首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The success of clinically relevant immunotherapies requires reversing tumor-induced immunosuppression. Here we demonstrated that linear polyethylenimine-based (PEI-based) nanoparticles encapsulating siRNA were preferentially and avidly engulfed by regulatory DCs expressing CD11c and programmed cell death 1–ligand 1 (PD-L1) at ovarian cancer locations in mice. PEI-siRNA uptake transformed these DCs from immunosuppressive cells to efficient antigen-presenting cells that activated tumor-reactive lymphocytes and exerted direct tumoricidal activity, both in vivo and in situ. PEI triggered robust and selective TLR5 activation in vitro and elicited the production of hallmark TLR5-inducible cytokines in WT mice, but not in Tlr5–/– littermates. Thus, PEI is a TLR5 agonist that, to our knowledge, was not previously recognized. In addition, PEI-complexed nontargeting siRNA oligonucleotides stimulated TLR3 and TLR7. The nonspecific activation of multiple TLRs (specifically, TLR5 and TLR7) reversed the tolerogenic phenotype of human and mouse ovarian tumor–associated DCs. In ovarian carcinoma–bearing mice, this induced T cell–mediated tumor regression and prolonged survival in a manner dependent upon myeloid differentiation primary response gene 88 (MyD88; i.e., independent of TLR3). Furthermore, gene-specific siRNA-PEI nanocomplexes that silenced immunosuppressive molecules on mouse tumor-associated DCs elicited discernibly superior antitumor immunity and enhanced therapeutic effects compared with nontargeting siRNA-PEI nanocomplexes. Our results demonstrate that the intrinsic TLR5 and TLR7 stimulation of siRNA-PEI nanoparticles synergizes with the gene-specific silencing activity of siRNA to transform tumor-infiltrating regulatory DCs into DCs capable of promoting therapeutic antitumor immunity.  相似文献   

2.
《Molecular therapy》2023,31(7):2240-2256
  1. Download : Download high-res image (114KB)
  2. Download : Download full-size image
  相似文献   

3.
《Molecular therapy》2022,30(8):2800-2816
  1. Download : Download high-res image (100KB)
  2. Download : Download full-size image
  相似文献   

4.
Interleukin-18 is a potent cytokine expressed early in the immune response following cleavage in activated composes. We have investigated the in vivo antitumor effects of intratumoral (i.t.) administration of an adenoviral vector expressing biologically active murine interleukin (IL)-18 (Ad.PTH.IL-18). Substantial antitumor effects were observed when established MCA205 fibrosarcoma was treated in syngeneic immunocompetent mice with intratumoral injection of Ad.PTH.IL-18 (P = 0.0025 versus control vector treatment), generating potent cytotoxic T lymphocytes (CTLs) in culture. In contrast, the antitumor effect was absent, and cytotoxic activity was significantly less (P = 0.021) in gld mice (Fas ligand deficient). To enhance the in vivo antitumor activity of the treatment using Ad.PTH.IL-18, we co-injected immature DC and Ad.PTH.IL-18 i.t. into established, day 7 MCA205 fibrosarcoma and MC38 adenocarcinoma. Co-injection of both Ad.PTH.IL-18 and DC was associated with complete abrogation of injected tumors. Furthermore, the antitumor effects were also observed on distant tumors inoculated i.d. in the contralateral flank of the animal. The induced cytolytic activity was tumor-specific and MHC class I-restricted. As we have previously demonstrated in vitro (Tanaka F et al, Cancer Res 2000; 60: 4838-4844) and consistent with these findings in vivo, NK, T and dendritic cells coactivately mediate the IL-18 enhanced antitumor effect. This study suggests that the coactivate strategy could be used in the clinical setting to treat patients with cancer. do  相似文献   

5.
6.
Song W  Tong Y  Carpenter H  Kong HL  Crystal RG 《Gene therapy》2000,7(24):2080-2086
Dendritic cells (DC) are potent antigen-presenting cells that play a critical role in the initiation of cellular immune responses. Using a BALB/c syngeneic colon carcinoma cell line expressing a model tumor antigen beta-galactosidase (betagal), we previously reported (Song et al, J Exp Med 1997; 186: 1247-1256) that immunization of mice with a single injection of DCs genetically modified with an adenovirus vector expressing betagal confers potent protection against a lethal intravenous tumor challenge, as well as suppression of pre-established lung tumors, resulting in a significant survival advantage. In the present study, we have addressed the question: how long does the memory of tumor antigen- specific immunity persists after DC priming in vivo using this genetically modified DC-based cancer vaccination strategy? To accomplish this, two groups of mice were evaluated: (1) mice surviving >400 days following protection from an initial intravenous tumor challenge after immunization with DC genetically modified to express betagal; and (2) mice surviving >300 days that had previously demonstrated regression of pre-established lung tumors after treatment with DC immunization. By analyzing the antigen-specific cytotoxic T lymphocyte response and challenging these long-term survival mice with a second subcutaneous tumor administration, the data demonstrate that a single administration of DC genetically modified to express a model antigen induces long-lasting, antigen-specific antitumor immunity in both naive and tumor-bearing hosts, observations that have important implications in the development of genetically modified DC-based antitumor vaccination strategies. Gene Therapy (2000) 7, 2080-2086.  相似文献   

7.
《Molecular therapy》2003,7(4):498-505
Dendritic cells (DCs) are potent antigen-presenting cells capable of inducing primary T-cell responses. Several immunotherapy treatment strategies involve manipulation of DCs, both in vivo and ex vivo, to promote the immunogenic presentation of tumor-associated antigens. In this study, an electrofusion protocol was developed to induce fusion between tumor cells and allogeneic bone marrow-derived DCs. Preimmunization with irradiated electrofusion product was found to provide partial to complete protection from tumor challenge in the murine Renca renal cell carcinoma model and the B16 and M3 melanoma models. Vaccinated survivors developed specific immunological memory and were able to reject a subsequent rechallenge with the same tumor cells but not a syngeneic unrelated tumor line. Antitumor protection in the B16 model was accompanied by the development of a polyclonal cytotoxic T-lymphocyte response against defined melanoma-associated antigens. The therapeutic potential of this type of approach was suggested by the ability of a Renca-DC electrofusion product to induce tumor rejection in a substantial percentage of hosts (60%) bearing pre-established tumor cells. These results indicate that treatment with electrofused tumor cells and allogeneic DCs is capable of inducing a potent antitumor response and could conceivably be applied to a wide range of cancer indications for which tumor-associated antigens have not been identified.  相似文献   

8.
The immunotherapy of cancer is predicated on the belief that it is possible to generate a clinically meaningful antitumor response that provides patient benefit, such as improvement in the time to progression or survival. Indeed, immunotherapeutics with dendritic cells (DC) as antigen-presenting delivery vehicles for cell-based vaccines have already improved patient outcome against a wide range of tumor types (1-9). This approach stimulates the patient's own antitumor immunity through the induction or enhancement of T-cell immunity. It is generally believed that the activity of cytotoxic T lymphocytes (CTL), the cells directly responsible for killing the tumor cells in vivo, are directed by DC. Therefore, the goal of many current designs for DC-based vaccines is to induce strong tumor-specific CTL responses in patients with cancer. In practice, most studies for DC-based cancer vaccine development have focused on the development of methods that can effectively deliver exogenous tumor antigens to DC for cross-priming of CD8+ T cells through the endogenous MHC class I processing and presentation pathway (10). To date, many methods have been developed or evaluated for the delivery of defined and undefined tumor antigens to DC. This review provides a brief summary on these methods, the techniques used in these methods, as well as the advantages and disadvantages of each method.  相似文献   

9.
Malignant ascitis (MA) is a highly intractable and immunotherapy-resistant state of advanced gastrointestinal and ovarian cancers. Using a murine model of MA with CT26 colon cancer cells, we here determined that the imbalance between the VEGF-A/vascular permeability factor and its decoy receptor, soluble fms-like tryrosine kinase receptor-1 (sFLT-1), was a major cause of MA resistance to dendritic cell (DC)-based immunotherapy. We found that the ratio of VEGF-A/sFLT-1 was increased not only in murine but also in human MA, and F-gene-deleted recombinant Sendai virus (rSeV/dF)-mediated secretion of human sFLT-1 by DCs augmented not only the activity of DCs themselves, but also dramatically improved the survival of tumor-bearing animals associated with enhanced CTL activity and its infiltration to peritoneal tumors. These findings were not seen in immunodeficient mice, indicating that a VEGF-A/sFLT-1 imbalance is critical for determining the antitumor immune response by DC-vaccination therapy against MA.  相似文献   

10.
Dendritic cells (DC) that have been genetically modified to express cytokine genes may be novel tools for inducing antitumor immune responses. In the present study, the pMX retroviral vector was modified to express the mouse IL-2 (mIL-2pMX) and mouse IL-12 (mIL-12pMX) genes. Supernatants from 293 cells transfected with pMX retroviral vectors were harvested and used to transduce mouse lin- bone marrow (BM) progenitor cells. After 48 h co-culture with pseudotype retrovirus, BM cells were cultured for 12 days in the presence of mGM-CSF, mSCF and mTNF-alpha to obtain a DC-enriched fraction. Flow cytometric analysis showed that GFP protein expression in these cultures was 20-40% and that 40-50% of the cultured BM cells were positive for the DC marker, DEC205. About 60% of cells sorted for DEC205 also expressed GFP. The supernatants of DC-mIL-2 and DC-mIL-12 cultured for 48 h contained 5.2 +/- 0.15 and 33.9 +/- 2.6 ng cytokine protein per milliliter, respectively. Intratumoral injection of DC-mIL-2 or DC-mIL-12 on days 8 and 15 after the intradermal injection of 1 x 105 B16F10 cells, resulted in a significant reduction in tumor size by day 21, as compared with mice treated with unmodified DC or DC-GFP. Longer term analysis as assessed at day 42 revealed that B16 tumor-bearing mice treated with cytokine gene-modified DC survived significantly longer than mice from other groups. Spleen cells obtained from DC-treated mice were specifically sensitized for the generation of CTL by subsequent restimulation with gene-modified DC. These results suggested that DC genetically modified to express IL-2 or IL-12 can induce potent antitumor responses against well-established, poorly immunogenic B16F10 tumors. Gene Therapy (2000) 7, 2113-2121.  相似文献   

11.
Dendritic cells (DCs) are antigen-presenting cells that play an important role in antitumor immunity. Several studies have reported that DCs pulsed with RNA from tumor cells have the ability to suppress tumors, but the details regarding the function and the immune-mechanism of DCs transfected with RNA remain to be elucidated. In this study, we investigated the transfection efficiency of RNA into DCs, and the functional modification and the antitumor efficacy of DCs pulsed with tumor-derived RNA. After the transfection of tumor-derived RNA into DCs cultured from the bone marrow of mice, pulsed DCs exhibited a high expression of both MHC antigens and CD86 on the cell surface as well as cultured DCs, and had a stronger ability both to present antigen on the MHC antigens and to stimulate T cells compared with DCs without transfection. DCs could sufficiently translate luciferase encoding RNA into luciferase proteins, and luciferase protein was expressed up to 12 hours in pulsed DCs. The DCs pulsed with tumor-derived RNA could elite a potent induction of cytotoxic T lymphocytes against autologous tumors, but not lysis against syngeneic normal cells. RNA-pulsed DCs exhibited a significant antitumor immunity in animal model. In conclusion, DCs could sufficiently uptake exogenous tumor-derived RNA, and consequently grow to be an intermediate maturate type, and induce potent T-cell stimulation and fully cause an antitumor effect in vivo. Therapy with DCs pulsed with tumor-derived RNA is sufficiently effective and safe, and thus it is considered to be clinically useful for tumor-immunotherapy.  相似文献   

12.
In two murine lung cancer models adenoviral interleukin 7-transduced dendritic cells (DC-AdIL-7) were administered intratumorally, resulting in complete tumor regression. Intratumoral DC-AdIL-7 therapy was as effective as DCs pulsed with specific tumor peptide antigens. Comparison with other intratumoral therapies including recombinant IL-7, AdIL-7 vector alone, unmodified DCs, IL-7-transduced fibroblasts, or DCs pulsed with tumor lysates revealed DC-AdIL-7 therapy to be superior in achieving antitumor responses and augmenting immunogenicity. Mice with complete tumor eradication as a result of either DC-AdIL-7 or AdIL-7 therapy were rechallenged with parental tumor cells 30 days or more after complete tumor eradication. All the DC-AdIL-7-treated mice completely rejected a secondary rechallenge, whereas the AdIL-7-treated mice had sustained antitumor effects in only 20-25% of the mice. DC-AdIL-7 therapy was more effective than AdIL-7 in achieving systemic antitumor responses and enhancing immunogenicity. After complete tumor eradication, those mice treated with DC-AdIL-7 evidenced significantly greater release of splenocyte GM-CSF and IFN-gamma than did controls or AdIL-7-treated mice. After intratumoral injection, gene-modified DCs trafficked from the tumor to lymph node sites and spleen. DCs were detected in nodal tissues for up to 7 days after intratumoral injection. We report that intratumoral DC-AdIL-7 leads to significant systemic immune responses and potent antitumor effects in murine lung cancer models.  相似文献   

13.
Chen Y  Emtage P  Zhu Q  Foley R  Muller W  Hitt M  Gauldie J  Wan Y 《Gene therapy》2001,8(4):316-323
Overexpression of ErbB-2/neu occurs in 20-30% of patients with breast cancer and indicates a poor prognosis. The presence of a detectable immune response to ErbB-2/neu in some patients suggests that this oncogene may be a useful target for vaccine therapy. We evaluated whether genetic immunization using dendritic cells (DC) transduced ex vivo with an adenovirus expressing the ErbB-2/neu gene (AdNeuTK) could induce protective and therapeutic immunity against a breast tumor cell line overexpressing ErbB-2/neu. Subcutaneous (s.c.) immunization with the DC vaccine elicited protective immunity in an average of 60% of animals. CTL analysis demonstrated specific cytotoxic activity against breast tumor cells, as well as syngeneic fibroblasts transduced with AdNeuTK. In vivo depletion studies demonstrated both CD4+ and CD8+ T cells were required. In a therapeutic setting, immunization with the DC vaccines could cure mice with pre-established tumors and efficacy was further enhanced by cotransducing DCs with a vector expressing murine IL-12 (AdmIL-12). These studies support DC vaccines as a therapeutic strategy for human breast cancer, while emphasizing the importance of optimizing an immune response by combining tumor antigen presentation with immunostimulatory cytokines.  相似文献   

14.
15.
The murine melanoma B16 expresses the murine counterpart of the human MART-1/Melan-A (MART-1) antigen, sharing a 68.6% amino acid sequence identity. In this study, mice were vaccinated with bone marrow-derived murine dendritic cells genetically modified with a replication-incompetent adenoviral vector to express the human MART-1 gene (AdVMART1). This treatment generated a protective response to a lethal tumor challenge of unmodified murine B16 melanoma cells. The response was mediated by major histocompatibility complex class I-restricted cytotoxic T lymphocytes specific for MART-1 antigen, which produced high levels of interferon-gamma when reexposed to MART-1 in vitro and lysed targets in a calcium-dependent mechanism suggestive of perforin/granzyme B lysis. MART-1 was presented by the dendritic cells used for vaccination and not by epitopes cross-presented by host antigen-presenting cells. In conclusion, dendritic cells genetically modified to express the human MART-1 antigen generate potent murine MART-1-specific protective responses to B16 melanoma.  相似文献   

16.
DC-based tumor vaccine research has largely focused on enhancing DC maturation/costimulation and antigen presentation in order to break tolerance against self tumor-associated antigens. DC immunization can activate autoreactive T cells but rarely causes autoimmune pathologies, indicating that self tolerance at the host level is still maintained in the vaccinated hosts. This study in mice reveals a novel regulatory mechanism for the control of self tolerance at the host level by DCs through the restriction of positive cytokine feedback loops by cytokine signaling inhibitor SOCS1. The study further finds the requirement of persistent antigen presentation by DCs for inducing pathological autoimmune responses against normal tissues and tumor, which can be achieved by silencing SOCS1 to unleash the unbridled signaling of IL-12 and the downstream cytokine cascade. However, the use of higher-affinity self peptides, enhancement of DC maturation, and persistent stimulation with cytokines or TLR agonists fail to break tolerance and induce pathological antitumor immunity. Thus, this study indicates the necessity of inhibiting SOCS1, an antigen presentation attenuator, to break self tolerance and induce effective antitumor responses.  相似文献   

17.
18.
Environmental factors, including diet, play a central role in influencing the balance of normal immune homeostasis; however, many of the cellular mechanisms maintaining this balance remain to be elucidated. Using mouse models of genetic and high-fat/cholesterol diet-induced dyslipidemia, we examined the influence of dyslipidemia on T cell and dendritic cell (DC) responses in vivo and in vitro. We show that dyslipidemia inhibited Toll-like receptor (TLR)-induced production of proinflammatory cytokines, including interleukin (IL)-12, IL-6, and tumor necrosis factor-alpha, as well as up-regulation of costimulatory molecules by CD8alpha(-) DCs, but not by CD8alpha(+) DCs, in vivo. Decreased DC activation profoundly influenced T helper (Th) cell responses, leading to impaired Th1 and enhanced Th2 responses. As a consequence of this immune modulation, host resistance to Leishmania major was compromised. We found that oxidized low-density lipoprotein (oxLDL) was the key active component responsible for this effect, as it could directly uncouple TLR-mediated signaling on CD8alpha(-) myeloid DCs and inhibit NF-kappaB nuclear translocation. These results show that a dyslipidemic microenvironment can directly interfere with DC responses to pathogen-derived signals and skew the development of T cell-mediated immunity.  相似文献   

19.
20.
DNA vaccines promote an immune response by providing antigen-encoding DNA to the recipient, but the efficacy of such vaccines needs improving. Many approaches have considerable potential but currently induce relatively weak immune responses despite multiple high doses of DNA vaccine. Here, we asked whether targeting vaccine antigens to DCs would increase the immunity and protection that result from DNA vaccines. To determine this, we generated a DNA vaccine encoding a fusion protein comprised of the vaccine antigen and a single-chain Fv antibody (scFv) specific for the DC-restricted antigen-uptake receptor DEC205. Following vaccination of mice, the vaccine antigen was expressed selectively by DCs, which were required for the increased efficacy of MHC class I and MHC class II antigen presentation relative to a control scFv DNA vaccine. In addition, a DNA vaccine encoding an HIV gag p41-scFv DEC205 fusion protein induced 10-fold higher antibody levels and increased numbers of IFN-gamma-producing CD4+ and CD8+ T cells. After a single i.m. injection of the DNA vaccine encoding an HIV gag p41-scFv DEC205 fusion protein, mice were protected from an airway challenge with a recombinant vaccinia virus expressing the HIV gag p41, even with 1% of the dose of nontargeted DNA vaccine. The efficacy of DNA vaccines therefore may be enhanced by inclusion of sequences such as single-chain antibodies to target the antigen to DCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号