首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The macrolide and levofloxacin susceptibilities of 992 isolates of Streptococcus pneumoniae from clinical specimens collected in 1999 and 2000 were determined in 10 centers in Central and Eastern European countries. The prevalences of penicillin G-intermediate (MICs, 0.125 to 1 microg/ml) and penicillin-resistant (MICs, < or =2 microg/ml) Streptococcus pneumoniae isolates were 14.3 and 16.6%, respectively. The MICs at which 50% of isolates are inhibited (MIC(50)s) and the MIC(90)s of telithromycin were 0.016 and 0.06 microg/ml, respectively; those of erythromycin were 0.06 and >64 microg/ml, respectively; those of azithromycin were 0.125 and >64 microg/ml, respectively; those of clarithromycin were 0.03 and >64 microg/ml, respectively; and those of clindamycin were 0.06 and >64 microg/ml, respectively. Erythromycin resistance was found in 180 S. pneumoniae isolates (18.1%); the highest prevalence of erythromycin-resistant S. pneumoniae was observed in Hungary (35.5%). Among erythromycin-resistant S. pneumoniae isolates, strains harboring erm(B) genes (125 strains [69.4%]) were found to be predominant over strains with mef(E) genes (25 strains [13.4%]), L4 protein mutations (28 strains [15.6%]), and erm(A) genes (2 strains [1.1%]). Similar pulsed-field gel electrophoresis patterns suggested that some strains containing L4 mutations from the Slovak Republic, Bulgaria, and Latvia were clonally related. Of nine strains highly resistant to levofloxacin (MICs, >8 microg/ml) six were isolated from Zagreb, Croatia. Telithromycin at < or =0.5 microg/ml was active against 99.8% of S. pneumoniae isolates tested and may be useful for the treatment of respiratory tract infections caused by macrolide-resistant S. pneumoniae isolates.  相似文献   

3.
The macrolide resistance determinants and genetic elements carrying the mef(A) and mef(E) subclasses of the mef gene were studied with Streptococcus agalactiae isolated in 2003 and 2004 from 7,084 vaginorectal cultures performed to detect carrier pregnant women. The prevalence of carriage was 18% (1,276 isolates), and that of erythromycin resistance 11.0% (129 of the 1,171 isolates studied). erm(B), erm(A) subclass erm(TR), and the mef gene, either subclass mef(A) or mef(E), were found in 72 (55.8%), 41 (31.8%), and 12 (9.3%) erythromycin-resistant isolates, while 4 isolates had more than 1 erythromycin resistance gene. Of the 13 M-phenotype mef-containing erythromycin-resistant S. agalactiae isolates, 11 had the mef(E) subclass gene alone, one had both the mef(E) and the erm(TR) subclass genes, and one had the mef(A) subclass gene. mef(E) subclass genes were associated with the carrying element mega in 10 of the 12 mef(E)-containing strains, while the single mef(A) subclass gene found was associated with the genetic element Tn1207.3. The nonconjugative nature of the mega element and the clonal diversity of mef(E)-containing strains determined by pulsed-field gel electrophoresis suggest that transformation is the main mechanism through which this resistance gene is acquired.  相似文献   

4.
The genetic basis of macrolide resistance was characterized in 59 Streptococcus pneumoniae isolates. All isolates were collected in 1995 and 1997 and were from invasive infections. The majority of the isolates (54 of 59 isolates) were erythromycin and clindamycin resistant (MLS(B)-phenotype) and carried the ermAM gene. Five isolates were erythromycin resistant but clindamycin susceptible (M-phenotype). Using PCR the mefE gene was detected in these five isolates. Contrary to the situation found in Canada and the USA, mefE-mediated erythromycin resistance in S. pneumoniae is uncommon in Belgium.  相似文献   

5.
The susceptibilities to telithromycin of 203 Streptococcus pneumoniae isolates prospectively collected during 1999 and 2000 from 14 different geographical areas in Spain were tested and compared with those to erythromycin A, clindamycin, quinupristin-dalfopristin, penicillin G, cefotaxime, and levofloxacin. Telithromycin was active against 98.9% of isolates (MICs, < or =0.5 microg/ml), with MICs at which 90% of isolates are inhibited being 0.06 microg/ml, irrespective of the resistance genotype. The corresponding values for erythromycin were 61.0% (MICs, < or =0.25 microg/ml) and >64 microg/ml. The erm(B) gene (macrolide-lincosamide-streptogramin B resistance phenotype) was detected in 36.4% (n = 74) of the isolates, which corresponded to 93.6% of erythromycin-intermediate and -resistant isolates, whereas the mef(A) gene (M phenotype [resistance to erythromycin and susceptibility to clindamycin and spiramycin without blunting]) was present in only 2.4% (n = 5) of the isolates. One of the latter isolates also carried erm(B). Interestingly, in one isolate for which the erythromycin MIC was 2 microg/ml, none of these resistance genes could be detected. Erythromycin MICs for S. pneumoniae erm(B)-positive isolates were higher (range, 0.5 to >64 microg/ml) than those for erm(B)- and mef(A)-negative isolates (range, 0.008 to 2 microg/ml). The corresponding values for telithromycin were lower for both groups, with ranges of 0.004 to 1 and 0.002 to 0.06 microg/ml, respectively. The erythromycin MIC was high for a large number of erm(B)-positive isolates, but the telithromycin MIC was low for these isolates. These results indicate the potential usefulness of telithromycin for the treatment of infections caused by erythromycin-susceptible and -resistant S. pneumoniae isolates when macrolides are indicated.  相似文献   

6.
Erythromycin-resistant Streptococcus pneumoniae isolates from young carriers were tested for their antimicrobial susceptibility; additionally, inducibility of macrolide and clindamycin resistance was investigated in pneumococci carrying erm(A), erm(B), or mef(A). Of 125 strains tested, 101 (81%) were multidrug resistant. Different levels of induction were observed with erythromycin, miocamycin, and clindamycin in erm(B) strains; however, in erm(A) strains only erythromycin was an inducer. Induction did not affect macrolide MICs in mef(A) strains.  相似文献   

7.
In a nationwide study in Germany covering 13 clinical microbiology laboratories, a total of 307 Streptococcus pyogenes (mainly pharyngitis) and 333 Streptococcus pneumoniae (respiratory tract infections) strains were collected from outpatients less than 16 years of age. The MICs of penicillin G, amoxicillin, cefotaxime, erythromycin A, clindamycin, levofloxacin, and telithromycin were determined by the microdilution method. In S. pyogenes isolates, resistance rates were as follows: penicillin, 0%; erythromycin A, 13.7%; and levofloxacin, 0%. Telithromycin showed good activity against S. pyogenes isolates (MIC(90) = 0.25 micro g/ml; MIC range, 0.016 to 16 micro g/ml). Three strains were found to be telithromycin-resistant (MIC >/= 4 micro g/ml). Erythromycin-resistant strains were characterized for the underlying resistance genotype, with 40.5% having the efflux type mef(A), 38.1% having the erm(A), and 9.5% having the erm(B) genotypes. emm typing of macrolide-resistant S. pyogenes isolates showed emm types 4 (45.2%), 77 (26.2%), and 12 (11.9%) to be predominant. In S. pneumoniae, resistance rates were as follows: penicillin intermediate, 7.5%; penicillin resistant, 0%; erythromycin A, 17.4%; and levofloxacin, 0%. Telithromycin was highly active against pneumococcal isolates (MIC(90) 相似文献   

8.
The MICs of GW 773546, GW 708408, and telithromycin for 164 macrolide-susceptible and 161 macrolide-resistant pneumococci were low. The MICs of GW 773546, GW 708408, and telithromycin for macrolide-resistant strains were similar, irrespective of the resistance genotypes of the strains. Clindamycin was active against all macrolide-resistant strains except those with erm(B) and one strain with a 23S rRNA mutation. GW 773546, GW 708408, and telithromycin at two times their MICs were bactericidal after 24 h for 7 to 8 of 12 strains. Serial passages of 12 strains in the presence of sub-MICs yielded 54 mutants, 29 of which had changes in the L4 or L22 protein or the 23S rRNA sequence. Among the macrolide-susceptible strains, resistant mutants developed most rapidly after passage in the presence of clindamycin, GW 773546, erythromycin, azithromycin, and clarithromycin and slowest after passage in the presence of GW 708408 and telithromycin. Selection of strains for which MICs were >/=0.5 microg/ml from susceptible parents occurred only with erythromycin, azithromycin, clarithromycin, and clindamycin; 36 resistant clones from susceptible parent strains had changes in the sequences of the L4 or L22 protein or 23S rRNA. No mef(E) strains yielded resistant clones after passage in the presence of erythromycin and azithromycin. Selection with GW 773546, GW 708408, telithromycin, and clindamycin in two mef(E) strains did not raise the erythromycin, azithromycin, and clarithromycin MICs more than twofold. There were no change in the ribosomal protein (L4 or L22) or 23S rRNA sequences for 15 of 18 mutants selected for macrolide resistance; 3 mutants had changes in the L22-protein sequence. GW 773546, GW 708408, and telithromycin selected clones for which MICs were 0.03 to >2.0 microg/ml. Single-step studies showed mutation frequencies <5.0 x 10(-10) to 3.5 x 10(-7) for GW 773546, GW 708408, and telithromycin for macrolide-susceptible strains and 1.1 x 10(-7) to >4.3 x 10(-3) for resistant strains. The postantibiotic effects of GW 773546, GW 708408, and telithromycin were 2.4 to 9.8 h.  相似文献   

9.
The prevalence and mechanisms of macrolide resistance among 1,007 clinical pneumococcal isolates collected in Finland were investigated. Of these, 217 (21.5%) were resistant to erythromycin and 11% to clindamycin. Among the erythromycin-resistant isolates, mef(E) was present in 95 isolates (44%), mef(A) was present in 12 isolates (6%), and erm(B) was present in 90 isolates (41%). A double mechanism, mef(E) and erm(B), was detected in five isolates (2%). Ribosomal mutation was detected in 14 (6%) macrolide-resistant isolates in which no other determinant was found. Based on the telithromycin MICs, two groups of isolates were formed: 83.3% of the isolates belonged to a major group for which the telithromycin MIC range was < or =0.008 to 0.063 microg/ml, and 16.7% belonged to a minor group for which the telithromycin MIC range was 0.125 to 8 microg/ml. All except three isolates in the minor population carried a macrolide resistance gene.  相似文献   

10.
BACKGROUND: Resistance to macrolides in Streptococcus pneumoniae arises primarily due to Erm(B) or Mef(A). Erm(B) typically confers high-level resistance to macrolides, lincosamides and streptogramin B (MLS(B) phenotype), whereas Mef(A) confers low-level resistance to macrolides only (M phenotype). The purpose of this study was to investigate the incidence of macrolide resistance mechanisms in Canadian isolates of S. pneumoniae obtained between 1998 and 2004. Furthermore, the genetic relatedness, serotype distribution and antibiotic susceptibility profile among S. pneumoniae isolates with dual erythromycin ribosomal methylase [Erm(B)] and efflux pump [Mef(A)] were analysed. METHODS: A total of 865 macrolide-resistant (erythromycin MIC > or = 1 mg/L) S. pneumoniae isolates were collected from the Canadian Respiratory Organism Susceptibility Study (CROSS) from 1998 to 2004. The presence of erm(B) and mef(A) was determined for each isolate by PCR; mutations in the genes coding for L4 and L22 ribosomal proteins and for 23S rRNA were identified by DNA sequencing. Each isolate containing both erm(B)- and mef(A)-mediated macrolide resistance was genotyped by PFGE and serotyped using the Quellung reaction with antisera. RESULTS: Of the 865 isolates studied, 404 (46.7%) were mef(A)-positive, 371 (42.9%) were erm(B)-positive, 50 (5.8%) were positive for both mef(A) and erm(B) and 40 (4.6%) were negative for both mef(A) and erm(B). Of the macrolide-resistant isolates negative for both mef(A) and erm(B), 22 (2.5%) contained 23S rRNA A2058G, A2059G or A2059C mutations, 7 (0.8%) contained 23S rRNA A2058G or A2059G mutations along with an S20N mutation in L4 ribosomal protein, and 1 isolate contained an E30K ribosomal protein mutation alone. Of the macrolide-resistant strains positive for both mef(A) and erm(B), 36 (72%) were multidrug-resistant (macrolide-, penicillin- and trimethoprim/sulfamethoxazole-resistant), 39 (78%) isolates belonged to serotype 19A or 19F and 36 (72%) belonged to one clonal complex (> or =80% genetic relatedness) genetically related to the Taiwan 19F-14 clone. CONCLUSIONS: The prevalence of efflux-based macrolide resistance in S. pneumoniae in Canada remained steady between 1998 and 2004. Macrolide resistance due to erm(B) decreased over the same time period, with a rapid increase in isolates with both erm(B) and mef(A) macrolide resistance.  相似文献   

11.
The emergence of macrolide- and lincosamide-resistant Streptococcus pneumoniae is a worldwide concern. Of particular interest is the increasing prevalence of erythromycin and clindamycin-resistant isolates containing both erm(B) and mef genes. This study determined the prevalence of erythromycin and clindamycin resistance in 596 clinical S. pneumoniae isolates from 2 adult tertiary care hospitals over a 4-year period (2001-2004). Erythromycin resistance increased from 24% to 34%, but S. pneumoniae isolates resistant to clindamycin as well as to erythromycin increased from 3% in 2001 to 15.5% in 2004 (5-fold increase). Among erythromycin-resistant isolates, those also resistant to clindamycin (MLS(B) phenotype) increased 3-fold (12.8-45%). Of forty-one erythromycin/clindamycin-resistant S. pneumoniae isolates tested, 29 (71%) contained both erm(B) and mef(E) genes. Pulsed-field gel electrophoresis performed on 28 erm(B) + mef(E) positive isolates identified 2 predominant and possibly related clones, which made up 64% of the isolates.  相似文献   

12.
Of the 176 randomly selected, commensal, gram-negative bacteria isolated from healthy children with low exposure to antibiotics, 138 (78%) carried one or more of the seven macrolide resistance genes tested in this study. These isolates included 79 (91%) isolates from the oral cavity and 59 (66%) isolates from urine samples. The mef(A) gene, coding for an efflux protein, was found in 73 isolates (41%) and was the most frequently carried gene. The mef(A) gene could be transferred from the donors into a gram-positive E. faecalis recipient and a gram-negative Escherichia coli recipient. The erm(B) gene transferred and was maintained in the E. coli transconjugants but was found in 0 to 100% of the E. faecalis transconjugants tested, while the other five genes could be transferred only into the E. coli recipient. The individual macrolide resistance genes were identified in 3 to 12 new genera. Eight (10%) of the oral isolates and 30 (34%) of the urine isolates for which the MICs were 2 to >500 microg of erythromycin per ml did not hybridize with any of the seven genes and may carry novel macrolide resistance genes.  相似文献   

13.
One hundred and seven clinical isolates of Streptococcus pyogenes, 80 susceptible to macrolides and 27 resistant to erythromycin A (MIC >0.5 microgram/ml), were examined. The erythromycin A-lincomycin double-disk test assigned 7 resistant strains to the M-phenotype, 8 to the inducible macrolide, lincosamide, and streptogramin B resistance (iMLS(B)) phenotype, and 12 to the constitutive MLS(B) resistance (cMLS(B)) phenotype. MICs of erythromycin A, clarithromycin, azithromycin, roxithromycin, and clindamycin were determined by a broth microdilution method. MICs of telithromycin were determined by three different methods (broth microdilution, agar dilution, and E-test methods) in an ambient air atmosphere and in a 5 to 6% CO(2) atmosphere. Erythromycin A resistance genes were investigated by PCR in the 27 erythromycin A-resistant isolates. MICs of erythromycin A and clindamycin showed six groups of resistant strains, groups A to F. iMLS(B) strains (A, B, and D groups) are characterized by two distinct patterns of resistance correlated with genotypic results. A- and B-group strains were moderately resistant to 14- and 15-membered ring macrolides and highly susceptible to telithromycin. All A- and B-group isolates harbored erm TR gene, D-group strains, highly resistant to macrolides and intermediately resistant to telithromycin (MICs, 1 to 16 microgram/ml), were all characterized by having the ermB gene. All M-phenotype isolates (C group), resistant to 14- and 15-membered ring macrolides and susceptible to clindamycin and telithromycin, harbored the mefA gene. All cMLS(B) strains (E and F groups) with high level of resistance to macrolides, lincosamide, and telithromycin had the ermB gene. The effect of 5 to 6% CO(2) was remarkable on resistant strains, by increasing MICs of telithromycin from 1 to 6 twofold dilutions against D-E- and F-group isolates.  相似文献   

14.
Erythromycin Resistance Genes in Group A Streptococci in Finland   总被引:30,自引:20,他引:10       下载免费PDF全文
Streptococcus pyogenes isolates (group A streptococcus) of different erythromycin resistance phenotypes were collected from all over Finland in 1994 and 1995 and studied; they were evaluated for their susceptibilities to 14 antimicrobial agents (396 isolates) and the presence of different erythromycin resistance genes (45 isolates). The erythromycin-resistant isolates with the macrolide-resistant but lincosamide- and streptogramin B-susceptible phenotype (M phenotype) were further studied for their plasmid contents and the transferability of resistance genes. Resistance to antimicrobial agents other than macrolides, clindamycin, tetracycline, and chloramphenicol was not found. When compared to our previous study performed in 1990, the rate of resistance to tetracycline increased from 10 to 93% among isolates with the inducible resistance (IR) phenotype of macrolide, lincosamide, and streptogramin B (MLSB) resistance. Tetracycline resistance was also found among 75% of the MLSB-resistant isolates with the constitutive resistance (CR) phenotype. Resistance to chloramphenicol was found for the first time in S. pyogenes in Finland; 3% of the isolates with the IR phenotype were resistant. All the chloramphenicol-resistant isolates were also resistant to tetracycline. Detection of erythromycin resistance genes by PCR indicated that, with the exception of one isolate with the CR phenotype, all M-phenotype isolates had the macrolide efflux (mefA) gene and all the MLSB-resistant isolates had the erythromycin resistance methylase (ermTR) gene; the isolate with the CR phenotype contained the ermB gene. No plasmid DNA could be isolated from the M-phenotype isolates, but the mefA gene was transferred by conjugation.  相似文献   

15.
One hundred eighteen erythromycin-resistant Streptococcus pneumoniae (ERSP) strains (MICs of > or = 0.5 microg/ml) from five laboratories serving the private sector in South Africa were analyzed for the genes encoding resistance to macrolides. Sixty-seven ERSP strains (56.8%) contained the erm(B) gene, and 15 isolates (12.7%) contained the mef(A) gene. Thirty-six isolates (30.5%) harbored both the erm(B) and mef(A) genes and were highly resistant to erythromycin and clindamycin. DNA fingerprinting by BOX-PCR and pulsed-field gel electrophoresis identified 83% of these strains as belonging to a single multiresistant serotype 19F clone.  相似文献   

16.
Sixty-three recent Italian clinical isolates of Streptococcus pyogenes resistant to both erythromycin (MICs >or=1 microg/ml) and tetracycline (MICs >or= 8 microg/ml) were genotyped for macrolide and tetracycline resistance genes. We found 19 isolates carrying the mef(A) and the tet(O) genes; 25 isolates carrying the erm(A) and tet(O) genes; and 2 isolates carrying the erm(A), tet(M), and tet(O) genes. The resistance of all erm(A)-containing isolates was inducible, but the isolates could be divided into two groups on the basis of erythromycin MICs of either >128 or 1 to 4 microg/ml. The remaining 17 isolates included 15 isolates carrying the erm(B) gene and 2 isolates carrying both the erm(B) and the mef(A) genes, with all 17 carrying the tet(M) gene. Of these, 12 carried Tn916-Tn1545-like conjugative transposons. Conjugal transfer experiments demonstrated that the tet(O) gene moved with and without the erm(A) gene and with the mef(A) gene. These studies, together with the results of pulsed-field gel electrophoresis experiments and hybridization assays with DNA probes specific for the tet(O), erm(A), and mef(A) genes, suggested a linkage of tet(O) with either erm(A) or mef(A) in erythromycin- and tetracycline-resistant S. pyogenes isolates. By amplification and sequencing experiments, we detected the tet(O) gene ca. 5.5 kb upstream from the mef(A) gene. This is the first report demonstrating the presence of the tet(O) gene in S. pyogenes and showing that it may be linked with another gene and can be moved by conjugation from one chromosome to another.  相似文献   

17.
Tn2009, a Tn916-like element containing mef(E) in Streptococcus pneumoniae   总被引:4,自引:0,他引:4  
The association between the macrolide efflux gene mef(E) and the tet(M) gene was studied in two clinical strains of Streptococcus pneumoniae that belonged to serotypes 19F and 6A, respectively, and that were resistant to both tetracycline and erythromycin. The mef(E)-carrying element mega (macrolide efflux genetic assembly; 5,511 bp) was found to be inserted into a Tn916-like genetic element present in the chromosomes of the two pneumococcal strains. In both strains, mega was integrated at the same site, an open reading frame identical to orf6 of Tn916. The new composite element, Tn2009, was about 23.5 kb and, with the exception of the tet(M)-coding sequence, appeared to be identical in both strains. By sequencing of the junction fragments of Tn2009 at the site of insertion into the chromosome, it was possible to show that (i) the insertion site was identical in the two clinical strains and (ii) the integration of Tn2009 caused a 9.5 kb-deletion in the pneumococcal chromosome. It was not possible to detect the conjugal transfer of Tn2009 to a recipient pneumococcal strain; however, transfer of the whole element by transformation was shown to occur. It is possible to hypothesize that Tn2009 relies on transformation for its spread among clinical strains of S. pneumoniae.  相似文献   

18.
Fifty-six azithromycin-resistant (MICs, 2.0 to 4.0 micro g/ml) Neisseria gonorrhoeae strains with cross-resistance to erythromycin (MICs, 2.0 to 64.0 micro g/ml), isolated in Canada between 1997 and 1999, were characterized, and their mechanisms of azithromycin resistance were determined. Most (58.9%) of them belonged to auxotype-serotype class NR/IB-03, with a 2.6-mDa plasmid. Based on resistance to crystal violet (MICs >or= 1 micro g/ml), 96.4% of these macrolide-resistant strains appeared to have increased efflux. Nine of the eleven strains selected for further characterization were found to have a promoter region mtrR mutation, a single-base-pair (A) deletion in the 13-bp inverted repeat, which is believed to cause overexpression of the mtrCDE-encoded efflux pump. The two remaining macrolide-resistant strains (erythromycin MIC, 64.0 micro g/ml; azithromycin MIC, 4.0 micro g/ml), which did not have the mutation in the mtrR promoter region, were found to have a C2611T mutation (Escherichia coli numbering) in the peptidyltransferase loop in domain V of the 23S rRNA alleles. Although mutations in domain V of 23S rRNA alleles had been reported in other bacteria, including E. coli, Streptococcus pneumoniae, and Helicobacter pylori, this is the first observation of these mutations associated with macrolide resistance in N. gonorrhoeae.  相似文献   

19.
The structure of the macrolide efflux genetic assembly (mega) element, its genomic locations, and its association with other resistance determinants and genetic elements were investigated in 16 Streptococcus pneumoniae isolates carrying mef(E), of which 1 isolate also carried tet(M) and 4 isolates also carried tet(M) and erm(B). All isolates carried a mega element of similar size and structure that included the operon mef(E)-msr(D) encoding the efflux transport system. Among tetracycline-susceptible isolates, six different integration sites were identified, five of which were recognized inside open reading frames present in the R6 genome. In the five isolates also carrying tet(M), mega was inserted in different genetic contexts. In one isolate, it was part of previously described Tn916-like element Tn2009. In another isolate, mega was inserted in a transposon similar to Tn2009 that also included an erm(B) element. This new composite transposon was designated Tn2010. Neither Tn2009 nor Tn2010 could be transferred by conjugation to pneumococcal or enterococcal recipients. In the three isolates in which mega was not physically linked with tet(M), this gene was associated with erm(B) in transposon Tn3872, a Tn916-like element. Homologies between the chromosomal insertions of these composite transposons and sequences of multidrug-resistant pneumococcal genomes in the databases indicate the presence of preferential sites for the integration of composite Tn916-like elements carrying multiple resistance determinants in S. pneumoniae.  相似文献   

20.
The molecular genetics of macrolide resistance were analyzed in 49 clinical pneumococci (including an "atypical" bile-insoluble strain currently assigned to the new species Streptococcus pseudopneumoniae) with efflux-mediated erythromycin resistance (M phenotype). All test strains had the mef gene, identified as mef(A) in 30 isolates and mef(E) in 19 isolates (including the S. pseudopneumoniae strain) on the basis of PCR-restriction fragment length polymorphism analysis. Twenty-eight of the 30 mef(A) isolates shared a pulsed-field gel electrophoresis (PFGE) type corresponding to the England14-9 clone. Of those isolates, 27 (20 belonging to serotype 14) yielded multilocus sequence type ST9, and one isolate yielded a new sequence type. The remaining two mef(A) isolates had different PFGE types and yielded an ST9 type and a new sequence type. Far greater heterogeneity was displayed by the 19 mef(E) isolates, which fell into 11 PFGE types, 12 serotypes (though not serotype 14), and 12 sequence types (including two new ones and an undetermined type for the S. pseudopneumoniae strain). In all mef(A) pneumococci, the mef element was a regular Tn1207.1 transposon, whereas of the mef(E) isolates, 17 carried the mega element and 2 exhibited a previously unreported organization, with no PCR evidence of the other open reading frames of mega. The mef gene of these two isolates, which did not match with the mef(E) gene of the mega element (93.6% homology) and which exhibited comparable homology (91.4%) to the mef(A) gene of the Tn1207.1 transposon, was identified as a novel mef gene variant and was designated mef(I). While penicillin-nonsusceptible isolates (three resistant isolates and one intermediate isolate) were all mef(E) strains, tetracycline resistance was also detected in three mef(A) isolates, due to the tet(M) gene carried by a Tn916-like transposon. A similar mechanism accounted for resistance in four of the five tetracycline-resistant isolates carrying mef(E), in three of which mega was inserted in the Tn916-like transposon, giving rise to the composite element Tn2009. In the fifth mef(E)-positive tetracycline-resistant isolate (the S. pseudopneumoniae strain), tetracycline resistance was due to the presence of the tet(O) gene, apparently unlinked to mef(E).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号