首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the role of the corpus callosum (CC) in midline binocular integration, the effects of late callosotomy and congenital CC agenesis on the ability to perceive dichoptic plaid motion was assessed. Coherent motion was well perceived at all locations in the visual field under dioptic viewing but not along the vertical meridian (VM) when the components were dichoptically presented. This deficit was totally abolished in the agenesis subject and reduced in the callosotomized individual when stimulus size was increased beyond the VM. Electrophysiological correlates were also examined by recording visual evoked potentials and these showed that the P1/N2 components were abnormal for small dichoptic stimuli presented on the midline. These findings attest to the importance of the contribution of CC to midline binocular integration and the effects of cerebral plasticity.  相似文献   

2.
The neural mechanisms underlying the integration and segregation of motion signals are often studied using plaid stimuli. These stimuli consist of two spatially coincident dynamic gratings of differing orientations, which are either perceived to move in two unique directions or are integrated by the visual system to elicit the percept of a checkerboard moving in a single direction. Computations pertaining to the motion of the individual component gratings are thought to take place in striate cortex (V1) whereas motion integration is thought to involve neurons in dorsal stream extrastriate visual areas, particularly V5/MT. By combining a psychophysical task that employed plaid stimuli with 1 Hz offline repetitive transcranial magnetic stimulation (rTMS), we demonstrated a double dissociation between striate and extrastriate visual cortex in terms of their contributions to motion integration. rTMS over striate cortex increased coherent motion percepts whereas rTMS over extrastriate cortex had the opposite effect. These effects were robust directly after the stimulation administration and gradually returned to baseline within 15 minutes. This double dissociation is consistent with previous patient data and the recent hypothesis that both coherent and transparent motion percepts are supported by the visual system simultaneously and compete for perceptual dominance. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Research on visual perception in Autism Spectrum Disorder (ASD) tries to reveal the underlying mechanisms of aberrant local and global processing. Global motion perception is one way to study this aspect of ASD. We used plaid motion stimuli, which can be perceived as a coherently moving pattern, requiring feature integration, or as two transparent gratings sliding over each other. If global motion detection is impaired in ASD, this would lead to a decrease of the total time that a coherent pattern is perceived. However, in contrast to other studies in the literature, our results gave no evidence of impaired global motion perception in people with ASD. A reconciliation of the different outcomes is proposed based on spatial frequency processing in ASD.  相似文献   

4.
We compared responses of neurons, recorded in striate cortex (area V1) of awake, fixating monkeys, to a single drifting grating with those to a 'plaid' pattern comprised of two superimposed drifting gratings separated in orientation by 90 degrees. Five out of 54 (9%) of V1 direction selective neurons responded to the direction of motion of the whole pattern [pattern motion (PM) selectivity]. Tuning curves for plaid stimuli were similar in both optimum direction and width of tuning to those for single gratings. Twenty nine out of 54 (54%) responded simply to the motion of individual orientated gratings within the pattern [component motion (CM) selectivity]. The remaining 37% (20/54) neurons were unclassified. In control experiments, 39 direction selective neurons were recorded in area V1 of anaesthetized monkey and cats. Unlike area V1 in behaving monkeys, none of these neurons exhibited PM selectivity to the drifting plaids. Twenty eight out of 39 (72%) of them responded to the direction of the component gratings and were classified as CM selectivity. Our results indicate that although most V1 neurons are CM selective, as described in anaesthetized animals, a subpopulation is clearly PM selective in behaving monkeys, reflecting integration of locally derived motion signals. Neurons in V1 therefore carry signals that may contribute to pattern motion processing and perception. This perceptual interpretation in V1 might depend much more critically on information integration mechanisms that only function properly in awake, perceiving animals.  相似文献   

5.
Neurons in area MT are sensitive to the direction of motion of gratings and of plaids made by summing 2 gratings moving in different directions. MT component direction-selective (CDS) neurons respond to the individual gratings of a plaid. Pattern direction-selective (PDS) neurons on the other hand, combine component information and respond selectively to the resulting pattern motion. Adding a third grating creates a "triplaid," which contains 3 grating and 3 plaid motions and is perceptually multistable. To examine how direction-selective mechanisms parse the motion signals in triplaids, we recorded MT responses of anesthetized and awake macaques to stimuli in which 3 identical moving gratings whose directions were separated by 120° were introduced in 3 successive epochs, going from grating to plaid to triplaid. CDS and PDS neurons-selected based on their responses to gratings and plaids-had strikingly different tuning properties in the triplaid epoch. CDS neurons were strongly tuned for the direction of motion of individual gratings, but PDS neurons nearly lost their selectivity for either the gratings or the plaids in the stimulus. We explain this reduced motion selectivity with a model that relates pattern selectivity of PDS neurons to a broad pooling of V1 afferents with a near-cosine weighting profile. Because PDS neurons signal both component and pattern motion in gratings and plaids, their reduced selectivity for motion in triplaids may be what makes these stimuli perceptually multistable.  相似文献   

6.
Following adaptation to a moving stimulus, the introduction of a stationary pattern creates the illusion of motion. This phenomenon, known as the motion aftereffect (MAE), can be delayed by placing a blank storage interval between the adapting and test stimuli. Human motion selective area MT/V5 has been proposed as the likely neural origin of MAEs. To examine the role of MT/V5 in perceiving and storing MAEs, we applied repetitive transcranial magnetic stimulation (rTMS) to this area during a 10 s storage interval and while subjects perceived illusory motion. Our results show that rTMS disrupts perception of the MAE when it is delivered in the early parts of the storage period and when it is applied during the perceptual MAE itself. Stimulation of control regions corresponding to V1 or Cz did not affect the MAE. In addition, magnetic stimulation of dorsolateral prefrontal and posterior parietal cortices did not disrupt MAE perception. These data provide experimental support for the notion that MT/V5 subserves perception and storage of the motion aftereffect.  相似文献   

7.
Plaid stimuli are often used to investigate the mechanisms involved in the integration and segregation of motion information. Considering the perceptual importance of such mechanisms, only a very limited number of visual brain areas have been found to be specifically involved in motion integration. These are the human (h)MT+ complex, area V3 and the pulvinar. The hMT+ complex can be functionally subdivided into two separate areas, middle temporal area (MT) and medial superior temporal area (MST); however, it is currently unclear whether these distinct sub-regions have different responses to plaid stimuli. To address this issue we used functional magnetic resonance imaging to quantify the relative response of MT and MST to component and pattern motion. Participants viewed plaid stimuli that were constrained to result in the perception of either component motion (segregation of motion information) or pattern motion (integration of motion information). MT/MST segregation was achieved using a moving dot stimulus that allowed stimulation of each visual hemifield either in unison or separately. We found pattern motion selective responses in both MT and MST. Consistent with previous reports, activity indicative of pattern motion selectivity was also found in the pulvinar as well as in other extrastriate areas. These results demonstrate that MT, MST and the pulvinar are involved in the complex motion integration mechanisms that are triggered by plaid stimuli. This reinforces the concept that integrative computations take place in a distributed neuronal circuit both in cortical and sub-cortical networks.  相似文献   

8.
Feature-based attention enhances visual processing and improves perception, even for visual features that we are not aware of. Does feature-based attention also modulate motor behavior in response to visual information that does or does not reach awareness? Here we compare the effect of feature-based attention on motion perception and smooth-pursuit eye movements in response to moving dichoptic plaids--stimuli composed of two orthogonally drifting gratings, presented separately to each eye--in human observers. Monocular adaptation to one grating before the presentation of both gratings renders the adapted grating perceptually weaker than the unadapted grating and decreases the level of awareness. Feature-based attention was directed to either the adapted or the unadapted grating's motion direction or to both (neutral condition). We show that observers were better at detecting a speed change in the attended than the unattended motion direction, indicating that they had successfully attended to one grating. Speed change detection was also better when the change occurred in the unadapted than the adapted grating, indicating that the adapted grating was perceptually weaker. In neutral conditions, perception and pursuit in response to plaid motion were dissociated: While perception followed one grating's motion direction almost exclusively (component motion), the eyes tracked the average of both gratings (pattern motion). In attention conditions, perception and pursuit were shifted toward the attended component. These results suggest that attention affects perception and pursuit similarly even though only the former reflects awareness. The eyes can track an attended feature even if observers do not perceive it.  相似文献   

9.
《Clinical neurophysiology》2014,125(4):798-804
ObjectivesBehavioural observations provided by the waterfall illusion suggest that motion perception is mediated by a comparison of responsiveness of directional selective neurones. These are proposed to be optimally tuned for motion detection in different directions. Critically however, despite the behavioural observations, direct evidence of this relationship at a cortical level in humans is lacking. By utilising the state dependant properties of transcranial magnetic stimulation (TMS), one can probe the excitability of specific neuronal populations using the perceptual phenomenon of phosphenes.MethodWe exposed subjects to unidirectional visual motion adaptation and subsequently simultaneously measured early visual cortex (V1) excitability whilst viewing motion in the adapted and non-adapted direction.ResultFollowing adaptation, the probability of perceiving a phosphene whilst viewing motion in the adapted direction was diminished reflecting a reduction in V1 excitability. Conversely, V1 excitability was enhanced whilst viewing motion in the opposite direction to that used for adaptation.ConclusionOur results provide support that in humans a process of reciprocal inhibition between oppositely tuned directionally selective neurones in V1 facilitates motion perception.SignificanceThis paradigm affords a unique opportunity to investigate changes in cortical excitability following peripheral vestibular disorders.  相似文献   

10.
It is commonly believed that the complexity of visual stimuli represented by individual neurons increases towards higher cortical areas. However, even in early visual areas an individual neuron's response is influenced by stimuli presented outside its classical receptive field. Thus, it has been proven difficult to characterize the coding of complex stimuli at the level of single neurons. We therefore investigated population responses using optical imaging in cat area 18 to complex stimuli, plaids. Plaid stimuli are composed of two superimposed gratings moving in different directions. They may be perceived as either two separate surfaces or as a global pattern moving in intermediate direction to the components' direction of motion. We found that in addition to activity maps representing the individual components' motion, plaid stimuli produced activity distributions matching the predictions from a pattern-motion model in central area 18. Thereby, relative component- and pattern-like modulations followed the degree of psychophysical pattern bias in the stimulus. Thus, our results strongly indicate that area 18 exhibits a substantial response to pattern-motion signals at the population level suggesting the presence of intrinsic or extrinsic mechanisms that allow for integration of motion responses from far outside the classical receptive field.  相似文献   

11.
Many animals estimate their self-motion and the movement of external objects by exploiting panoramic patterns of visual motion. To probe how visual systems process compound motion patterns, superimposed visual gratings moving in different directions, plaid stimuli, have been successfully used in vertebrates. Surprisingly, nothing is known about how visually guided insects process plaids. Here, we explored in the blowfly how the well characterized yaw optomotor reflex and the activity of identified visual interneurons depend on plaid stimuli. We show that contrary to previous expectations, the yaw optomotor reflex shows a bimodal directional tuning for certain plaid stimuli. To understand the neural correlates of this behavior, we recorded the responses of a visual interneuron supporting the reflex, the H1 cell, which was also bimodally tuned to the plaid direction. Using a computational model, we identified the essential neural processing steps required to capture the observed response properties. These processing steps have functional parallels with mechanisms found in the primate visual system, despite different biophysical implementations. By characterizing other visual neurons supporting visually guided behaviors, we found responses that ranged from being bimodally tuned to the stimulus direction (component-selective), to responses that appear to be tuned to the direction of the global pattern (pattern-selective). Our results extend the current understanding of neural mechanisms of motion processing in insects, and indicate that the fly employs a wider range of behavioral responses to multiple motion cues than previously reported.  相似文献   

12.
Motion blindness (MB) or akinetopsia is the selective disturbance of visual motion perception while other features of the visual scene such as colour and shape are normally perceived. Chronic and transient forms of MB are characterized by a global deficit of direction discrimination (pandirectional), which is generally assumed to result from damage to, or interference with, the motion complex MT+/V5. However, the most characteristic feature of primate MT-neurons is not their motion specificity, but their preference for one direction of motion (direction specificity). Here, we report that focal electrical stimulation in the human posterior temporal lobe selectively impaired the perception of motion in one direction while the perception of motion in other directions was completely normal (unidirectional MB). In addition, the direction of MB was found to depend on the brain area stimulated. It is argued that direction specificity for visual motion is not only represented at the single neuron level, but also in much larger cortical units.  相似文献   

13.
A sense of motion can be elicited by the movement of both luminance- and texture-defined patterns, what is commonly referred to as first- and second-order, respectively. Although there are differences in the perception of these two classes of motion stimuli, including differences in temporal and spatial sensitivity, it is debated whether common or separate direction-selective mechanisms are responsible for processing these two types of motion. Here, we measured direction-selective responses to luminance- and texture-defined motion in the human visual cortex by using functional MRI (fMRI) in conjunction with multivariate pattern analysis (MVPA). We found evidence of direction selectivity for both types of motion in all early visual areas (V1, V2, V3, V3A, V4, and MT+), implying that none of these early visual areas is specialized for processing a specific type of motion. More importantly, linear classifiers trained with cortical activity patterns to one type of motion (e.g., first-order motion) could reliably classify the direction of motion defined by the other type (e.g., second-order motion). Our results suggest that the direction-selective mechanisms that respond to these two types of motion share similar spatial distributions in the early visual cortex, consistent with the possibility that common mechanisms are responsible for processing both types of motion.  相似文献   

14.
The avian retinothalamofugal pathway reaches the telencephalon in an area known as visual wulst. A close functional analogy between this area and the early visual cortex of mammals has been established in owls. The goal of the present study was to assess quantitatively the directional selectivity and motion integration capability of visual wulst neurones, aspects that have not been previously investigated. We recorded extracellularly from a total of 101 cells in awake burrowing owls. From this sample, 88% of the units exhibited modulated directional responses to sinusoidal gratings, with a mean direction index of 0.74 +/- 0.03 and tuning bandwidth of 28 +/- 1.16 degrees . A direction index higher than 0.5 was observed in 66% of the cells, thereby qualifying them as direction selective. Motion integration was tested with moving plaids, made by adding two sinusoidal gratings of different orientations. We found that 80% of direction-selective cells responded optimally to the motion direction of the component gratings, whereas none responded to the global motion of plaids, whose direction was intermediate to that of the gratings. The remaining 20% were unclassifiable. The strength of component motion selectivity rapidly increased over a 200 ms period following stimulus onset, maintaining a relatively sustained profile thereafter. Overall, our data suggest that, as in the mammalian primary visual cortex, the visual wulst neurones of owls signal the local orientated features of a moving object. How and where these potentially ambiguous signals are integrated in the owl brain might be important for understanding the mechanisms underlying global motion perception.  相似文献   

15.
Colour constancy and conscious perception of changes of illuminant   总被引:1,自引:0,他引:1  
A sudden change in illuminant (e.g., the outcome of turning on a tungsten light in a room illuminated with dim, natural daylight) causes a "global" change in perceived colour which subjects often recognise as a change of illuminant. In spite of this distinct, global change in the perceptual appearance of the scene caused by significant changes in the wavelength composition of the light reflected from different objects under the new illuminant, the perceived colour of the objects remains largely unchanged and this cornerstone property of human vision is often described as instantaneous colour constancy (ICC). ICC mechanisms are often difficult to study. The generation of appropriate stimuli to isolate ICC mechanisms remains a difficult task since the extraction of colour signals is also confounded in the processing of spatial chromatic context that leads to ICC. The extraction of differences in chromaticity that describe spatial changes in the wavelength composition of the light on the retina is a necessary operation that must precede colour constancy computations. A change of illuminant or changes in the spectral reflectance of the elements that make up the scene under a constant illuminant cause spatial changes in chromatic context and are likely to drive colour constancy mechanisms, but not exclusively. The same stimulus changes also cause differences in local luminance contrast and overall light flux changes, stimulus attributes that can activate different areas of the visual cortex. In order to address this problem we carried out a series of dichoptic experiments designed to investigate how the colour signals from the two eyes are combined in dichoptically viewed Mondrians and the extent to which the processing of chromatic context in monocularly driven neurons contributes to ICC. The psychophysical findings show that normal levels of ICC can be achieved in dichoptic experiments, even when the subject remains unaware of any changes of illuminant. Functional MRI (fMRI) experiments using new stimuli that produce stimulation of colour constancy mechanisms only in one condition with little or no difference in the activity generated in colour processing mechanisms in both test and reference conditions were also carried out. The results show that the processing of ICC signals generates strong activation in V1 and the fusiform colour area (V4, V4A). Significant activation was also observed in areas V2 and V3.  相似文献   

16.
Neural processing is disrupted during suppression phases of binocular rivalry, as evidenced by the temporary invisibility of an otherwise complex, high-contrast visual stimulus. This paper investigates the locus of this disruption relative to the processing of information about image motion. In one experiment, observers tracked binocular rivalry between a stationary textured field and a plaid composed of 2 drifting cosine gratings, with the angle between components varied to produce different pattern speeds. (Plaid speed is given by the ratio of the component speed to the cosine of the angle between the 2 directions of motion.) Predominance of the moving plaid increased with pattern speed, even though the speed of the individual components remained constant. Control measures verified that this influence of plaid speed was not attributable to specific component orientations. Information about coherent motion influences the rivalry process, implying that the site of coherent motion analysis, presumably the middle temporal area (MT), received input during dominance phases of rivalry. A second experiment investigated the effect of suppression on the processing of complex, nonlinear motion. Observers tracked rivalry phases for a rotating spiral, then indicated the duration of the subsequently perceived spiral aftereffect (SAE) for both rivalry and nonrivalry conditions. The SAE was reduced when adaptation occurred under the rivalry condition, with aftereffect duration proportional to the total duration of spiral visibility during adaptation. Earlier work places rivalry after the site of the linear motion aftereffect, and the present results show that rivalry suppression occurs prior to the site of spiral motion processing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We studied the motion perception of a patient, AMG, who had a lesion in the left occipital lobe centered on visual areas V3 and V3A, with involvement of underlying white matter. As shown by a variety of psychophysical tests involving her perception of motion, the patient was impaired at motion discriminations that involved the detection of small displacements of random-dot displays, including local speed discrimination. However, she was unimpaired on tests that required spatial and temporal integration of moving displays, such as motion coherence. The results indicate that she had a specific impairment of the computation of local but not global motion and that she could not integrate motion information across different spatial scales. Such a specific impairment has not been reported before.  相似文献   

18.
Guo K  Benson PJ 《Neuroreport》1999,10(2):387-392
Involuntary eye movements to foveal stimulation were measured in a monkey while it performed a fixation task. Second-order plaid motion generated higher velocities of eye movements than did first-order gratings, yet the latency of the early following response was no different for grating or plaid motion. Nevertheless, early suppressed ocular following responses to isoluminant motion continue to be titrated by stimulus velocity and spatial frequency. Motion defined by 60% luminance contrast gratings and plaids generated a motion signal gain of 60% over chrominance motion. The 20% longer latency of eye movements to chrominance motion may reflect the longer conduction latency of the parvocellular channel and an additional stage in cortical processing en route to motion areas and eye movement control.  相似文献   

19.
Sun F  Tong J  Yang Q  Tian J  Hung GK 《Brain research》2002,944(1-2):56-64
Previous dichoptic experiments showed that dissimilar stationary pattern stimuli resulted in the perception of binocular rivalry, whereas oppositely-directly moving grating stimuli resulted in alternating optokinetic nystagmus (OKN) and the perception of binocular motion rivalry. The present study extended these dichoptic motion experiments by introducing obliquely-oriented targets with the aim of probing further the cortical mechanisms underlying binocular processing of motion. Two-dimensional eye movements were recorded along with their subjective perceptual responses. The stimuli consisted of two tilted gratings, one moving diagonally upwards and to the right (UR, 45 degrees ) and the other diagonally upwards and to the left (UL, 135 degrees ), which were presented dichoptically to subjects under two stimulus modes. For the non-exchange mode, the OKN slow phases exhibited three types of directional shifts. Two of these directional shifts tracked the stimuli (i.e. UR or UL), whereas the third moved purely upwards (UP). Since physically there was no upward-moving target, the OKN and perceptual responses appeared to be associated with a perceptual interocular grouping of the two dichoptic stimuli in their reassembled vector-sum direction. The OKN shifts were also found to be highly correlated with the psychophysical responses of motion perception. For the rapid-exchange mode, in which the stimuli were rapidly exchanged between the two eyes, the OKN slow phases exhibited primarily two types of directional shifts, UR and UL, but no UP responses for most subjects. It also appeared that these two coherent motion percepts, UL and UR, were interocularly regrouped from the exchanged stimuli. Moreover, the lack of perceptual grouping to create an UP response in the rapid-exchange mode indicated that temporal integration of at least 200 ms was necessary for the development of a reassembled vector-sum-direction motion percept. The findings under both stimulus modes support the stimulus-feature rivalry hypothesis, in which higher cortical centers mediate interocular perceptual grouping and the associated motor response.  相似文献   

20.
The perception of action is associated with increased activity in motor regions, implicating such regions in the recognition, understanding and imitation of actions. We examined the possibility that perception of speech, both auditory and visual, would also result in changes in the excitability of the motor system underlying speech production. Transcranial magnetic stimulation was applied to the face area of primary motor cortex to elicit motor-evoked potentials in the lip muscles. The size of the motor-evoked potentials was compared under the following conditions: listening to speech, listening to non-verbal sounds, viewing speech-related lip movements, and viewing eye and brow movements. Compared to control conditions, listening to and viewing speech enhanced the size of the motor-evoked potential. This effect was only seen in response to stimulation of the left hemisphere; stimulation of the right hemisphere produced no changes in motor-evoked potentials in any of the conditions. In a control experiment, the size of the motor-evoked potentials elicited in the muscles of the right hand did not differ among conditions, suggesting that speech-related changes in excitability are specific to the lip muscles. These results provide evidence that both auditory and visual speech perception facilitate the excitability of the motor system involved in speech production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号