首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The basolateral membrane of rabbit straight proximal tubules, which were cannulated and perfused on one side, was investigated with the patch clamp technique. Properties of inward and outward directed single K+ channel currents were studied in cell-attached and insideout oriented cell-excised membrane patches. In cell-attached patches with NaCl Ringer solution both in pipette and bath, outward K+ currents could be detected after depolarization of the membrane patch by about 20–30 mV. The current-voltage (i/V) relationship could be fitted by the Goldman-Hodgkin-Katz (GHK) current equation, with the assumption that these channels were mainly permeable for K+ ions. A permeability coefficientP K of (0.17±0.04) · 10–12 cm3/s was obtained, the single channel slope conductance at infinite positive potentialg(V ) was 50±12 pS and the single channel conductance at the membrane resting potentialg(V bl) was 12±3 pS (n=4). In cell-excised patches, with NaCl in the pipette and KCl in the bath, the data could also be fitted to the GHK equation and yieldedP K = (0.1 ±0.01) ·10–12 cm3/s,g(V ) = 40 ± 4 pS andg(V bl) = 7 ± 1 pS (n=8). In cell-attached patches with KCl in the pipette and NaCl in the bath, inward K+ channels occurred at clamp potentials 60 mV, whereas outward K+ channel current was detected at more positive voltages. The current-voltage curves showed slight inward rectification. The single channel conductance, obtained from the linear part of the i/V curve by linear regression, was 46±3 pS and the reversal potential was 59±6 mV (n=9). In cell-excised patches with KCl in the pipette and NaCl in the bath, inward directed K+ channel currents could again be described by the GHK equation. The single channel parameters were similar to those recorded for outward K+ currents (see above). In inside-out oriented cell-excised patches with NaCl in the pipette and KCl in the bath, reducing bath (i.e. cytosolic) Ca2+ concentration from 10–6 mol/l to less than 10–9 mol/l did not affect the open state probability of single channel currents. These results demonstrate that the observed channels are permeable for K+ ions in both directions and that these basolateral K+ channels in rabbit proximal straight tubule are not directly dependent on Ca2+ ions.  相似文献   

2.
Tracheal smooth muscle cells were enzymatically isolated from guinea-pig trachea. These cells contracted in response to acetylcholine (0.01–10 M) in a concentration-dependent fashion. Under current-clamp conditions with 140 mM K+ in the pipette solution, the membrane potential oscillated spontaneously at around –30 mV. Under voltage-clamp conditions, there appeared spontaneous but steady oscillations of outward current (I o). On depolarization from a holding potential at –40 mV, three components of outward current were elicited: transient outward current (I T), steady-state outward current (I s) and I o. These three components of outward current reversed around the K+ equilibrium potential and were abolished by Cs+ in the pipette, indicating that K+ was the major charge carrier of these outward currents. All these three components were completely suppressed by extracellular tetraethylammonium (10 mM). Both I T and I o were depressed by quinidine (1 mM), 4-aminopyridine (10 mM) and nifedipine (100 nM), but I s was not affected. I T and I o were suppressed by a Ca2+-free perfusate with less than 1 nM Ca2+ in the pipette, while with 10 nM Ca2+ in the pipette, only I o was suppressed. In both conditions, I s was not affected by the Ca2+-free perfusate. Therefore, it is suggested that I o, I T and I s are separate types of K+ current. With Cs+ in the pipette, K+ currents were almost completely suppressed and a transient inward current was observed during depolarizing pulses. The inward current was not affected by tetrodotoxin and increased when the concentration of extracellular Ca2+ was raised, indicating that the current is a Ca2+ channel current. Even with a holding potential of –80 mV, the low-threshold inward current could not be observed. The high-threshold Ca2+ current was abolished by nifedipine (100 nM) and was enhanced by Bay K 8644 (100 nM). The order of permeation of divalent cations through the Ca2+ channel was Ba2+ >Sr2+ Ca2+. Cd2+ blocked the Ca2+ current more effectively than Ni2+. These results may indicate that the Ca2+ current of tracheal smooth muscle cells is mainly composed of the current through an L-type Ca2+ channel.  相似文献   

3.
Previous studies in isolated, in vitro perfused rectal gland tubules (RGT) have revealed that the basolateral membrane possesses a K+ conductive pathway. In the present study, we have utilized the patch clamp technique in RGT segments to characterize this pathway. The basolateral membrane was approached with patch pipettes at the open end of in vitro perfused segments [5]. Recordings were obtained in cell-attached as well as in excised inside-out patches. In cell-attached patches with the pipette filled with a KCl solution (274 mmol/l) and the bath containing NaCl shark Ringer (275 mmol/l), inward K+ currents (from pipette into cell) with a mean slope conductance of 123±26 pS (n=3) were observed. We were unable to generate outward K+ currents at high depolarizing (cell more positive) clamp voltages. This indicates inward rectification of this channel. To examine the rectification properties further, excised (inside out) patches were exposed to K+ concentration gradients, directed out of, as well as into the pipette. With NaCl in the pipette and KCl in the bath, K+ outward currents were observed. The current-voltage (IV) relation revealed Goldman-type rectification, with a mean single channel conductance of 185±28 pS (n=7) at high positive voltages (linear range of the IV curve). The single-channel permeability coefficient for K+ was 0.26±0.04 ·10–12 cm3/s (n=7). In the reversed experiment (pipette KCl, bath NaCl), inward currents of similar kinetics and amplitude were obtained. The single channel conductance was 146±21 pS (n=7) at high negative voltages (linear range of the IV curve). The single channel permeability coefficient for K+ was 0.21±0.03·10–12 cm3/s (n=7). We were not able to reverse the currents in any of these experiments, indicating that this channel is highly selective for K+ over Na+. In all three series of experiments, the kinetic appearance of the channels was similar. Bursts of activity were followed by interburst pauses. The open state was described by a single time constant of 3.0±0.2 ms, whereas the closed state was described by two time constants of 0.7±0.2 ms and 2.8±0.5 ms (n=8). It can be concluded that these channels permit K+ inward and outward currents. They are probably the equivalent of the basolateral K+ conductance as observed in a previous study [12]. Under physiological conditions a single channel conductance of some 20 pS is predicted from the present data. In cell-attached patches, with a high K+ concentration in the pipette, the channel behaves as an inward rectifier.Supported by Deutsche Forschungsgemeinschaft Gr 4808 and by NSF and NIH grants to the MDIBL. Parts of this study have been published in the Mount Desert Island Biol. Bulletin 1984, 1985.  相似文献   

4.
We analyzed the pH dependence of K+ currents recorded with the patch-clamp technique from cultured Schwann cells obtained from mouse dorsal root ganglia. Currents were activated at potentials more positive than –50 mV which was close to the resting membrane potential. Current amplitudes were affected by a change in extracellular pH (pHo), being increased at alkaline, and decreased at acidic pHo. The strongest effect of a pHo change was observed on currents activated close to the resting membrane potential suggesting a functional role for the pH sensitivity of K+ currents. Analysis of the time course of current activation at different pHo values led to the conclusion that the pH-sensitivity of K+ currents in Schwann cells is due to changes in surface charges shifting the potential sensed by the gating process of the channel. The reversal potential of the currents was not affected by a change in pHo. This observation and the finding that even a strong acidification to a pHo value of 5.0 did not lead to a blockade of the fully activated channel, indicate that the pH-sensitive charges are not located in the channel pore. Under the assumption that pHo changes in a peripheral nerve are associated with nerve activity as in the optic nerve, the pH-sensitive K+ channel in Schwann cells could serve to facilitate the spatial buffering of extracellular K+.  相似文献   

5.
Impalement studies in isolated perfused cortical collecting ducts (CCD) of rats have shown that the basolateral membrane possesses a K+ conductive pathway. In the present study this pathway was investigated at the single-channel level using the patch-clamp technique. Patch-clamp recordings were obtained from enzymatically isolated CCD segments and freshly isolated CCD cells with the conventional cell-free, cell-attached and the cell-attached nystatin method. Two K+ channels were found which were highly active on the cell with a conductance of 67±5 pS (n=18) and 148±4 pS (n=21) with 145 mmol/l K+ in the pipette. In excised patches the first channel had a conductance of 28±2 pS (n=15), whereas the second one had a conductance of 85±1 pS (n=53) at 0 mV clamp voltage with 145 mmol/l K+ on one side and 3.6 mmol/l K+ on the other side of the membrane. So far it has not been possible to characterize the smaller channel further. Excised, and with symmetrical K+ concentrations of 145 mmol/l, the intermediate channel had a linear conductance of 198±19 pS (n=5). After excision in the inside-out configuration the open probability (P o) of this channel was low (0.18±0.05, n=13) whereas in the outside-out configuration this channel had a threefold higher P o (0.57±0.04, n=12). Several inhibitors were tested in excised membranes. Ba2+ (1 mmol/l), tetraethylammonium (TEA+, 10 mmol/l) and verapamil (0.1 mmol/l) all blocked this channel reversibly. Furthermore P o was reversibly reduced by 10 nmol/l charybdotoxin (outside-out). This K+ channel of the basolateral membrane was regulated by cellular pH. P o was reduced to 26±3% at pH 6.5 (n=6) and increased to 216±18% at pH 8.5 (n=7) compared to pH 7.4. Half-maximal inhibition was reached at pH 7.0. The channel had its highest P o at a Ca2+ activity of less than 10–8 mol/l (n=13). Increasing the Ca2+ activity to 1 mmol/l on the cytosolic side of the membrane resulted in a reduction of P o to 13±3% (n=11). Half-maximal inhibition was reached at a Ca2+ activity of 10–5 mol/l. The high activity of both K+ channels of the basolateral membrane on the cell indicates that they may serve for K+ recirculation across the basolateral membrane.  相似文献   

6.
The distal convoluted tubule (DCT) from rabbit kidney were perfused in vitro to study the conductive properties of the cell membranes by using electrophysiological methods. When the lumen and the bath were perfused with a biearbonate free solution buffered with HEPES, the transepithelial voltage (V T) averaged –2.8±0.6 mV (n=20), lumen negative. The basolateral membrane voltage (V B) averaged –77.8±1.1 mV (n=33) obtained by intracellular impalement of microelectrodes. Cable analysis performed by injecting a current from perfusion pipette revealed that the transepithelial resistance was 21.8±1.7 ·cm2 and the fractional resistance of the luminal membrane was 0.78±0.03 (n=8), indicating the existence of ionic conductances in the luminal membrane. Addition of amiloride (10–5 mol/l) to the luminal perfusate or Na+ removal from the lumen abolished the lumen negativeV T and hyperpolarized the apical membrane. An increase in luminal K+ concentration from 5 to 50 mmol/l reduced the apical membrane potential (V A) by 37.5±2.6 mV (n=7), whereas a reduction of Cl in the luminal perfusate did not changeV A significantly (0.5±0.5 mV,n=4). Addition of Ba2+ to the lumen reducedV A by 42.6±1.0 mV (n=4). When the bathing fluid was perfused with 50 mmol/l K+ solution, the basolateral membrane voltage (V B) fell from –76.8±1.5 to –31.0±1.3 mV (n=18), and addition of Ba2+ to the bath reducedV B by 18.3±4.8 mV (n=7). Although a reduction of Cl in the bathing fluid from 143 to 5 mmol/l did not cause any significant fast initial depolarization (1.8±1.7 mV,n=8), a spike like depolarization (14.0±2.5 mV,n=4) was observed, upon Cl reduction in the presence of Ba2+ in the bath. From these results, we conclude that the apical membrane of DCT has both K+ and Na+ conductances and the basolateral membrane has a K+ conductance and a small Cl conductance.  相似文献   

7.
The ionic selectivity of the hyperpolarizationactivated inward current (i f) channel to monovalent cations was investigated in single isolated sinoatrial node cells of the rabbit using the whole-cell patch-clamp technique. With a 140 mM K+ pipette, replacement of 90% external Na+ by Li+ caused a –24.5 mV shift of the fully activated current/voltage I/V curve without a significant decrease of the slope conductance. With a 140 mM Cs+ pipette, the i f current decreased almost proportionally to the decrease in external [Na+]o as Li+ was substituted. These responses are practically the same as those observed with N-methyl glucamine (NMG+) substitution, suggesting that the relative permeability of Li+ compared with Na+ for the i f channel is as low as that of NMG+. When Cs+ or Rb+ was substituted for internal K+, the fully activated I/V relationship for i f showed strong inward rectification with a positive reversal potential, indicating low permeability of the i f channel for Cs+ and Rb+. These results show that the i f channel is highly selective for Na+ and K+ and will not pass the similar ions Li+ and Rb+. Such a high degree of selectivity is unique and may imply that the structure of the i f channel differs greatly from that of other Na+ and K+ conducting channels.  相似文献   

8.
The whole-cell voltage-clamp method was applied to single smooth muscle cells prepared from the longitudinal layer of the pregnant rat myometrium (17–20 days of gestation). It was found that the transient inward current mainly consists of Ca2+ current, because the removal of Ca2+ ions from the external medium and 10 M nifedipine eliminated this inward current. Its steady-state inactivation curve was obtained by the standard method, in which the membrane potential of half inactivation and the slope factor were estimated to be –58.0±4.9 mV (n=11) and 8.9±1.4 mV (n=11), respectively. In a small number of preparations (in 2 out of 30 preparations), there remained a very fast inward current in Ca2+-free medium containing Mg2+. Tetrodotoxin (TTX, 10 M) can abolish this current, suggesting that the channel for this current is equivalent to the Na+ channel in nerve cells. Two major phases of outward currents were identified by voltage jumps from negative holding levels to more positive levels. The first phase was a fast transient outward current. This current remained intact after external tetraethylammonium (TEA, 20 mM) was added. Following the transient current, a large delayed rectified outward current reached its peak over a period of 50 ms and then decayed. The reversal potential for this outward current was determined by observing the change of polarity of the tail currents with the change in extracellular K+ concentration ([K+]0). The slope for the change of reversal potential per ten-fold change in [K+]0 is 57.7 mV at more than 23.2 mM [K+]o, indicating that this current is mostly carried by K+ ions. Voltage-dependent inactivation of the delayed rectified outward current was determined by the standard method. The membrane potential for half inactivation and the slope factor were estimated to be –42.8±3.9 mV (n=3) and 10.1±1.5 mV (n=3), respectively. External TEA (20 mM) effectively eliminated the delayed rectified outward currents. Nifedipine (10 M) suppressed not only Ca2+ current but also outward K+ currents.  相似文献   

9.
The purpose of this study was to characterize the ion conductances, in particular those for Cl and K+, of human sweat duct cells grown in primary culture. Sweat duct cells from healthy individuals were grown to confluence on a dialysis membrane, which was then mounted in a mini-Ussing chamber and transepithelial and intracellular potentials were measured under open-circuit conditions. Under control conditions the epithelia developed mucosa-negative transepithelial potentials, V te, of about –10mV. The apical membrane potential, V a, was –25 mV to –30 mV (n=97) in most cells, but several cells had a higher potential of about –55 mV (n=29). Mucosal amiloride (10 mol/l) hyperpolarized V a from –31±1 mV to a new sustained level of –46±2 mV (n=36). These changes were accompanied by increase in the fractional resistance of the apical membrane, fR a, and decreases of V te and the equivalent short-circuit current, I sc. In amiloride-treated tissues an increase in mucosal K+ concentration (5 mmol/l to 25 mmol/l) depolarized V a by 5±1 mV (n=8), while the same step on the serosal side depolarized V a by 20±2 mV (n=8). A Cl channel blocker 3,5-dichloro-diphenylamine-2-carboxylate DCl-DPC; 10 mol/l) depolarized V a by 5±1 mV (n=6), an effect that was lost after amiloride application. The blocker had no effect from the serosal side. Reduction of mucosal Cl (from 120 to 30 or 10 mmol/l) depolarized V a by 9–11 mV (n=35), an effect that was often followed by a secondary hyperpolarization of 10–30 mV (n=27). Isoproterenol (5 mol/l) increased the V a responses to low Cl such that the depolarizing response was increased from 10±1 mV to 19±2 mV (n=8); the hyperpolarizing response seemed to be reduced. With changes in Cl concentration on the serosal side, V a remained relatively constant at –25 mV, while V te decreased from –8 mV to–3 mV; hence, V bl depolarized by about 5 mV. Taken together, our results show that the human sweat duct epithelium possesses Na+, K+ and Cl conductances on the luminal membrane and Cl and K+ conductances on the basolateral membrane. The Cl conductances on the luminal membrane is sensitive to DCl-DPC, and can be activated by isoproterenol. The small K+ conductance on the luminal membrane could account for some K+ secretion in sweat glands.  相似文献   

10.
Effects of membrane potential, intracellular Ca2+ and adenine nucleotides on glucose-sensitive channels from X organ (XO) neurons of the crayfish were studied in excised inside-out patches. Glucose- sensitive channels were selective to K+ ions; the unitary conductance was 112 pS in symmetrical K+, and the K+ permeability (P K) was 1.3 × 10−13 cm ⋅s−1. An inward rectification was observed when intracellular K+ was reduced. Using a quasi-physiological K+ gradient, a non-linear K+ current/voltage relationship was found showing an outward rectification and a slope conductance of 51 pS. The open-state probability (P o) increased with membrane depolarization as a result of an enhancement of the mean open time and a shortening of the longer period of closures. In quasi-physio- logical K+ concentrations, the channel was activated from a threshold of about −60 mV, and the activation midpoint was −2 mV. P o decreased noticeably at 50 μM internal adenosine 5′-triphosphate (ATP), and single-channel activity was totally abolished at 1 mM ATP. Hill analysis shows that this inhibition was the result of simultaneous binding of two ATP molecules to the channel, and the half-blocking concentration of ATP was 174 μM. Internal application of 5′-adenylylimidodiphosphate (AMP-PNP) as well as glibenclamide also decreased P o. By contrast, the application of internal ADP (0.1 to 2 mM) activated this channel. An optimal range of internal free Ca2+ ions (0.1 to 10 μM) was required for the activation of this channel. The glucose--sensitive K+ channel of XO neurons could be considered as a subtype of ATP-sensitive K+ channel, contributing substantially to macroscopic outward current. Received: 13 November 1995/Received after revision and accepted: 13 December 1995  相似文献   

11.
The conductance properties of the luminal membrane of cells from the thick ascending limb of Henle's loop of rat kidney (TAL) are dominated by K+. In excised membrane patches the luminal K+ channel is regulated by pH changes on the cytosolic side. To examine this pH regulation in intact cells of freshly isolated TAL segments we measured the membrane voltage (V m) in slow-whole-cell (SWC) recordings and the open probability (P o) of K+ channels in the cell-attached nystatin (CAN) configuration, where channel activity and part of V m can be recorded. The pipette solution contained K+ 125 mmol/l and Cl 32 mmol/l. Intracellular pH was determined by 2,7 bis(2-carboxyethyl)-5,(6)-carboxyfluorescein (BCECF) fluorescence. pH changes were induced by the addition of 10 mmol/l NH4 +/NH3 to the bath. In the presence of NH4 +/NH3 intracellular pH acidified by 0.53±0.11 units (n=7). Inhibition of the Na+2Cl K+ cotransporter by furosemide (0.1 mmol/l) reversed this effect and led to a transient alkalinisation by 0.62±0.14 units (n=7). In SWC experiments V m of TAL cells was -72±1 mV (n=70). NH4 +/NH3 depolarised V m by 22±2 mV (n=25). In 11 SWC experiments furosemide (0.1 mmol/l) attenuated the depolarising effect of NH4 + from 24±3 mV to 7±3 mV. Under control conditions the single-channel conductance of TAL K+ channels in CAN experiments was 66±5 pS and the reversal voltage for K+ currents was 70±2 mV (n=35). The P o of K+ channels in CAN patches was reduced by NH4 +/NH3 from 0.45±0.15 to 0.09±0.07 (n=7). NH4 +/NH3 exposure depolarised the zero current voltage of the permeabilised patches by-9.7±3.6 mV (n=5). The results show that TAL K+ channels are regulated by cytosolic pH in the intact cell. The cytosolic pH is acidified by NH4 +/NH3 exposure at concentrations which are physiologically relevant because Na+2ClK+(NH4 +) cotransporter-mediated import of NH4 + exceeds the rate of NH3 diffusion into the TAL. K+ channels are inhibited by this acidification and the cells depolarise. In the presence of furosemide TAL cells alkalinise proving that NH4 + uptake occurs by the Na+2ClK+ cotransporter. The findings that, in the presence of NH4 +/NH3 and furosemide, V m is not completely repolarised and that K+ channels are not activated suggest that the respective K+ channels may in addition to their pH regulation be inhibited directly by NH4 +/NH3.  相似文献   

12.
We have used whole-cell patch-clamp techniques to study the conductances in the plasma membranes of human parathyroid cells. With a KCl-rich pipette solution containing Ca2+ buffered to a concentration of 0.1 mol/l, the zero current potential was –71.1±0.5 mV (n=19) and the whole-cell current/ voltage (I/V) relation had an inwardly rectifying and an outwardly rectifying component. The inwardly rectifying current activated instantaneously on hyperpolarization of the plasma membrane to potentials more negative than –80 mV, and a semi-logarithmic plot of the reversal potential of the inward current (estimated by extrapolation from the range in which it was linear) as a function of extracellular K+ concentration ([K+]o) revealed a linear relation with a slope of 64 mV per decade change in [K+]o, which is not significantly different from the Nernstian slope, demonstrating that the current was carried by K+ ions. The conductance exhibited a square root dependence on [K+]o as has been observed for inward rectifiers in other tissues. The current was blocked by the presence of Ba2+ (1 mmol/l) or Cs+ (1.5 mmol/l) in the bath. The outwardly rectifying current was activated by depolarization of the membrane potential to potentials more positive than –20 mV. It was inhibited by replacement of pipette K+ with Cs+, indicating that it also was a K+ current: it was partially (42%) blocked when tetraethylammonium (TEA+, 10 mmol/l) was added to the bath. The outwardly rectifying, but not the inwardly rectifying K+ current, was regulated by intracellular free Ca2+ concentration ([Ca2+]i) such that increasing [Ca2+]i above 10 nmol/l inhibited the outwardly rectifying current, the half-maximum effect being seen at 1 mol/l. Since it is known that increases in [Ca2+]o produce increases in [Ca2+]i, and that they depolarize parathyroid cells by reducing the membrane K+ conductance, we suggest that it is the reduction of the outwardly rectifying K+ conductance by increases in [Ca2+]i which is responsible for the reduction in K+ conductance seen when [Ca2+]o is increased.  相似文献   

13.
The patch-clamp technique was used to characterize K+ channel activity in the basolateral membrane of isolated crypts from rat distal colon. In cell-attached patches with KCl in the pipette, channels with conductances ranging from 6 pS to 80 pS appeared. With NaCl in the pipette and KCl in the bath in excised inside-out membrane patches a small-conductance channel with a mean conductance of 12±6 pS (n=18) was observed. The channel has been identified as K+ channel by its selectivity for K+ over Na+ and by its sensitivity to conventional K+ channel blockers, Ba2+ and tetraethylammonium (TEA+). Changes of cytosolic pH did not attenuate channel activity. Activity of the 12-pS channel was increased by membrane depolarization and elevated cytosolic Ca2+ concentration. In addition, a maxi K+ channel with a mean conductance of 187±15 pS (n=4) in symmetrical KCl solutions was only occasionally recorded. The maxi K+ channel could be blocked by Ba2+ (5 mmol/l) on the cytosolic side. Using the slow-whole cell recording technique under control conditions, a cell membrane potential of –70±10mV (n=18) was measured. By application of various K+ channel blockers such as glibenclamide, charybdotoxin, apamin, risotilide, Ba2+ and TEA+ in the bath, only Ba2+ and TEA+ depolarized the cell membrane. The present data suggest that the small K+ channel (12 pS) is involved in the maintenance of the cell membrane resting potential.  相似文献   

14.
Ion channels in the basolateral membrane of rabbit parietal cells in isolated gastric glands were studied by the patch clamp technique. Whole-cell current-clamp recordings showed that the membrane potential (E m ) changed systematically as a function of the chloride concentrations of the basolateral bathing solution ([Cl]0), and of the pipette (intracellular) solution. The relationship betweenE m and [Cl]0 was not affected by additions of histamine, dibutyryl-cAMP, 4-acetoamido-4-isothiocyanostilbene-2,2-disulfonic acid and diphenylamine-2-carboxylate. The whole-cell Cl conductance was insensitive to voltage. In cell-attached and cell-free patch membranes, however, single Cl channel opening events could not be observed. The value ofE m depended little on the basolateral K+ concentration, but inward-rectifier K+ currents were observed in the whole-cell configuration, activated by hyperpolarizing pulses and inhibited by extracellular Ba2+. In cell-attached and cell-free patches, openings of single inward-rectifier K+ channels and non-selective cation channels were infrequently recorded. Neither cAMP nor Ca2+ activated these cation channels. The single K+ channel conductance was about 230 pS under the symmetrical high K+ conditions and was inhibited by intracellular tetraethylammonium ions (TEA). The non-selective cation channel had a voltage-independent single conductance of 22 pS and was not inhibited by TEA.  相似文献   

15.
It is well known that neuronal firing properties are determined by synaptic inputs and inherent membrane functions such as specific ionic currents. To characterize the ionic currents of brainstem cardio-respiratory neurons, cells from the hypoglossal (XII) nucleus and the dorsal motor nucleus of the vagus (DMX) were freshly dissociated and membrane ionic currents were studied under whole-cell voltage and current clamp. Both of these neurons showed a TTX-sensitive Na+ current with a much larger current density in XII than DMX neurons. This Na+ current had two (fast and slow) distinct inactivation decay components. The ratio of the magnitudes of the fast to slow component was roughly two-fold greater in DMX than in XII cells. Both DMX and XII neurons also showed a high voltage-activated Ca2+ current, but this current density was significantly greater (three-fold) in DMX than XII neurons. A relatively small amount of low-voltage activated Ca2+ current was also observed in DMX neurons, but not in the majority of XII cells. A transient and a sustained outward current components were observed in DMX cells, but only sustained currents were present in XII neurons. These outward currents had a reversal potential of about − 70 mV with 3 mM external K+ and −30 mV with 25 mM K+, and substitution of K+ with cesium and tetraethylammonium suppressed more than 90% the outward currents, indicating that most outward currents were carried by K+. The transient outward current consisted of two components with onesensitive to 4-aminopyridine and the other to intracellular Ca2+. In XII neurons, BRL 38227 (lemakalim), an ATP-sensitive K+ (KATP) channel activator, increased the sustained K+ currents by 10% of control, and glibenclamide, a KATP channel blocker, decreased the sustained K+ currents by 20%. Evidence for the presence of an inward rectifier K+ current was also obtained from both XII and DMX neurons. These results on XII and DMX neurons indicate that (1) the methods used to dissociate neurons provide a useful means to overcome voltage clamp technical difficulties; (2) ion channel characteristics such as density and biophysical properties of DMX neurons are very different from those of XII neurons; and (3) several newly discovered membrane ionic currents are present in these cells.  相似文献   

16.
Single-channel currents were recorded with the patch-clamp technique from freshly dissociated vertebrate smooth muscle cells from the stomach ofBufo marinus. Of the variety of channels observed, one displayed a large linear conductance of 250 pS (in symmetric 130 mM KCl) which in excised patches was shown to be highly K+ selective. The probability of the channel being open (P o) increased when [Ca2+]i was elevated and/or when the membrane potential was made more positive. Thus, the features of this channel resemble the large-conductance Ca2+-activated K+ channel found in a wide variety of cell types. The voltage sensitivity of the channel was studied in detail. For patches containing a single large-conductance channel a plot ofP o versus membrane potential followed the Boltzman relationship. Increasing [Ca2+]i shifted this plot to the left along the voltage axis to more negative potentials. Both the mean closed time and mean open time varied with potential as a single exponential with almost all of the voltage sensitivity ofP o residing in the mean closed time. These results were verified with a series of experiments carried out at lowP o (<0.1) in patches containing multiple (N) large-conductance channels. Here the ln (NP o) was a linear function of potential with an inverse slope of 9 mV. Almost all of the potential sensitivity lay in the mean closed time the natural log of which was also a linear function of potential with an inverse slope 11 mV in magnitude. The characteristics of this channel as well as the appearance of several of them in almost every patch suggest that they underlie the large peak outward macroscopic current found with whole-cell voltage-clamp studies.  相似文献   

17.
We analyzed the pH dependence of K+ currents recorded with the patch-clamp technique from cultured Schwann cells obtained from mouse dorsal root ganglia. Currents were activated at potentials more positive than ?50 mV which was close to the resting membrane potential. Current amplitudes were affected by a change in extracellular pH (pHo), being increased at alkaline, and decreased at acidic pHo. The strongest effect of a pHo change was observed on currents activated close to the resting membrane potential suggesting a functional role for the pH sensitivity of K+ currents. Analysis of the time course of current activation at different pHo values led to the conclusion that the pH-sensitivity of K+ currents in Schwann cells is due to changes in surface charges shifting the potential sensed by the gating process of the channel. The reversal potential of the currents was not affected by a change in pHo. This observation and the finding that even a strong acidification to a pHo value of 5.0 did not lead to a blockade of the fully activated channel, indicate that the pH-sensitive charges are not located in the channel pore. Under the assumption that pHo changes in a peripheral nerve are associated with nerve activity as in the optic nerve, the pH-sensitive K+ channel in Schwann cells could serve to facilitate the spatial buffering of extracellular K+.  相似文献   

18.
Basolateral membranes of microdissected collagenase-treated fragments of renal tubules from the mouse were examined using the cell-attached and the cell-free variants of the patch-clamp technique. With a K+-rich solution in the pipette, a highly active, inwardly rectifying K+ channel was observed on intact cells of the cortical collecting tubule (CCT). The mean inward and outward conductances were 38.5±3.1 pS and 17.3±1.8 pS, respectively (n=4). In contrast, cell-attached patches were usually inactive when a Na+-rich solution filled the patch pipette. However, another type of channel with a conductance of 20–30 pS exhibited a sparse activity in 4/20 CCT. In excised, inside-out patches, the most frequent channel in CCT had an ohmic unit conductance of 27.1±1.2 pS (n=17), excluded anions (P Cl /P Na=0.09), discriminated little between NH4 +, K+ and Na+ (P NH4 /P Na=1.5;P K /P Na=0.9), and was much less permeable to Ca2+ and Ba2+ than to Na+ (P Ca /P Na=0.09;P Ba /P Na≈0). The cation channel was moderately voltagedependent, showing a decreased open probability (P o) at negative voltages. It was activated by internal calcium (threshold: 1 μmol/l–0.1 mmol/l calcium), and inhibited by the adenine nucleotides ATP, ADP and AMP with half-maximal inhibition ofP o at 1.2 umol/l AMP. As in other cell models, 3′,5′-dichlorodiphenylamine-2-carboxylic acid blocked channel activity when added to the internal surface of the membrane patch. Extending our study to other parts of the renal tubule, we found that the basolateral membranes of the proximal (pars recta), distal convoluted, connecting and outer medullary collecting tubules, the thin descending limb and the medullary thick ascending limb all contained a similar Ca- and ATP-sensitive cation channel. The calcium sensitivity varied from one part to another.  相似文献   

19.
The properties of Ca2+-activated K+ channels in mouse mammary epithelial cells in primary culture were studied by the patch-clamp technique. In cell-attached patches, spontaneous channel openings were sometimes observed; the slope conductance of the currents was about served; the slope conductance of the currents was about 12 pS at negative membrane potentials with a physiological solution (152 mM Na+, 5.4 mM K+) in the pipette. External application of A23187, a calcium ionophore, activated this channel. In excised inside-out patches, the channel was activated by increasing the internal Ca2+ concentration (10–7 to 10–6 M). No voltage dependence of the channel activity was observed. Internal Na+ blocked the outward K+ current in a voltage dependent manner and this block led to the non-linear I–V relationship at positive membrane potentials. The channel was blocked by internal Ba2+ (0.1 mM) and tetracthylammonium (TEA+, 20–50 mM). Ba2+ reduced the open probability but not the single channel conductance, whereas TEA+ reduced the single channel conductance. The single channel conductance of this channel, measured from the inward current with a high-K+ solution (150 mM K+) in the pipette, was large (about 40 pS), and showed inward rectification. These results suggest that this channel is different from the usual small conductance Ca2+-activated K+ channels observed in many other cells.  相似文献   

20.
Intracellular microelectrode techniques were used together with inhibitors of Na+ transport (amiloride) and H+ transport (acetazolamide and SITS1) to identify principal cells and intercalated cells in the outer stripe of the rabbit outer medullary collecting duct. The principal cell (n=9) had a basolateral membrane voltage (V bl) of –64.7±3.2 mV, a fractional resistance of the apical membrane (fR a=R a/R a+R bl) of 0.82±0.02, and a K+-selective basolateral membrane. Luminal amiloride hyperpolarizedV bl by 10.3±2.1 mV and increasedfR a to near unity (n=7). Bath acetazolamide and SITS were without effect on these parameters. The intercalated cell (n=5) had aV bl of –25.0±3.2 mV, afR a of 0.99±0.01, and a Cl-selective basolateral membrane. Bath acetazolamide or SITS hyperpolarizedV bl by 26.4±8.2 mV. Luminal amiloride did not alterV bl of this cell. The differential effects of the inhibitors also indicate that the principal and intercalated cells are probably not directly coupled electrically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号