首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Small amounts of exogenous lipopolysaccharide (LPS) (10 ng/kg-100 microg/kg) enhance the hepatotoxicity of allyl alcohol in male Sprague-Dawley rats. This augmentation of allyl alcohol hepatotoxicity appears to be linked to Kupffer cell function, but the mechanism of Kupffer cell involvement is unknown. Since Kupffer cells produce tumor necrosis factor-alpha (TNF alpha) upon exposure to LPS, and this cytokine has been implicated in liver injury from large doses of LPS, we tested the hypothesis that TNF alpha contributes to LPS enhancement of allyl alcohol hepatotoxicity. Rats were treated with LPS (10-100 microg/kg iv) 2 h before allyl alcohol (30 mg/kg ip). Co-treatment with LPS and allyl alcohol caused liver injury as assessed by an increase in activity of alanine aminotransferase in plasma. Treatment with LPS caused an increase in plasma TNF alpha concentration, which was prevented by administration of either pentoxifylline (PTX) (100 mg/kg iv) or anti-TNF alpha serum (1 ml/rat iv) one h prior to LPS. Only PTX protected rats from LPS-induced enhancement of allyl alcohol hepatotoxicity; anti-TNF alpha serum had no effect. Exposure of cultured hepatocytes to LPS (1-10 microg/ml) or to TNF alpha (15-150 ng/ml) for 2 h did not increase the cytotoxicity of allyl alcohol (0.01-200 microM). These data suggest that neither LPS nor TNF alpha alone was sufficient to increase the sensitivity of isolated hepatocytes to allyl alcohol. Furthermore, hepatocytes isolated from rats treated 2 h earlier with LPS (i.e., hepatocytes which were exposed in vivo to TNF alpha and other inflammatory mediators) were no more sensitive to allyl alcohol-induced cytotoxicity than hepatocytes from na?ve rats. These data suggest that circulating TNF alpha is not involved in the mechanism by which LPS enhances hepatotoxicity of allyl alcohol and that the protective effect of PTX may be due to another of its biological effects.  相似文献   

3.
4.
Tumor necrosis factor-alpha (TNF-alpha) is a cytokine that is involved in numerous pathologies, in part through stimulation of the mitochondrial production of reactive oxygen species (ROS). Previous studies show that in addition to mitochondrial superoxide dismutase- and glutathione-dependent systems, mitochondria also contain thioredoxin-2 (Trx2), an antioxidant protein that can detoxify ROS. The purpose of this study was to determine whether Trx2 protects against oxidative damage triggered by TNF-alpha. After a 30-min treatment in HeLa cells, TNF-alpha (5-40 ng/ml) oxidized Trx2 but not cytoplasmic Trx1. Preferential, significant Trx2 oxidation occurred within 10 min of TNF-alpha treatment. Moreover, overexpression of Trx2, but not Trx1, decreased TNF-alpha-induced ROS generation, suggesting mitochondrial compartmentation of ROS production and subsequent specific detoxification by Trx2, not Trx1. Overexpression of Trx2 or the active-site mutant C93S Trx2 was used to evaluate their downstream effects following TNF-alpha stimulation. Results showed that nuclear translocation of NF-kappaB was inhibited with Trx2 overexpression but not with the dominant negative active-site mutant C93S Trx2. Moreover, when cotransfected with a NF-kappaB-luciferase reporter and then treated with TNF-alpha, NF-kappaB activity was significantly attenuated with Trx2 overexpression but not with C93S Trx2 expression. Trx2 overexpression, but not C93S Trx2, significantly inhibited TNF-alpha-induced apoptosis as measured by terminal dUTP nick-end labeling assay. These findings support the interpretation that mitochondrial-generated ROS is a principal component in TNF-alpha-induced effects and that Trx2 blocks TNF-alpha-induced ROS generation and downstream NF-kappaB activation and apoptosis.  相似文献   

5.
Long-term exposure of rodents to peroxisome proliferators leads to increases in peroxisomes, hepatocellular proliferation, oxidative damage, suppressed apoptosis, and ultimately results in the development of hepatic adenomas and carcinomas. Peroxisome proliferators-activated receptor (PPAR)alpha was shown to be required for these pleiotropic responses; however, Kupffer cells, resident liver macrophages, were also identified as playing a role in peroxisome proliferators-induced effects, independently of PPARalpha. Previous studies showed that oxidants from NADPH (nicotinamide adenine dinucleotide phosphate, reduced) oxidase mediate acute effects of peroxisome proliferators in rodent liver. To determine if Kupffer cell oxidants are also involved in chronic effects, NADPH oxidase-deficient (p47(phox)-null) mice were fed 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio acetic acid (WY-14,643)-containing diet (0.1% wt/wt) for 1 week, 5 weeks, or 5 months along with Pparalpha-null and wild type mice. As expected, no change in liver size, cell replication rates, or other phenotypic effects of peroxisome proliferators were observed in Pparalpha-null mice. Through 5 months of treatment, the p47(phox)-null and wild type mice exhibited peroxisome proliferators-induced adverse liver effects, along with increased oxidative DNA damage and increased cell proliferation, a response that is potentially mediated through nuclear factor kappa B (NFkB). Suppressed apoptosis caused by WY-14,643 was dependent on both NADPH oxidase and PPARalpha. Collectively, these findings suggest that involvement of Kupffer cells in WY-14,643-induced parenchymal cell proliferation and oxidative stress in rodent liver is an acute phenomenon that is not relevant to long-term exposure, but they are still involved in chronic apoptotic responses. These results provide new insight for understanding the mode of hepatocarcinogenic action of peroxisome proliferators.  相似文献   

6.
Previous studies suggest that tumor necrosis factor alpha (TNF-alpha) and the TNFRI (p55) and TNFRRII (p75) receptors mediate the pulmonary fibrotic response to silica. In order to further define the role of the TNFRI (p55) receptor in induction of profibrotic chemokines by low-dose silica/crystalline silica (50 micro g/50 micro l/mouse) or control diluent saline was instilled into the trachea of TNFRI gene ablated ((-/-)) and C57BL/6 (WT) control mice. Lung tissue was harvested and bronchoalveolar lavage (BAL) performed 24 h and 28 days following silica administration. Selected profibrotic chemokine mRNAs were quantified by ribonuclease protection assay, normalized to ribosomal protein L32 mRNA content and expressed relative to saline control treated lungs. Induction of MIP-1beta, MIP-1alpha, MIP-2, IP-10, and MCP-1 mRNAs was attenuated in the TNFRI(-/-) mice, in comparison to WT mice, particularly at 28 days after exposure. ELISA assays for MIP-1alpha and MIP-2 in homogenized lung tissue similarly demonstrated marked induction of both chemokines 24 h after silica treatment, which was persistent at 28 days in WT but not in TNFRI(-/-) mice. The percentage of BAL cells that was neutrophils was comparably increased in WT and RI(-/-) lungs at 24 h (49 +/- 12% vs. 46 +/- 10%) and 28 days (6.2 +/- 1.5% vs. 4.5 +/- 1%). The increase in total lavagable cells and BAL protein was also independent of strain. Histology revealed mild alveolitis without granuloma formation in both strains, slightly decreased in TNFRI(-/-). This study demonstrates an increase in pro-fibrotic chemokines in response to a single intratracheal exposure to crystalline silica that was sustained at 28 days after treatment in WT but not in TNFRI(-/-) mice. Silica dependent recruitment of neutrophils to the alveolar space and alveolar protein leak were, however, not altered by the absence of the TNF receptor.  相似文献   

7.
Mitochondrial oxidant stress and peroxynitrite formation have been implicated in the pathophysiology of acetaminophen-induced (AAP-induced) liver injury. Therefore, we tested the hypothesis that lipid peroxidation (LPO) might be involved in the injury mechanism. Male C3Heb/FeJ mice fed a diet high in vitamin E (1 g d-alpha-tocopheryl acetate/kg diet) for 1 week had 6.7-fold higher hepatic tocopherol levels than animals on the control diet (8.2 +/- 0.1 nmol/g liver). Treatment of fasted mice with 300 mg/kg AAP caused centrilobular necrosis with high plasma alanine aminotransferase (ALT) activities at 6 h (3280 +/- 570 U/l) but no evidence of LPO (hepatic malondialdehyde, 4-hydroxynonenal). Animals on the vitamin E diet had similar injury and LPO as mice on the control diet. To verify a potential effect of the vitamin E diet on drug-induced liver injury, animals were pretreated with a combination of phorone, FeSO4, and allyl alcohol. We observed, 2 h after allyl alcohol, massive LPO and liver cell injury in the livers of animals on the control diet, as indicated by a 32-fold increase in malondialdehyde levels, extensive staining for 4-hydroxynonenal, and ALT activities of 2310 +/- 340 U/l. Animals on the vitamin E diet had 40% lower hepatic malondialdehyde levels and 85% lower ALT values. Similar results were obtained when animals were treated for 3 days with alpha- or gamma-tocopherol (0.19 mmol/kg, ip). Both treatments reduced LPO and injury after allyl alcohol but had no effect on AAP hepatotoxicity. Thus, despite the previously shown mitochondrial oxidant stress and peroxynitrite formation, LPO does not appear to be a critical event in AAP-induced hepatotoxicity.  相似文献   

8.
9.
Previously we reported that moderate calorie restriction or diet restriction (DR, calories reduced by 35% for 21 days) in male Sprague-Dawley rats protects from a lethal dose of thioacetamide (TA). DR rats had 70% survival compared with 10% in rats fed ad libitum (AL) because of timely and adequate compensatory liver cell division and tissue repair in the DR rats. Further investigation of the mechanisms indicate that enhanced promitogenic signaling plays a critical role in this stimulated tissue repair. Expression of stimulators of promitogenic signaling interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), hepatocyte growth factor (HGF), transforming growth factor-alpha (TGF-alpha), and epidermal growth factor receptor (EGFR) were studied during liver tissue repair after TA-induced liver injury. Plasma IL-6 was significantly higher in the DR rats, with 6-fold higher expression at 48 h after TA administration. Immunohistochemical localization revealed significantly higher expression of IL-6 in the hepatic sinusoidal endothelium of DR rats. Expression of TGF-alpha and HGF was consistently higher in the livers of DR rats from 36 to 72 h. EGFR, which serves as a receptor for TGF-alpha, was higher in DR rats before TA administration and remained higher till 48 h after TA intoxication. DR-induced 2-fold increase in hepatic iNOS activity is consistent with early cell division in DR rats after TA challenge. These data suggest that the reason behind the higher liver tissue repair after TA-induced hepatotoxicity in DR rats is timely and higher expression of the growth stimulatory cytokines and growth factors. It appears that the physiological effects of DR make the liver cells vigilant and prime the liver tissue promptly for liver regeneration through promitogenic signaling upon toxic challenge.  相似文献   

10.
11.
Ozone (O(3)) is a significant component of atmospheric air pollution and produces detrimental effects in the lung. Although the mechanism of O(3)-induced lung inflammation and injury is unclear, the increased release of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) by lung cells following O(3) exposure may shed some light on this subject. To investigate the role of TNF-alpha in the O(3)-induced pulmonary insult, we intraperitoneally injected rats with either rabbit preimmune serum or rabbit antirat TNF-alpha 1 h prior to O(3) exposure. Approximately 12 h after the end of O(3) exposure the animals were sacrificed, the lungs lavaged, and tissue samples collected for expression of cytokine genes relevant to inflammation. The bronchoalveolar lavage fluid (BALF) was analyzed for albumin as a marker of pulmonary epithelial permeability changes and for fibronectin for its role in lung injury and repair. The lavage cells were collected, counted, and identified to quantitate the inflammatory response. Ozone exposure resulted in a significant increase in BALF albumin and fibronectin as compared to air-exposed controls and a significant increase in BALF polymorphonuclear leukocytes (PMNs). Antibody treatment produced a significant decrease in BALF albumin and PMNs as compared to O(3)-exposed rats given preimmune serum. Antibody treatment did not affect the BALF fibronectin concentration or the total cell count in the BAL. Tissue analysis for gene arrays revealed an activation of IL-1alpha, IL-6, and IL-10 in animals exposed to O(3). The gene expression was downregulated in animals treated with anti-TNF-alpha antibody prior to O(3) exposure. The results suggest a central role for TNF-alpha in the mechanistic pathways critical to lung inflammation. The significance of TNF-alpha in the inflammation and epithelial injury produced by ozone exposure reflects its overall contribution through modulation of other cytokines.  相似文献   

12.
To determine the impact of the species difference between rodents and humans in response to peroxisome proliferators (PPs) mediated by peroxisome proliferator-activated receptor (PPAR)alpha, PPAR alpha-humanized transgenic mice were generated using a P1 phage artificial chromosome (PAC) genomic clone bred onto a ppar alpha-null mouse background, designated hPPAR alpha PAC. In hPPAR alpha PAC mice, the human PPAR alpha gene is expressed in tissues with high fatty acid catabolism and induced upon fasting, similar to mouse PPAR alpha in wild-type (Wt) mice. Upon treatment with the PP fenofibrate, hPPAR alpha PAC mice exhibited responses similar to Wt mice, including peroxisome proliferation, lowering of serum triglycerides, and induction of PPAR alpha target genes encoding enzymes involved in fatty acid metabolism in liver, kidney, and heart, suggesting that human PPAR alpha (hPPAR alpha) functions in the same manner as mouse PPAR alpha in regulating fatty acid metabolism and lowering serum triglycerides. However, in contrast to Wt mice, treatment of hPPAR alpha PAC mice with fenofibrate did not cause significant hepatomegaly and hepatocyte proliferation, thus indicating that the mechanisms by which PPAR alpha affects lipid metabolism are distinct from the hepatocyte proliferation response, the latter of which is only induced by mouse PPAR alpha. In addition, a differential regulation of several genes, including the oncogenic let-7C miRNA by PPs, was observed between Wt and hPPAR alpha PAC mice that may contribute to the inherent difference between mouse and human PPAR alpha in activation of hepatocellular proliferation. The hPPAR alpha PAC mouse model provides an in vivo platform to investigate the species difference mediated by PPAR alpha and an ideal model for human risk assessment PPs exposure.  相似文献   

13.
tert-Butyl alcohol (TBA) has been shown to cause kidney tumors in male rats following chronic administration in drinking water. The objective of the present study was to determine whether TBA induces alpha 2u-globulin (alpha 2u) nephropathy (alpha 2u-N) and enhanced renal cell proliferation in male, but not female, F-344 rats, and whether the dosimetry of TBA to the kidney is gender specific. Male and female F-344 rats were exposed to 0, 250, 450, or 1750 ppm TBA vapors 6 h/day for 10 consecutive days to assess alpha 2u-nephropathy and renal cell proliferation and for 1 and 8 days to evaluate the dosimetry of TBA following a single and repeated exposure scenario. Protein droplet accumulation was observed in kidneys of male rats exposed to 1750 ppm TBA, with alpha 2u-globulin immunoreactivity present in these protein droplets. A statistically significant increase in alpha 2u concentration in the kidney, as measured by an enzyme-linked immunosorbent assay, was observed in male rats exposed to 1750 ppm TBA with a exposure-related increase in renal cell proliferation. Renal alpha 2u concentration was positively correlated with cell proliferation in male rat kidney. No histological lesions or increased renal cell proliferation was observed in female rats exposed to TBA compared to controls. The TBA kidney:blood ratio was higher at all concentrations and time points in male rats compared with female rats, which suggests that TBA is retained longer in male rat kidney compared with female rat kidney. Together these data suggest that TBA causes alpha 2u-N in male rats, which is responsible for the male rat-specific increase in renal cell proliferation.  相似文献   

14.
In this work, we evaluate whether in vitro systems are good predictors for in vivo estrogenic activity in fish. We focus on UV filters being used in sunscreens and in UV stabilization of materials. First, we determined the estrogenic activity of 23 UV filters and one UV filter metabolite employing a recombinant yeast carrying the estrogen receptor of rainbow trout (rtERalpha) and made comparisons with yeast carrying the human hERalpha for receptor specificity. Benzophenone-1 (BP1), benzophenone-2 (BP2), 4,4-dihydroxybenzophenone, 4-hydroxybenzophenone, 2,4,4-trihydroxy-benzophenone, and phenylsalicylate showed full dose-response curves with maximal responses of 81-115%, whereas 3-benzylidene camphor (3BC), octylsalicylate, benzylsalicylate, benzophenone-3, and benzophenone-4 displayed lower maximal responses of 15-74%. Whereas the activity of 17beta-estradiol was lower in the rtERalpha than the hERalpha assay, the activities of UV filters were similar or relatively higher in rtERalpha, indicating different relative binding activities of both ER. Subsequently, we analyzed whether the in vitro estrogenicity of eight UV filters is also displayed in vivo in fathead minnows by the induction potential of vitellogenin after 14 days of aqueous exposure. Of the three active compounds in vivo, 3BC induced vitellogenin at lower concentrations (435 microg/l) than BP1 (4919 microg/l) and BP2 (8783 microg/l). The study shows, for the first time, estrogenic activities of UV filters in fish both in vitro and in vivo. Thus we propose that receptor-based assays should be used for in vitro screening prior to in vivo testing, leading to environmental risk assessments based on combined, complementary, and appropriate species-related assays for hormonal activity.  相似文献   

15.
The toxicity of muraglitazar, an oxybenzylglycine, nonthiazolidinedione peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist, was evaluated in a comprehensive nonclinical toxicology program that included single-dose oral toxicity studies in mice, rats, and monkeys; repeat-dose toxicity studies in rats, dogs, and monkeys; a battery of in vitro and in vivo genetic toxicity studies; carcinogenicity studies in mice and rats; reproductive and developmental toxicity studies in rats and rabbits; and studies to investigate species-specific findings. Pharmacologically mediated changes, similar to those observed with other PPARgamma agonists, were observed following chronic administration and included subcutaneous edema, hematologic/hematopoietic and serum chemistry alterations, and morphologic findings in the heart and adipose tissue in rats and monkeys. In dogs, a species highly sensitive to PPARgamma agonists, muraglitazar caused pronounced species-specific clinical toxicity and degenerative changes in the brain, spinal cord, and testes at high doses and exposures. Muraglitazar was nongenotoxic in the standard battery of genotoxicity studies. Gallbladder adenomas in male mice and adipocyte neoplasms in male and female rats were seen at suprapharmacologic exposures, whereas urinary bladder tumors occurred in male rats at lower exposures. Subsequent investigative studies established that the urinary bladder carcinogenic effect was mediated by urolithiasis rather than a direct pharmacologic effect on urothelium. Muraglitazar had no effects on reproductive function in male and female rats at high systemic exposures, was not teratogenic in rats or rabbits, and demonstrated no selective developmental toxicity. Overall, there were no nonclinical findings that precluded the safe administration of muraglitazar to humans.  相似文献   

16.
Some fluoroquinolone antibiotics (FQs) become toxic and mutagenic upon exposure to ultraviolet radiation (UV). Topoisomerase inhibition has been proposed as one possible mechanism involved in this photochemical genotoxicity. To study this reaction, inhibition of the human topoisomerase IIalpha enzyme by four FQs varying in photochemical genotoxic potency (Bay y3118 [y3118] > Lomefloxacin [Lmx] > Ciprofloxacin [Cpx] > Moxifloxacin [Mox]) was measured in vitro in the presence of UVA irradiation. None of the FQs inhibited topoisomerase IIalpha in the absence of irradiation. In contrast, with irradiation at 365 nm, the potent photochemically genotoxic y3118 produced strong inhibition of the enzyme by 15% and Cpx caused a weak 5% inhibition, but the more photochemically genotoxic Lmx only showed a transient inhibitory effect at one concentration and one irradiation dose. The photostable Mox had no effect with irradiation. Topoisomerase IIalpha inhibition by y3118 only occurred when the FQ, DNA, and enzyme were simultaneously present in the UVA-irradiated reaction mixture and was abolished in the absence of ATP, indicating the possible formation of a ternary structure. The y3118 photochemical topoisomerase inhibition correlated with the increased irradiation-mediated binding of radiolabeled FQ to DNA:topoisomerase complexes and was irreversible, like that of the topoisomerase poison, etoposide, without irradiation. The inhibitory effect of photoactivated y3118 on topoisomerase IIalpha was also observed in the presence of the antioxidant TEMPO, indicating that reactive oxygen species were not involved in the inhibition. These observations demonstrate that some but not all photochemically genotoxic FQs inhibit human topoisomerase IIalpha, possibly by UV-induced affinity of FQs to DNA:topoisomerase complexes.  相似文献   

17.
18.
Allyl alcohol causes hepatotoxicity that is potentiated by small doses of bacterial lipopolysaccharide (LPS) through a cyclooxygenase-2 (COX-2)-dependent mechanism. The COX-2 product prostaglandin D(2) (PGD(2)) increases hepatocyte killing by allyl alcohol in vitro. In the present study the ability of the nonenzymatic product of PGD(2), 15-deoxy-Delta12,14-prostaglandin J(2) (15d-PGJ(2)), to increase the cytotoxicity of allyl alcohol was evaluated. In a concentration-dependent manner, 15d-PGJ(2) significantly augmented cell death caused by allyl alcohol in isolated rat hepatocytes. 15d-PGJ(2) also increased the cytotoxicity of acrolein, the active metabolite of allyl alcohol. An agonist for the PGD(2) receptor neither reproduced the increase in allyl alcohol-mediated cytotoxicity nor altered the response to 15d-PGJ(2). Similarly, these responses were not affected by either an agonist or an antagonist for the peroxisome proliferator-activated receptor-gamma. The enhancement by 15d-PGJ(2) of allyl alcohol-mediated cell killing was unaffected by augmentation or inhibition of cAMP. Protein synthesis was markedly decreased by 15d-PGJ(2), but inhibition of protein synthesis alone with cycloheximide did not increase allyl alcohol-mediated cell killing. Allyl alcohol at subtoxic concentrations increased translocation of nuclear factor kappa B (NF-kappaB), whereas at cytotoxic concentrations no translocation occurred. 15d-PGJ(2) inhibited translocation of NF-kappaB from the cytosol to the nucleus both in the presence and absence of allyl alcohol. Like 15d-PGJ(2), MG132, an inhibitor of NF-kappaB activation, enhanced allyl alcohol-induced hepatocyte death. Together these results indicate that 15d-PGJ(2) augments hepatocyte killing by allyl alcohol, and the mechanism may be related to the inhibition of NF-kappaB activation.  相似文献   

19.
To determine the effects of aged and diluted sidestream cigarette smoke (ADSS) as a surrogate of environmental tobacco smoke (ETS) on ozone-induced lung injury, male B6C3F1 mice were exposed to (1) filtered air (FA), (2) ADSS, (3) ozone, or (4) ADSS followed by ozone (ADSS/ozone). Exposure to ADSS at 30 mg/m3 of total suspended particulates (TSP) for 6 h/day for 3 days, followed by exposure to ozone at 0.5 ppm for 24 h was associated with a significant increase in the number of cells recovered by bronchoalveolar lavage (BAL) compared with exposure to ADSS alone or ozone alone. The proportion of neutrophils and lymphocytes, as well as total protein level in BAL, was also significantly elevated following ADSS/ozone exposure, when compared with all other groups. Within the centriacinar regions of the lungs, the percentage of proliferating cells identified by bromodeoxyuridine (BrdU) labeling was unchanged from control, following exposure to ADSS alone, but was significantly elevated following exposure to ozone (280% of control) and further augmented in a statistically significant manner in mice exposed to ADSS/ozone (402% of control). Following exposure to ozone or ADSS/ozone, the ability of alveolar macrophages (AM) to release interleukin (IL)-6 under lipopolysaccharide (LPS) stimulation was significantly decreased, while exposure to ADSS or ADSS/ozone caused a significantly increased release of tumor necrosis factor alpha from AM under LPS stimulation. We conclude that ADSS exposure enhances the sensitivity of animals to ozone-induced lung injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号