel activity appears optimally adapted to the particular physiological demands of each cell type (2). On the other hand, small alterations in BK channel function may contribute to the pathophysiology of hypertension, asthma, cancer, epilepsy, diabetes, and other conditions in humans (38). Alternative splicing, posttranslational modifications, and regulation by auxiliary proteins have been proposed to contribute to this functional diversity (1, 2, 916).The BK channel α-subunit is formed by a single polypeptide of about 1,200 amino acids that contains all of the key structural elements for ion permeation, gating, and modulation by ions and other proteins. Tetramers of α-subunits form functional BK channels. Each subunit has seven hydrophobic transmembrane segments (S0–S6), where the voltage-sensor domain (VSD) and pore domain (PD) reside (2). The N terminus faces the extracellular side of the membrane, whereas the C terminus is intracellular. The latter contains four hydrophobic α-helices (S7–S10) and the main Ca2+ binding sites (2). VSDs formed by segments S1–S4 harbor a series of charged residues across the membrane that contributes to voltage sensing (2). Upon membrane depolarization, each VSD undergoes a rearrangement (17) that prompts the opening of a highly K+-selective pore formed by the four PDs that come together at the symmetry center of the tetramer.Although BK channel expression is ubiquitous, in most physiological scenarios their functioning is provided by their coassembly with auxiliary proteins, such as β-subunits. This coassembly brings channel activity into the proper cell/tissue context (11, 13). Four different β-subunits have been cloned (β1–β4) (1824), all of which have been observed to modify BK channel function. Albeit to a different extent, all β-subunits modify the Ca2+ sensitivity, voltage dependence, and gating properties of BK channels, hence modifying plasma membrane excitability balance. Regarding auxiliary β-subunits, β1- and β2-subunits increase apparent Ca2+ sensitivity and decelerate macroscopic current kinetics (14, 20, 21, 2530); β2 and β3 induce fast inactivation as well as an instantaneous outward rectification (20, 21, 24, 31, 32); and β4 slows down activation and deactivation kinetics (12, 23) and modifies Ca2+ sensitivity (12, 33, 34).It should be kept in mind that β-subunits are potential targets for different molecules that modulate channel function, such as alcohol (35), estrogens (15), hormones (36), and fatty acids (37, 38). Additionally, scorpion toxin affinity in BK channels would tend to increase when β1 is coexpressed with the α-subunit (22).To identify the molecular elements that give β1 the ability to modulate the voltage sensor of BK channels, we constructed chimeric proteins of β1/β2- and β1/β3-subunits by swapping their N and C termini, the transmembrane (TM) segments, and the extracellular loops and recorded their gating currents. Two lysine residues that are unique to the N terminus of β1 were identified to be sufficient for BK voltage-sensor modulation.  相似文献   

10.
Background and objectives: Natriuretic peptides have been suggested to be of value in risk stratification in dialysis patients. Data in patients on peritoneal dialysis remain limited.Design, setting, participants, & measurements: Patients of the ADEMEX trial (ADEquacy of peritoneal dialysis in MEXico) were randomized to a control group [standard 4 × 2L continuous ambulatory peritoneal dialysis (CAPD); n = 484] and an intervention group (CAPD with a target creatinine clearance ≥60L/wk/1.73 m2; n = 481). Natriuretic peptides were measured at baseline and correlated with other parameters as well as evaluated for effects on patient outcomes.Results: Control group and intervention group were comparable at baseline with respect to all measured parameters. Baseline values of natriuretic peptides were elevated and correlated significantly with levels of residual renal function but not with body size or diabetes. Baseline values of N-terminal fragment of B-type natriuretic peptide (NT-proBNP) but not proANP(1–30), proANP(31–67), or proANP(1–98) were independently highly predictive of overall survival and cardiovascular mortality. Volume removal was also significantly correlated with patient survival.Conclusions. NT-proBNP have a significant predictive value for survival of CAPD patients and may be of value in guiding risk stratification and potentially targeted therapeutic interventions.Plasma levels of cardiac natriuretic peptides are elevated in patients with chronic kidney disease, owing to impairment of renal function, hypertension, hypervolemia, and/or concomitant heart disease (17). Atrial natriuretic peptide (ANP) and particularly brain natriuretic peptide (BNP) levels are linked independently to left ventricular mass (35,816) and function (3,617) and predict total and cardiovascular mortality (1,3,8,10,12,18) as well as cardiac events (12,19). ANP and BNP decrease significantly during hemodialysis treatment but increase again during the interdialytic interval (1,2,4,6,7,14,17,2023). Levels in patients on peritoneal dialysis (PD) have been found to be lower than in patients on hemodialysis (11,2426), but the correlations with left ventricular function and structure are maintained in both types of dialysis modalities (11,15,27,28).The high mortality of patients on peritoneal dialysis and the failure of dialytic interventions to alter this mortality (29,30) necessitate renewed attention into novel methods of stratification and identification of patients at highest risk to be targeted for specific interventions. Cardiac natriuretic peptides are increasingly considered to fulfill this role in nonrenal patients. Evaluations of cardiac natriuretic peptides in patients on PD have been limited by small numbers (3,9,11,12,15,2426) and only one study examined correlations between natriuretic peptide levels and outcomes (12). The PD population enrolled in the ADEMEX trial offered us the opportunity to evaluate cardiac natriuretic peptides and their value in predicting outcomes in the largest clinical trial ever performed on PD (29,30). It is hoped that such an evaluation would identify patients at risk even in the absence of overt clinical disease and hence facilitate or encourage interventions with salutary outcomes.  相似文献   

11.
Assembly of 3D micro/nanostructures in advanced functional materials has important implications across broad areas of technology. Existing approaches are compatible, however, only with narrow classes of materials and/or 3D geometries. This paper introduces ideas for a form of Kirigami that allows precise, mechanically driven assembly of 3D mesostructures of diverse materials from 2D micro/nanomembranes with strategically designed geometries and patterns of cuts. Theoretical and experimental studies demonstrate applicability of the methods across length scales from macro to nano, in materials ranging from monocrystalline silicon to plastic, with levels of topographical complexity that significantly exceed those that can be achieved using other approaches. A broad set of examples includes 3D silicon mesostructures and hybrid nanomembrane–nanoribbon systems, including heterogeneous combinations with polymers and metals, with critical dimensions that range from 100 nm to 30 mm. A 3D mechanically tunable optical transmission window provides an application example of this Kirigami process, enabled by theoretically guided design.Three-dimensional micro/nanostructures are of growing interest (110), motivated by their increasingly widespread applications in biomedical devices (1113), energy storage systems (1419), photonics and optoelectronics (2024), microelectromechanical systems (MEMS) (2527), metamaterials (21, 2832), and electronics (3335). Of the many methods for fabricating such structures, few are compatible with the highest-performance classes of electronic materials, such as monocrystalline inorganic semiconductors, and only a subset of these can operate at high speeds, across length scales, from centimeters to nanometers. For example, although approaches (3639) that rely on self-actuating materials for programmable shape changes provide access to a wide range of 3D geometries, they apply only to certain types of materials [e.g., gels (36, 37), liquid crystal elastomers (39), and shape memory alloys (38)], generally not directly relevant to high-quality electronics, optoelectronics, or photonics. Techniques that exploit bending/folding of thin plates via the action of residual stresses or capillary effects are, by contrast, naturally compatible with these modern planar technologies, but they are currently most well developed only for certain classes of hollow polyhedral or cylindrical geometries (1, 10, 4044). Other approaches (45, 46) rely on compressive buckling in narrow ribbons (i.e., structures with lateral aspect ratios of >5:1) or filaments to yield complex 3D structures, but of primary utility in open-network mesh type layouts. Attempts to apply this type of scheme to sheets/membranes (i.e., structures with lateral aspect ratios of <5:1) lead to “kink-induced” stress concentrations that cause mechanical fracture. The concepts of Kirigami, an ancient aesthetic pursuit, involve strategically configured arrays of cuts to guide buckling/folding processes in a manner that reduces such stresses, to enable broad and interesting classes of 3D structures, primarily in paper at centimeter and millimeter dimensions. Traditional means for defining these cuts and for performing the folds do not extend into the micro/nanoscale regime, nor do they work effectively with advanced materials, particularly brittle semiconductors. This paper introduces ideas for a form of Kirigami that can be used in these contexts. Here, precisely controlled compressive forces transform 2D micro/nanomembranes with lithographically defined geometries and patterns of cuts into 3D structures across length scales from macro to micro and nano, with levels of complexity and control that significantly exceed those that can be achieved with alternative methods. This Kirigami approach is different from conventional macroscopic analogs [e.g., including lattice Kirigami methods (47, 48) that solve the inverse problem of folding a flat plate into a complex targeted 3D configuration], where negligible deformations occur in the uncut regions of the folded structures and from recently reported microscale Kirigami methods that use 2D forms for stretchable conductors (49). The current approach is also fully compatible with previously reported schemes based on residual stresses and on buckling of filamentary ribbons. Demonstrations include a diverse set of structures formed using silicon nanomembranes, plates, and ribbons and heterogeneous combinations of them with micro/nanopatterned metal films and dielectrics. A mechanically tunable optical transmission window illustrates the extent to which theoretical modeling can be used as a design tool to create targeted geometries that offer adaptable shapes and desired modes of operation.  相似文献   

12.
Stimulating presynaptic terminals can increase the proton concentration in synapses. Potential receptors for protons are acid-sensing ion channels (ASICs), Na+- and Ca2+-permeable channels that are activated by extracellular acidosis. Those observations suggest that protons might be a neurotransmitter. We found that presynaptic stimulation transiently reduced extracellular pH in the amygdala. The protons activated ASICs in lateral amygdala pyramidal neurons, generating excitatory postsynaptic currents. Moreover, both protons and ASICs were required for synaptic plasticity in lateral amygdala neurons. The results identify protons as a neurotransmitter, and they establish ASICs as the postsynaptic receptor. They also indicate that protons and ASICs are a neurotransmitter/receptor pair critical for amygdala-dependent learning and memory.Although homeostatic mechanisms generally maintain the brain’s extracellular pH within narrow limits, neural activity can induce transient and localized pH fluctuations. For example, acidification may occur when synaptic vesicles, which have a pH of ∼5.2–5.7 (13), release their contents into the synapse. Studies of mammalian cone photoreceptors showed that synaptic vesicle exocytosis rapidly reduced synaptic cleft pH by an estimated 0.2–0.6 units (46). Transient synaptic cleft acidification also occurred with GABAergic transmission (7). Some, but not all, studies also reported that high-frequency stimulation (HFS) transiently acidified hippocampal brain slices, likely as a result of the release of synaptic vesicle contents (8, 9). Neurotransmission also induces a slower, more prolonged alkalinization (10, 11). In addition to release of synaptic vesicle protons, neuronal and glial H+ and HCO3 transporters, channels, H+-ATPases, and metabolism might influence extracellular pH (1012).ASICs are potential targets of reduced extracellular pH. ASICs are Na+-permeable and, to a lesser extent, Ca2+-permeable channels that are activated by extracellular acidosis (1319). In the brain, ASICs consist of homotrimeric and heterotrimeric complexes of ASIC1a, ASIC2a, and ASIC2b. The ASIC1a subunit is required for acid-activation in the physiological range (>pH 5.0) (20, 21). Several observations indicate that ASIC are located postsynaptically. ASICs are located on dendritic spines. Although similar to glutamate receptors, they are also present on dendrites and cell bodies (20, 2224). ASIC subunits interact with postsynaptic scaffolding proteins, including postsynaptic density protein 95 and protein interacting with C-kinase-1 (20, 2429). In addition, ASICs are enriched in synaptosome-containing brain fractions (20, 24, 30).Although these observations raised the possibility that protons might be a neurotransmitter, postsynaptic ASIC currents have not been detected in cultured hippocampal neurons (31, 32), and whether localized pH transients might play a signaling role in neuronal communication remains unclear. In previous studies of hippocampal brain slices, extracellular field potential recordings suggested impaired hippocampal long-term potentiation (LTP) in ASIC1a−/− mice (20), although another study did not detect an effect of ASIC1a (33). Another study using microisland cultures of hippocampal neurons suggested that the probability of neurotransmitter release increased in ASIC1a−/− mice (32).Here, we tested the hypothesis that protons are a neurotransmitter and that ASICs are the receptor. Criteria to identify substances as neurotransmitters have been proposed (34). Beg and colleagues (35) used these criteria to conclude that protons are a transmitter released from Caenorhabditis elegans intestine to cause muscle contraction. Key questions about whether protons meet criteria for a neurotransmitter are: Does presynaptic stimulation increase the extracellular proton concentration? Do protons activate currents in postsynaptic cells? Can exogenously applied protons reproduce effects of endogenous protons? What is the postsynaptic proton receptor? We studied lateral amygdala brain slices because amygdala-dependent fear-related behavior depends on a pH reduction (36). In addition, ASICs are abundantly expressed there, and ASIC1a−/− mice have impaired fear-like behavior (3638).  相似文献   

13.
We report on crystal structures of ternary Thermus thermophilus Argonaute (TtAgo) complexes with 5′-phosphorylated guide DNA and a series of DNA targets. These ternary complex structures of cleavage-incompatible, cleavage-compatible, and postcleavage states solved at improved resolution up to 2.2 Å have provided molecular insights into the orchestrated positioning of catalytic residues, a pair of Mg2+ cations, and the putative water nucleophile positioned for in-line attack on the cleavable phosphate for TtAgo-mediated target cleavage by a RNase H-type mechanism. In addition, these ternary complex structures have provided insights into protein and DNA conformational changes that facilitate transition between cleavage-incompatible and cleavage-compatible states, including the role of a Glu finger in generating a cleavage-competent catalytic Asp-Glu-Asp-Asp tetrad. Following cleavage, the seed segment forms a stable duplex with the complementary segment of the target strand.Argonaute (Ago) proteins, critical components of the RNA-induced silencing complex, play a key role in guide strand-mediated target RNA recognition, cleavage, and product release (reviewed in refs. 13). Ago proteins adopt a bilobal scaffold composed of an amino terminal PAZ-containing lobe (N and PAZ domains), a carboxyl-terminal PIWI-containing lobe (Mid and PIWI domains), and connecting linkers L1 and L2. Ago proteins bind guide strands whose 5′-phosphorylated and 3′-hydroxyl ends are anchored within Mid and PAZ pockets, respectively (47), with the anchored guide strand then serving as a template for pairing with the target strand (8, 9). The cleavage activity of Ago resides in the RNase H fold adopted by the PIWI domain (10, 11), whereby the enzyme’s Asp-Asp-Asp/His catalytic triad (1215) initially processes loaded double-stranded siRNAs by cleaving the passenger strand and subsequently processes guide-target RNA duplexes by cleaving the target strand (reviewed in refs. 1618). Such Mg2+ cation-mediated endonucleolytic cleavage of the target RNA strand (19, 20) resulting in 3′-OH and 5′-phosphate ends (21) requires Watson–Crick pairing of the guide and target strands spanning the seed segment (positions 2–2′ to 8–8′) and the cleavage site (10′–11′ step on the target strand) (9). Insights into target RNA recognition and cleavage have emerged from structural (9), chemical (22), and biophysical (23) experiments.Notably, bacterial and archaeal Ago proteins have recently been shown to preferentially bind 5′-phosphoryated guide DNA (14, 15) and use an activated water molecule as the nucleophile (reviewed in ref. 24) to cleave both RNA and DNA target strands (9). Structural studies have been undertaken on bacterial and archaeal Ago proteins in the free state (10, 15) and bound to a 5′-phosphorylated guide DNA strand (4) and added target RNA strand (8, 9). The structural studies of Thermus thermophilus Ago (TtAgo) ternary complexes have provided insights into the nucleation, propagation, and cleavage steps of target RNA silencing in a bacterial system (9). These studies have highlighted the conformational transitions on proceeding from Ago in the free state to the binary complex (4) to the ternary complexes (8, 9) and have emphasized the requirement for a precisely aligned Asp-Asp-Asp triad and a pair of Mg2+ cations for cleavage chemistry (9), typical of RNase H fold-mediated enzymes (24, 25). Structural studies have also been extended to binary complexes of both human (5, 6) and yeast (7) Agos bound to 5′-phosphorylated guide RNA strands.Despite these singular advances in the structural biology of RNA silencing, further progress was hampered by the modest resolution (2.8- to 3.0-Å resolution) of TtAgo ternary complexes with guide DNA (4) and added target RNAs (8, 9). This precluded identification of water molecules coordinated with the pair of Mg2+ cations, including the key water that acts as a nucleophile and targets the cleavable phosphate between positions 10′-11′ on the target strand. We have now extended our research to TtAgo ternary complexes with guide DNA and target DNA strands, which has permitted us to grow crystals of ternary complexes that diffract to higher (2.2–2.3 Å) resolution in the cleavage-incompatible, cleavage-compatible, and postcleavage steps. These high-resolution structures of TtAgo ternary complexes provide snapshots of distinct key steps in the catalytic cleavage pathway, opening opportunities for experimental probing into DNA target cleavage as a defense mechanism against plasmids and possibly other mobile elements (26, 27).  相似文献   

14.
cAMP is an evolutionary conserved, prototypic second messenger regulating numerous cellular functions. In mammals, cAMP is synthesized by one of 10 homologous adenylyl cyclases (ACs): nine transmembrane enzymes and one soluble AC (sAC). Among these, only sAC is directly activated by bicarbonate (HCO3); it thereby serves as a cellular sensor for HCO3, carbon dioxide (CO2), and pH in physiological functions, such as sperm activation, aqueous humor formation, and metabolic regulation. Here, we describe crystal structures of human sAC catalytic domains in the apo state and in complex with substrate analog, products, and regulators. The activator HCO3 binds adjacent to Arg176, which acts as a switch that enables formation of the catalytic cation sites. An anionic inhibitor, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid, inhibits sAC through binding to the active site entrance, which blocks HCO3 activation through steric hindrance and trapping of the Arg176 side chain. Finally, product complexes reveal small, local rearrangements that facilitate catalysis. Our results provide a molecular mechanism for sAC catalysis and cellular HCO3 sensing and a basis for targeting this system with drugs.The ubiquitous second messenger cAMP regulates diverse physiological processes, from fungal virulence to mammalian brain function (1, 2). In mammals, cAMP can be generated by any of 10 differently expressed and regulated adenylyl cyclases (ACs): nine transmembrane enzymes (tmACs) and one soluble AC (sAC) (3). TmACs reside in the cell membrane, where they mediate cellular responses to hormones acting through G protein-coupled receptors (4). In contrast, sAC functions in various intracellular locations, providing cell-specific spatial and temporal patterns of cAMP (57) in response to intracellular signals, including calcium, ATP, and bicarbonate (HCO3) (3, 810). HCO3 regulation of sAC enzymes is a direct effect on their catalytic domains and is conserved across bacterial, fungal, and animal kingdoms (1, 1113). Via modulation of sAC, and sAC-like cyclase activities, HCO3 serves as an evolutionarily conserved signaling molecule mediating cellular responses to HCO3, CO2, and pH (3, 14). In mammals, sAC acts as a CO2/HCO3/pH sensor in processes such as sperm activation (15), acid-base homeostasis (16), and various metabolic responses (10, 17, 18). sAC has also been implicated in skin and prostate cancer and as a target for male contraceptives (1921).All mammalian ACs are class III nucleotidyl cyclases sharing homologous catalytic domains. Their catalytic cores are formed through symmetrical or pseudosymmetrical association of two identical or highly similar catalytic domains, C1 and C2 (2224); in mammalian ACs, both domains reside on a single polypeptide chain. Such C1C2 pseudoheterodimers form two pseudosymmetrical sites at the dimer interface: the active site and a degenerated, inactive pocket (3, 23). A conserved Lys and an Asp/Thr in the active site recognize the base of the substrate ATP, and two conserved Asp residues bind two divalent cations, normally Mg2+ (23). The ions, called ion A and ion B, coordinate the substrate phosphates and support the intramolecular 3′-hydroxyl (3′-OH) attack at the α-phosphorous to form cAMP and pyrophosphate (PPi) (3). In tmACs, the degenerate site binds forskolin (24), a plant diterpene that activates tmACs but has no effect on sAC (25). The forskolin activation mechanism and the existence of physiological ligands for this site in tmACs or in sAC remain unclear.There are two sAC isoforms known to be generated by alternative splicing (26). Full-length sAC comprises N-terminal catalytic domains along with ∼1,100 residues with a little understood function except for an autoinhibitory motif and a heme-binding domain (3, 27, 28). Exclusion of exon 12 (26) generates a truncated isoform, sACt (residues 1–490), which comprises just the two sAC catalytic domains (sAC-cat) (25). sACt is widely expressed, and it is the isoform most extensively biochemically characterized (3, 8, 11). It is directly activated by Ca2+ and HCO3; Ca2+ supports substrate binding, and HCO3 increases turnover and relieves substrate inhibition (8), and this regulation is conserved in sAC-like enzymes from Cyanobacteria to humans (3, 13, 29). In a homodimeric, HCO3-regulated sAC homolog from Spirulina platensis, adenylyl cyclase C (CyaC), HCO3 appeared to facilitate an active site closure required for catalysis (13), but the HCO3 binding site and its mechanism of activation remained unknown.Here, we present crystal structures of the human sAC-cat in apo form and in complex with substrate, products, bicarbonate, and a pharmacological inhibitor. The structures reveal insights into binding sites and mechanisms for sAC catalysis and for its regulation by physiological and pharmacological small molecules.  相似文献   

15.
16.
17.
Physiologically, α-synuclein chaperones soluble NSF attachment protein receptor (SNARE) complex assembly and may also perform other functions; pathologically, in contrast, α-synuclein misfolds into neurotoxic aggregates that mediate neurodegeneration and propagate between neurons. In neurons, α-synuclein exists in an equilibrium between cytosolic and membrane-bound states. Cytosolic α-synuclein appears to be natively unfolded, whereas membrane-bound α-synuclein adopts an α-helical conformation. Although the majority of studies showed that cytosolic α-synuclein is monomeric, it is unknown whether membrane-bound α-synuclein is also monomeric, and whether chaperoning of SNARE complex assembly by α-synuclein involves its cytosolic or membrane-bound state. Here, we show using chemical cross-linking and fluorescence resonance energy transfer (FRET) that α-synuclein multimerizes into large homomeric complexes upon membrane binding. The FRET experiments indicated that the multimers of membrane-bound α-synuclein exhibit defined intermolecular contacts, suggesting an ordered array. Moreover, we demonstrate that α-synuclein promotes SNARE complex assembly at the presynaptic plasma membrane in its multimeric membrane-bound state, but not in its monomeric cytosolic state. Our data delineate a folding pathway for α-synuclein that ranges from a monomeric, natively unfolded form in cytosol to a physiologically functional, multimeric form upon membrane binding, and show that only the latter but not the former acts as a SNARE complex chaperone at the presynaptic terminal, and may protect against neurodegeneration.α-Synuclein is an abundant presynaptic protein that physiologically acts to promote soluble NSF attachment protein receptor (SNARE) complex assembly in vitro and in vivo (13). Point mutations in α-synuclein (A30P, E46K, H50Q, G51D, and A53T) as well as α-synuclein gene duplications and triplications produce early-onset Parkinson''s disease (PD) (410). Moreover, α-synuclein is a major component of intracellular protein aggregates called Lewy bodies, which are pathological hallmarks of neurodegenerative disorders such as PD, Lewy body dementia, and multiple system atrophy (1114). Strikingly, neurotoxic α-synuclein aggregates propagate between neurons during neurodegeneration, suggesting that such α-synuclein aggregates are not only intrinsically neurotoxic but also nucleate additional fibrillization (1518).α-Synuclein is highly concentrated in presynaptic terminals where α-synuclein exists in an equilibrium between a soluble and a membrane-bound state, and is associated with synaptic vesicles (1922). The labile association of α-synuclein with membranes (23, 24) suggests that binding of α-synuclein to synaptic vesicles, and its dissociation from these vesicles, may regulate its physiological function. Membrane-bound α-synuclein assumes an α-helical conformation (2532), whereas cytosolic α-synuclein is natively unfolded and monomeric (refs. 25, 26, 31, and 32; however, see refs. 33 and 34 and Discussion for a divergent view). Membrane binding by α-synuclein is likely physiologically important because in in vitro experiments, α-synuclein remodels membranes (35, 36), influences lipid packing (37, 38), and induces vesicle clustering (39). Moreover, membranes were found to be important for the neuropathological effects of α-synuclein (4044).However, the relation of membrane binding to the in vivo function of α-synuclein remains unexplored, and it is unknown whether α-synuclein binds to membranes as a monomer or oligomer. Thus, in the present study we have investigated the nature of the membrane-bound state of α-synuclein and its relation to its physiological function in SNARE complex assembly. We found that soluble monomeric α-synuclein assembles into higher-order multimers upon membrane binding and that membrane binding of α-synuclein is required for its physiological activity in promoting SNARE complex assembly at the synapse.  相似文献   

18.
DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank–slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach.The ability to control, manipulate, and organize matter at the nanoscale has demonstrated immense potential for advancements in industrial technology, medicine, and materials (13). Bottom-up self-assembly has become a particularly promising area for nanofabrication (4, 5); however, to date designing complex motion at the nanoscale remains a challenge (69). Amino acid polymers exhibit well-defined and complex dynamics in natural systems and have been assembled into designed structures including nanotubes, sheets, and networks (1012), although the complexity of interactions that govern amino acid folding make designing complex geometries extremely challenging. DNA nanotechnology, on the other hand, has exploited well-understood assembly properties of DNA to create a variety of increasingly complex designed nanostructures (1315).Scaffolded DNA origami, the process of folding a long single-stranded DNA (ssDNA) strand into a custom structure (1618), has enabled the fabrication of nanoscale objects with unprecedented geometric complexity that have recently been implemented in applications such as containers for drug delivery (19, 20), nanopores for single-molecule sensing (2123), and templates for nanoparticles (24, 25) or proteins (2628). The majority of these and other applications of DNA origami have largely focused on static structures. Natural biomolecular machines, in contrast, have a rich diversity of functionalities that rely on complex but well-defined and reversible conformational changes. Currently, the scope of biomolecular nanotechnology is limited by an inability to achieve similar motion in designed nanosystems.DNA nanotechnology has enabled critical steps toward that goal starting with the work of Mao et al. (29), who developed a DNA nanostructure that took advantage of the B–Z transition of DNA to switch states. Since then, efforts to fabricate dynamic DNA systems have primarily focused on strand displacement approaches (30) mainly on systems comprising a few strands or arrays of strands undergoing ∼nm-scale motions (3137) in some cases guided by DNA origami templates (3840). More recently, strand displacement has been used to reconfigure DNA origami nanostructures, for example opening DNA containers (19, 41, 42), controlling molecular binding (43, 44), or reconfiguring structures (45). The largest triggerable structural change was achieved by Han et al. in a DNA origami Möbius strip (one-sided ribbon structure) that could be opened to approximately double in size (45). Constrained motion has been achieved in systems with rotational motion (19, 20, 32, 41, 44, 46, 47) in some cases to open lid-like components (19, 20, 41) or detect molecular binding (44, 48, 49). A few of these systems achieved reversible conformational changes (32, 41, 44, 46), although the motion path and flexibility were not studied. Constrained linear motion has remained largely unexplored. Linear displacements on the scale of a few nanometers have been demonstrated via conformational changes of DNA structure motifs (5055), strand invasion to open DNA hairpins (36, 55, 56), or the reversible sliding motion of a DNA tile actuator (56); these cases also did not investigate the motion path or flexibility of motion.Building on these prior studies, this work implements concepts from macroscopic machine design to build modular parts with constrained motion. We demonstrate an ability to tune the flexibility and range of motion and then integrate these parts into prototype mechanisms with designed 2D and 3D motion. We further demonstrate reversible actuation of a mechanism with complex conformational changes on minute timescales.  相似文献   

19.
Tumor heterogeneity confounds cancer diagnosis and the outcome of therapy, necessitating analysis of tumor cell subsets within the tumor mass. Elevated expression of hyaluronan (HA) and HA receptors, receptor for HA-mediated motility (RHAMM)/HA-mediated motility receptor and cluster designation 44 (CD44), in breast tumors correlates with poor outcome. We hypothesized that a probe for detecting HA–HA receptor interactions may reveal breast cancer (BCa) cell heterogeneity relevant to tumor progression. A fluorescent HA (F-HA) probe containing a mixture of polymer sizes typical of tumor microenvironments (10–480 kDa), multiplexed profiling, and flow cytometry were used to monitor HA binding to BCa cell lines of different molecular subtypes. Formulae were developed to quantify binding heterogeneity and to measure invasion in vivo. Two subsets exhibiting differential binding (HA−/low vs. HAhigh) were isolated and characterized for morphology, growth, and invasion in culture and as xenografts in vivo. F-HA–binding amounts and degree of heterogeneity varied with BCa subtype, were highest in the malignant basal-like cell lines, and decreased upon reversion to a nonmalignant phenotype. Binding amounts correlated with CD44 and RHAMM displayed but binding heterogeneity appeared to arise from a differential ability of HA receptor-positive subpopulations to interact with F-HA. HAhigh subpopulations exhibited significantly higher local invasion and lung micrometastases but, unexpectedly, lower proliferation than either unsorted parental cells or the HA−/low subpopulation. Querying F-HA binding to aggressive tumor cells reveals a previously undetected form of heterogeneity that predicts invasive/metastatic behavior and that may aid both early identification of cancer patients susceptible to metastasis, and detection/therapy of invasive BCa subpopulations.Breast tumors display substantial heterogeneity driven by genetic and epigenetic mechanisms (13). These processes select and support tumor cell subpopulations with distinct phenotypes in proliferation, metastatic/invasive proclivity, and treatment susceptibility that contribute to clinical outcomes. Currently, there is a paucity of biomarkers to identify these subpopulations (312). Although detection of genetic heterogeneity may itself be a breast cancer (BCa) prognostic marker (3, 1315), the phenotypes manifested from this diversity are context-dependent. Therefore, phenotypic markers provide additional powerful tools for biological information required to design diagnostics and therapeutics. Glycomic approaches have enormous potential for revealing tumor cell phenotypic heterogeneity because glycans are themselves highly heterogeneous and their complexity reflects the nutritional, microenvironmental, and genetic dynamics of the tumors (1618).We used hyaluronan (HA) as a model carbohydrate ligand for probing heterogeneity in glycosaminoglycan–BCa cell receptor interactions. We reasoned this approach would reveal previously undetected cellular and functional heterogeneity linked to malignant progression because the diversity of cell glycosylation patterns, which can occur as covalent and noncovalent modifications of proteins and lipids as well as different sizes of such polysaccharides as HA, is unrivaled (16, 17, 19). In particular, tumor and wound microenvironments contain different sizes of HA polymers that bind differentially to cell receptors to activate signaling pathways regulating cell migration, invasion, survival, and proliferation (1922).More than other related glycosaminoglycans, HA accumulation within BCa tumor cells and peritumor stroma is a predictor of poor outcome (23) and of the conversion of the preinvasive form of BCa, ductal carcinoma in situ, to an early invasive form of BCa (24). HA is a nonantigenic and large, relatively simple, unbranched polymer, but the manner in which it is metabolized is highly complex (19, 25). There are literally thousands of different HA sizes in remodeling microenvironments, including tumors. HA polymers bind to cells via at least six known receptors (16, 19, 20, 2632). Two of these, cluster designation 44 (CD44) and receptor for HA-mediated motility/HA-mediated motility receptor (RHAMM/HMMR), form multivalent complexes with different ranges of HA sizes (19, 29, 33), and both receptors are implicated in BCa progression (1921, 23, 29, 30, 3336). Elevated CD44 expression in the peritumor stroma is associated with increased relapse (37), and in primary BCa cell subsets may contribute to tumor initiation and progression (3840). Elevated RHAMM expression in BCa tumor subsets is a prognostic indicator of poor outcome and increased metastasis (22, 33, 41). RHAMM polymorphisms may also be a factor in BCa susceptibility (42, 43).We postulated that multivalent interactions resulting from mixture of a polydisperse population of fluorescent HA (F-HA) sizes, typical of those found in remodeling microenvironments of wounds and tumors (19, 20, 29), with cellular HA receptors would uncover a heterogeneous binding pattern useful for sorting tumor cells into distinct subsets. We interrogated the binding of F-HA to BCa lines of different molecular subtypes, and related binding/uptake patterns to CD44 and RHAMM display, and to tumor cell growth, invasion, and metastasis.  相似文献   

20.
The ability to intercalate guest species into the van der Waals gap of 2D layered materials affords the opportunity to engineer the electronic structures for a variety of applications. Here we demonstrate the continuous tuning of layer vertically aligned MoS2 nanofilms through electrochemical intercalation of Li+ ions. By scanning the Li intercalation potential from high to low, we have gained control of multiple important material properties in a continuous manner, including tuning the oxidation state of Mo, the transition of semiconducting 2H to metallic 1T phase, and expanding the van der Waals gap until exfoliation. Using such nanofilms after different degree of Li intercalation, we show the significant improvement of the hydrogen evolution reaction activity. A strong correlation between such tunable material properties and hydrogen evolution reaction activity is established. This work provides an intriguing and effective approach on tuning electronic structures for optimizing the catalytic activity.Layer-structured 2D materials are an interesting family of materials with strong covalent bonding within molecular layers and weak van der Waals interaction between layers. Beyond intensively studied graphene-related materials (14), there has been recent strong interest in other layered materials whose vertical thickness can be thinned down to less than few nanometers and horizontal width can also be reduced to nanoscale (59). The strong interest is driven by their interesting physical and chemical properties (2, 10) and their potential applications in transistors, batteries, topological insulators, thermoelectrics, artificial photosynthesis, and catalysis (4, 1125).One of the unique properties of 2D layered materials is their ability to intercalate guest species into their van der Waals gaps, opening up the opportunities to tune the properties of materials. For example, the spacing between the 2D layers could be increased by intercalation such as lithium (Li) intercalated graphite or molybdenum disulfide (MoS2) and copper intercalated bismuth selenide (2629). The electronic structures of the host lattice, such as the charge density, anisotropic transport, oxidation state, and phase transition, may also be changed by different species intercalation (26, 27).As one of the most interesting layered materials, MoS2 has been extensively studied in a variety of areas such as electrocatalysis (2022, 3036). It is known that there is a strong correlation between the electronic structure and catalytic activity of the catalysts (20, 3741). It is intriguing to continuously tune the morphology and electronic structure of MoS2 and explore the effects on MoS2 hydrogen evolution reaction (HER) activity. Very recent studies demonstrated that the monolayered MoS2 and WS2 nanosheets with 1T metallic phase synthesized by chemical exfoliation exhibited superior HER catalytic activity to those with 2H semiconducting phase (35, 42), with a possible explanation that the strained 1T phase facilitates the hydrogen binding process during HER (42). However, it only offers two end states of materials and does not offer a continuous tuning. A systematic investigation to correlate the gradually tuned electronic structure, including oxidation state shift and semiconducting–metallic phase transition, and the corresponding HER activity is important but unexplored. We believe that the Li electrochemical intercalation method offers a unique way to tune the catalysts for optimization.In this paper, we demonstrate that the layer spacing, oxidation state, and the ratio of 2H semiconducting to 1T metallic phase of MoS2 HER catalysts were continuously tuned by Li intercalation to different voltages vs. Li+/Li in nanofilms with molecular layers perpendicular to the substrates. Correspondingly, the catalytic activity for HER was observed to be continuously tuned. The lower oxidation state of Mo and 1T metallic phase of MoS2 turn out to have better HER catalytic activities. The performance of MoS2 catalyst on both flat and 3D electrodes was dramatically improved when it was discharged to low potentials vs. Li+/Li.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号