首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We recently described a new autosomal dominant myopathy associated with a missense mutation in the myosin heavy chain (MyHC) IIa gene (MYH2). In this study, we performed mutation analysis of MYH2 in eight Swedish patients with familial myopathy of unknown cause. In two of the eight index cases, we identified novel heterozygous missense mutations in MYH2, one in each case: V970I and L1061V. The mutations were located in subfragment 2 of the MyHC and they changed highly conserved residues. Most family members carrying the mutations had signs and symptoms consisting mainly of mild muscle weakness and myalgia. In addition, we analyzed the extent and distribution of nucleotide variation in MYH2 in 50 blood donors, who served as controls, by the complete sequencing of all 38 exons comprising the coding region. We identified only six polymorphic sites, five of which were synonymous polymorphisms. One variant, which occurred at an allele frequency of 0.01, was identical to the L1061V that was also found in one of the families with myopathy. The results of the analysis of normal variation indicate that there is strong selective pressure against mutations in MYH2. On the basis of these results, we suggest that MyHC genes should be regarded as candidate genes in cases of hereditary myopathies of unknown etiology.  相似文献   

3.
The main histological abnormality in congenital fiber type disproportion (CFTD) is hypotrophy of type 1 (slow twitch) fibers compared to type 2 (fast twitch) fibers. To investigate whether mutations in RYR1 are a cause of CFTD we sequenced RYR1 in seven CFTD families in whom the other known causes of CFTD had been excluded. We identified compound heterozygous changes in the RYR1 gene in four families (five patients), consistent with autosomal recessive inheritance. Three out of five patients had ophthalmoplegia, which may be the most specific clinical indication of mutations in RYR1. Type 1 fibers were at least 50% smaller, on average, than type 2 fibers in all biopsies. Recessive mutations in RYR1are a relatively common causeof CFTD and can be associated with extreme fiber size disproportion. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
The ryanodine receptor 1 (RYR1) is a calcium release channel essential for excitation‐contraction coupling in the sarcoplasmic reticulum of skeletal muscles. Dominant variants in the RYR1 have been well associated with the known pharmacogenetic ryanodinopathy and malignant hyperthermia. With the era of next‐generation gene sequencing and growing number of causative variants, the spectrum of ryanodinopathies has been evolving with dominant and recessive variants presenting with RYR1‐related congenital myopathies such as central core disease, minicore myopathy with external ophthalmoplegia, core‐rod myopathy, and congenital neuromuscular disease. Lately, the spectrum was broadened to include fetal manifestations, causing a rare recessive and lethal form of fetal akinesia deformation sequence syndrome (FADS)/arthrogryposis multiplex congenita (AMC) and lethal multiple pterygium syndrome. Here we broaden the spectrum of clinical manifestations associated with homozygous/compound heterozygous RYR1 gene variants to include a wide range of manifestations from FADS through neonatal hypotonia to a 35‐year‐old male with AMC and PhD degree. We report five unrelated families in which three presented with FADS. One of these families was consanguineous and had three affected fetuses with FADS, one patient with neonatal hypotonia who is alive, and one individual with AMC who is 35 years old with normal intellectual development and uses a wheelchair. Muscle biopsies on these cases demonstrated a variety of histopathological abnormalities, which did not assist with the diagnostic process. Neither the affected living individuals nor the parents who are obligate heterozygotes had history of malignant hyperthermia.  相似文献   

5.
6.
PIK3CA-related overgrowth spectrum is a group of rare genetic disorders with asymmetric overgrowth caused by somatic mosaic PIK3CA mutations. Here, we report clinical data and molecular findings from two patients with congenital muscular upper limb overgrowth and aberrant anatomy. During debulking surgery, numerous ectopic muscles were found in the upper limbs of the patients. DNA sequencing, followed by digital polymerase chain reaction, was performed on DNA extracted from biopsies from hypertrophic ectopic muscles and identified the somatic mosaic PIK3CA hotspot mutations c.3140A > G, p.(His1047Arg) and c.1624G > A, p.(Glu542Lys) in a male (patient 1) and a female (patient 2) patient, respectively. Patient 1 had four ectopic muscles and unilateral isolated muscular overgrowth while patient 2 had 13 ectopic muscles and bilateral isolated muscular overgrowth of both upper limbs, indicating that her mutation occurred at early pre-somitic mesoderm state. The finding of PIK3CA mutations in ectopic muscles highlights the importance of PIK3CA in cell fate in early human embryonic development. Moreover, our findings provide evidence that the disease phenotype depends on the timing of PIK3CA mutagenesis during embryogenesis and confirm the diagnostic entity PIK3CA-related muscular overgrowth with ectopic accessory muscles.  相似文献   

7.
It has been suggested that exertional rhabdomyolysis (ER) and malignant hyperthermia (MH) are related syndromes. We hypothesize that patients with unexplained ER harbor mutations in the ryanodine receptor gene type 1 (RYR1), a primary gene implicated in MH, and therefore ER patients are at increased risk for MH. Although there are reported cases of MH in individuals of African descent, there are no data available on molecular characterization of these patients. We analyzed RYR1 in six, unrelated African American men with unexplained ER, who were subsequently diagnosed as MH susceptible (MHS) by the Caffeine Halothane Contracture Test. Three novel and two variants, previously reported in Caucasian MHS subjects, were found in five studied patients. The novel variants were highly conserved amino acids and were absent among 230 control subjects of various ethnic backgrounds. These results emphasize the importance of performing muscle contracture testing and RYR1 mutation screening in patients with unexplained ER. The MHS‐associated variant Ala1352Gly was identified as a polymorphism predominant in individuals of African descent. Our data underscore the need for investigating RYR1 across different ethnic groups and will contribute to interpretation of genetic screening results of individuals at risk for MH.  相似文献   

8.

Purpose

Acute kidney injury (AKI) caused by hypothyroidism-induced rhabdomyolysis is a rare and potentially life-threatening syndrome. The aim of this study was to investigate the clinical characteristics of such patients.

Materials and Methods

We retrospectively analyzed five patients treated at the Second Affiliated Hospital of Chongqing Medical University with AKI secondary to hypothyroidism-induced rhabdomyolysis from January 2006 to December 2010.

Results

Of the five cases reviewed (4 males, age range of 37 to 62 years), adult primary hypothyroidism was caused by amiodarone (1 case), chronic autoimmune thyroiditis (1 case), and by uncertain etiologies (3 cases). All patients presented with facial and lower extremity edema. Three patients presented with weakness, while two presented with blunted facies and oliguria. Only one patient reported experiencing myalgia and proximal muscle weakness, in addition to fatigue and chills. Creatine kinase, lactate dehydrogenase, and renal function normalized after thyroid hormone replacement, except in two patients who improved through blood purification.

Conclusion

Hypothyroidism should be considered in patients presenting with renal impairment associated with rhabdomyolysis. Moreover, further investigation into the etiology of the hypothyroidism is warranted.  相似文献   

9.
Malignant hyperthermia (MH) in man is an autosomal dominant disorder of skeletal muscle Ca(2+)-regulation. During anesthesia in predisposed individuals, it is triggered by volatile anesthetics and depolarizing muscle relaxants. In >50% of the families, MH susceptibility is linked to the gene encoding the skeletal muscle ryanodine receptor (RYR1), the calcium release channel of the sarcoplasmic reticulum, on chromosome 19q12-13.2. To date, 21 RYR1 mutations have been identified in a number of pedigrees. Four of them are also associated with central core disease (CCD), a congenital myopathy. Screening for these 21 mutations in 105 MH families including 10 CCD families phenotyped by the in vitro contracture test (IVCT) according to the European protocol revealed the following approximate distribution: 9% Arg-614-Cys, 1% Arg-614-Leu, 1% Arg-2163-Cys, 1% Val-2168-Met, 3% Thr-2206-Met and 7% Gly-2434-Arg. In one CCD family, the disease was caused by a recently reported MH mutation, Arg-2454-His. Two novel mutations, Thr-2206-Arg and Arg-2454-Cys were detected, each in a single pedigree. In the 109 individuals of the 25 families with RYR1 mutations cosegregation between genetic result and IVCT was almost perfect, only three genotypes were discordant with the IVCT phenotypes, suggesting a true sensitivity of 98.5% and a specificity of minimally 81.8% for this test. Screening of the transmembraneous region of RYR1 did not yield a new mutation confirming the cytosolic portion of the protein to be of main functional importance for disease pathogenesis.  相似文献   

10.
Aim: The aim of the study was to assess the function of human skeletal muscle myosin across a wide range of temperatures, including physiological. Methods: We used a single fibre in vitro motility assay. The in vitro motility speed of actin filaments propelled by myosin extracted from fibres expressing type I myosin heavy chain (MyHC; n = 9), IIa MyHC (n = 6), IIax MyHC (n = 4) and I/IIa MyHC (n = 1) was measured at 15, 20, 25, 30 and 35 °C. Results: The motility speed between groups of fibres expressing different MyHC differed significantly (P ? 0.001). The increase in motility speed with an increase in temperature was statistically significant (P ? 0.001) between all temperatures. The relative difference in motility speed between the slow type I and the fast IIax MyHC fibres decreased with increasing temperature, i.e. a 7.5‐fold difference at 15 °C was reduced to twofold at 35 °C. Furthermore, the twofold difference in motility speed between type IIa and IIax MyHC at 15 °C disappeared completely at 35 °C. The activation energy, EA, and temperature coefficient, Q10, over the 15–35 °C temperature range was higher for type I MyHC, 54.47 ± 4.37 kJ mol?1 and 2.09 ± 0.12, respectively, than for type IIa MyHC, 45.41 ± 3.12 kJ mol?1 (P < 0.001) and 1.85 ± 0.08 (P < 0.001), or IIax MyHC, 34.71 ± 1.75 kJ mol?1 (P ? 0.001) and 1.60 ± 0.04 (P ? 0.001). Conclusion: The present results suggest a significantly reduced difference in shortening velocity between different human muscle fibre types at physiological temperature than previously reported at lower temperatures (12 or 15 °C) with implications for human in vivo muscle function.  相似文献   

11.
MYH9-related disease (MYH9-RD) is a rare autosomal dominant syndromic disorder caused by mutations in MYH9, the gene encoding for the heavy chain of non-muscle myosin IIA (myosin-9). MYH9-RD is characterized by congenital macrothrombocytopenia and typical inclusion bodies in neutrophils associated with a variable risk of developing sensorineural deafness, presenile cataract, and/or progressive nephropathy. The spectrum of mutations responsible for MYH9-RD is limited. We report five families, each with a novel MYH9 mutation. Two mutations, p.Val34Gly and p.Arg702Ser, affect the motor domain of myosin-9, whereas the other three, p.Met847_Glu853dup, p.Lys1048_Glu1054del, and p.Asp1447Tyr, hit the coiled-coil tail domain of the protein. The motor domain mutations were associated with more severe clinical phenotypes than those in the tail domain.  相似文献   

12.

Background

Usher syndrome, a devastating recessive disorder which combines hearing loss with retinitis pigmentosa, is clinically and genetically heterogeneous. Usher syndrome type 1 (USH1) is the most severe form, characterised by profound congenital hearing loss and vestibular dysfunction.

Objective

To describe an efficient protocol which has identified the mutated gene in more than 90% of a cohort of patients currently living in France.

Results

The five genes currently known to cause USH1 (MYO7A, USH1C, CDH23, PCDH15, and USH1G) were tested for. Disease causing mutations were identified in 31 of the 34 families referred: 17 in MYO7A, 6 in CDH23, 6 in PCDH15, and 2 in USH1C. As mutations in genes other than myosin VIIA form nearly 50% of the total, this shows that a comprehensive approach to sequencing is required. Twenty nine of the 46 identified mutations were novel. In view of the complexity of the genes involved, and to minimise sequencing, a protocol for efficient testing of samples was developed. This includes a preliminary linkage and haplotype analysis to indicate which genes to target. It proved very useful and demonstrated consanguinity in several unsuspected cases. In contrast to CDH23 and PCDH15, where most of the changes are truncating mutations, myosin VIIA has both nonsense and missense mutations. Methods for deciding whether a missense mutation is pathogenic are discussed.

Conclusions

Diagnostic testing for USH1 is feasible with a high rate of detection and can be made more efficient by selecting a candidate gene by preliminary linkage and haplotype analysis.  相似文献   

13.

Background  

Mutations in MYBPC3 encoding myosin binding protein C belong to the most frequent causes of hypertrophic cardiomyopathy (HCM) and may also lead to dilated cardiomyopathy (DCM). MYBPC3 mutations initially were considered to cause a benign form of HCM. The aim of this study was to examine the clinical outcome of patients and their relatives with 18 different MYBPC3 mutations.  相似文献   

14.
 The effects of 4 weeks of thyroid hormone (3,5,3′-triiodothyronine, T3) treatment on the myosin isoform composition and maximum velocity of unloaded shortening (V 0) of single soleus muscle fibres of young (3–6 months) and old (20–24 months) female (149 fibres) and male (200 fibres) rats were studied. Gender-related differences in the up-regulation of fast myosin heavy chain (MyHC) and myosin light chain (MyLC) isoforms were observed. In the female hyperthyroid rats, pure type I fibres and fibres co-expressing type I and type IIA MyHC (type I/IIA fibres) predominated. Some fibres expressed an α cardiac-like MyHC isoform either purely (α cardiac-like fibre type) or in co-expression with IIA MyHC (α cardiac-like/IIA fibre type). In the male hyperthyroid rats, on the other hand, all fibres were either type I/IIA or type I/IIAX. The relative quantities of fast MyLC isoforms in type I/IIA and type I/IIAX fibres was higher in female than in male hyperthyroid rats. V 0 was similar in male and female control rats, and decreased with age in both genders (P<0.001). After T3 treatment, the average V 0 increased (P<0.001) in females with a concomitant up-regulation of fast MyHC and fast MyLC isoforms irrespective of age. The average V 0 of the pooled fibres was higher (P<0.001) in female than in male hyperthyroid rats at both ages. In conclusion, gender- and age-related differences were observed in the regulatory influence of 4 weeks’ T3 treatment on myosin isoform composition and V 0 in soleus fibres. These differences are presumably related to an interaction of thyroid and sex hormones in the regulation of myosin gene expression. Received: 10 March 1998 / Received after revision 3 June 1998 / Accepted: 14 August 1998  相似文献   

15.
Tammaro A, Di Martino A, Bracco A, Cozzolino S, Savoia G, Andria B, Cannavo A, Spagnuolo M, Piluso G, Aurino S, Nigro V. Novel missense mutations and unexpected multiple changes of RYR1 gene in 75 malignant hyperthermia families. Malignant hyperthermia (MH) is an autosomal dominant pharmacogenetic disorder of skeletal muscle characterized by disturbance of intracellular calcium homeostasis in the sarcoplasmic reticulum. Mutations of the ryanodine receptor 1 (RYR1) gene account for most cases, with some studies claiming up to 86% of mutations in this locus. However, RYR1 gene is large and variants are common even in the normal population. We examined 54 families with MH susceptibility and 21 diagnosed with equivocal MH. Thirty‐five were selected for an anesthetic reaction, whereas the remainder for hyperCKemia. In these, we studied all 106 exons of the RYR1 gene. When no mutation was found, we also screened: sodium channel voltage‐gated, type IV alpha subunit (SCN4A), calcium channel voltage‐dependent, L type, alpha 1S subunit (CACNA1S), and L‐type voltage‐gated calcium channel alpha 2/delta‐subunit (CACNL2A). Twenty‐nine different RYR1 mutations were discovered in 40 families. Three other MH genes were tested in negative cases. Fourteen RYR1 amino acid changes were novel, of which 12 were located outside the mutational ‘hot spots'. In two families, the known mutation p.R3903Q was also observed in malignant hyperthermia‐nonsusceptible (MHN) individuals. Unexpectedly, four changes were also found in the same family and two in another. Our study confirms that MH is genetically heterogeneous and that a consistent number of cases are not due to RYR1 mutations. The discordance between in vitro contracture test status and the presence of a proven causative RYR1 mutation suggests that the penetrance may vary due to as yet unknown factors.  相似文献   

16.
Malignant hyperthermia (MH)‐related mutations have been identified in the ryanodine receptor type 1 gene (RYR1) and in the dihydropyridine gene (CACNA1S), but about half of the patients do not have causative mutations in these genes. We wanted to study the contribution of other muscle genes to the RYR1 phenotypes. We designed a gene panel for sequence enrichment targeting 64 genes of proteins involved in the homeostasis of the striated muscle cell. Next‐generation sequencing (NGS) resulted in >50,000 sequence variants which were further analyzed by software filtering criteria to identify causative variants. In four of five patients we identified previously reported RYR1 mutations while the fifth patient did not show any candidate variant in any of the genes investigated. In two patients pathogenic variants were found in other genes known to cause a muscle disorders. All but one patient carried likely benign rare polymorphisms. The NGS technique proved convenient in identifying variants in the RYR1. However, with a clinically variable phenotype‐like MH, the pre‐selection of genes poses problems in variant interpretation.  相似文献   

17.

Background

Statin can induce the gene expression of bone morphogenetic protein-2. Red yeast rice (RYR, Hongqu), i.e. rice fermented with Monascus purpureus, contains a natural form of statin. This study demonstrates the effects of RYR extract on bone formation.

Methods

Bone defects were created in the parietal bones of two New Zealand white rabbits. In the test animal, two defects were grafted with collagen matrix mixed with RYR extract. In the control animal, two defects were grafted with collagen matrix alone. UMR 106 cell line was used to test RYR extract in vitro. In the control group, cells were cultured for three durations (24 hours, 48 hours and 72 hours) without any intervention. In the RYR group, cells were cultured for the same durations with various concentrations of RYR extract (0.001 g/ml, 0.005 g/ml and 0.01 g/ml). Bicinchoninic acid (BCA) assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and alkaline phosphatase (ALP) assay were performed to measure total protein, mitochondrial activity and bone cell formation respectively.

Results

The test animal showed more formation of new bone in the defects than the control animal. RYR significantly increased the optical density in the MTT assay and ALP activity in vitro.

Conclusion

RYR extract stimulated new bone formation in bone defects in vivo and increased bone cell formation in vitro.  相似文献   

18.
Altered cardiac workload regulates the translation and localization of the α myosin heavy chain (αMyHC) messenger RNA through the 3′ untranslated region (UTR) by protein–RNA interactions. We used the αMyHC 3′UTR from neonatal rat heart tissue in a gel shift analysis to find RNA binding proteins. One was identified by microsequencing as creatine kinase, brain form B (CKBB). The affinity of its binding interaction was evaluated using sense and antisense αMyHC 3′UTR and 3′UTR probes from myosin isoforms of 2B and 2X skeletal muscle. Removal of calcium by the chelating agent EGTA had a potentiating effect on the formation of the CKBB/αMyHC 3′UTR complex in vitro. Varying the concentration of ATP (0.1–1 mM) also enhanced this interaction, suggesting that autophosphorylation of CKBB is taking place. Our novel finding that CKBB, an energy transduction enzyme, binds to the RNA of the 3′UTR of the faster ATP consuming αMyHC suggests a possible regulatory linkage between the metabolic state of the cell and myosin isoform expression. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Mutations in RYR1 in malignant hyperthermia and central core disease   总被引:1,自引:0,他引:1  
The RYR1 gene encodes the skeletal muscle isoform ryanodine receptor and is fundamental to the process of excitation-contraction coupling and skeletal muscle calcium homeostasis. Mapping to chromosome 19q13.2, the gene comprises 106 exons and encodes a protein of 5,038 amino acids. Mutations in the gene have been found in association with several diseases: the pharmacogenetic disorder, malignant hyperthermia (MH); and three congenital myopathies, including central core disease (CCD), multiminicore disease (MmD), and in an isolated case of a congenital myopathy characterized on histology by cores and rods. The majority of gene mutations reported are missense changes identified in cases of MH and CCD. In vitro analysis has confirmed that alteration of normal calcium homeostasis is a functional consequence of some of these changes. Genotype-phenotype correlation studies performed using data from MH and CCD patients have also suggested that mutations may be associated with a range of disease severity phenotypes. This review aims to summarize the current understanding of RYR1 mutations reported in association with MH and CCD and the present viewpoint on the use of mutation data to aid clinical diagnosis of these conditions.  相似文献   

20.
Jaw-closing muscles of kangaroos express α-cardiac myosin heavy chain   总被引:5,自引:0,他引:5  
The masseter muscle of eutherian grazing mammals typically express or slow myosin heavy chain (MyHC). Myosins in the masseter of 4 species of kangaroos and a slow limb muscle of one of them were compared with their cardiac myosin by pyrophosphate and sodium dodecyl sulphate (SDS) gel electrophoresis, immunoblotting and immunohistochemistry. It was found that ventricular muscle contains three isoforms homologous to V1 (-MyHC homodimer), V2 (heterodimer) and V3 (-MyHC homodimer) of eutherian cardiac muscle, and that the masseter contained V1, with traces of V2 and V3, in great contrast to eutherian ruminants, which express only V3. A polyclonal antibody (anti-KJM) was raised in rabbits against red kangaroo masseter myosin. After cross-absorption against limb muscle myofibrils, anti-KJM specifically reacted in Westerns with MyHCs from masseter but not limb muscles, and immunohistochemically with masseter, but not limb muscle fibers. In pyrophosphate Western blots, anti-KJM reacted with V1 but not with V3. However, a monoclonal antibody specific for eutherian slow myosin stained all kangaroo slow muscle fibers but only weakly stained scattered fibers in the masseter. The SDS-PAGE revealed that light chain composition of masseter and ventricular myosins is identical, but isoforms of both light chains of kangaroo limb slow myosin were observed. These results confirm that kangaroo jaw muscle express -MyHC rather than -MyHC. The difference in MyHC gene expression between marsupial and eutherian grazers may be related to the fact that kangaroos are not ruminants, and have only a single chance to comminute food into fine particles, hence the need for the greater speed and power of muscle contraction associated with V1 containing muscle fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号