首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Poor dissolution performance is one of the challenges encountered in dosage form design of amorphous solid dispersions (ASDs). This study was aimed to investigate the effect of solid-liquid interactions of an encapsulated ASD on drug release. Drug release profiles of a molecularly interacting amorphous celecoxib solid dispersion (ACSD) comprising of amorphous celecoxib (A-CLB), polyvinylpyrrolidone (PVP), and meglumine (7:2:1, w/w) were compared with crystalline CLB (C-CLB), in powder and capsule form. Although, ACSD powder displayed 28- to 50-fold higher dissolution efficiency at 60 min (DE(60)), the DE(60) in the encapsulated state were drastically reduced due to the formation of a nondispersible plug. The accompanied physical and compositional changes were investigated using X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, and chromatographic techniques. ACSD displayed optimal wettability, sustained A-CLB-PVP interactions, and suppressed phase transformations in aqueous media. Furthermore, Fourier transform infrared and texture analysis revealed role of intermolecular interactions of the solid dispersion, which (i) altered PVP's functionality and (ii) promoted interparticle cohesivity via water-mediated hydrogen bonds, resulting in solid mass agglomeration. Parallel evaluation of A-CLB, physical mixture of ACSD components, and C-CLB solid dispersion supported the above inferences. On the basis of these findings, rationalized formulation approaches for ASD-based drug products are discussed.  相似文献   

2.
The purpose of this study was to obtain an amorphous system with minimum unit operations that will prevent recrystallization of amorphous drugs since preparation, during processing (compression) and further storage. Amorphous celecoxib, solid dispersion (SD) of celecoxib with polyvinyl pyrrollidone (PVP) and co-precipitate with PVP and carrageenan (CAR) in different ratios were prepared by the spray drying technique and compressed into tablets. Saturation solubility and dissolution studies were performed to differentiate performance after processing. Differential scanning calorimetry and X-ray powder difraction revealed the amorphous form of celecoxib, whereas infrared spectroscopy revealed hydrogen bonding between celecoxib and PVP. The dissolution profile of the solid dispersion and co-precipitate improved compared to celecoxib and amorphous celecoxib. Amorphous celecoxib was not stable on storage whereas the solid dispersion and co-precipitate powders were stable for 3 months. Tablets of the solid dispersion of celecoxib with PVP and physical mixture with PVP and carrageenan showed better resistance to recrystallization than amorphous celecoxib during compression but recrystallized on storage. However, tablets of co-precipitate with PVP and carageenan showed no evidence of crystallinity during stability studies with comparable dissolution profiles. This extraordinary stability of spray-dried co-precipitate tablets may be attributed to the cushioning action provided by the viscoelastic polymer CAR and hydrogen bonding interaction between celecoxib and PVP. The present study demonstrates the synergistic effect of combining two types of stabilizers, PVP and CAR, on the stability of amorphous drug during compression and storage as compared to their effect when used alone.  相似文献   

3.
The overall crystallization rates and mean relaxation times of amorphous nifedipine and phenobarbital in the presence of poly(vinylpyrrolidone) (PVP) were determined at various temperatures to gain further insight into the effect of molecular mobility on the crystallization rates of amorphous drugs and the possibility of predicting stability from their molecular mobility. Nifedipine-PVP (9:1 w/w) and phenobarbital-PVP (95:5 w/w) solid dispersions were prepared by melting and rapidly cooling mixtures of each drug and PVP. The amount of amorphous nifedipine remaining in the solid dispersion was calculated from the heat of crystallization,which was obtained by differential scanning calorimetry. The amount of amorphous phenobarbital remaining in the solid dispersion was estimated from the change in the heat capacity at its glass transition temperature (T(g)). The time required for the amount of amorphous drug remaining to fall to 90% (t(90)) was calculated from the profile of time versus the amount of amorphous drug remaining. The t(90) values for the solid dispersions studied were 100-1000 times longer than those of pure amorphous drugs when compared at the same temperature. Enthalpy relaxation of the amorphous drugs in the solid dispersions was reduced compared with that in the pure amorphous drugs, indicating that the molecular mobility of the amorphous drugs is reduced in the presence of PVP. The temperature dependence of mean relaxation time (tau) for the nifedipine-PVP solid dispersion was calculated using the Adam-Gibbs-Vogel equation. Parameters D and T(0) in this equation were estimated from the heating rate dependence of T(g). Similar temperature dependence was observed for t(90) and tau values of the solid dispersion, indicating that the information on the temperature dependence of the molecular mobility, along with the crystallization data obtained at around the T(g), are useful for estimating the t(90) of overall crystallization at temperatures below T(g) in the presence of excipients.  相似文献   

4.
Preparation of amorphous solid dispersions using polymers is a commonly used formulation strategy for enhancing the solubility of poorly water-soluble drugs. However, often a single polymer may not bring about a significant enhancement in solubility or amorphous stability of a poorly water-soluble drug. This study describes application of a unique and novel binary polymeric blend in preparation of solid dispersions. The objective of this study was to investigate amorphous solid dispersions of glipizide, a BCS class II model drug, in a binary polymeric system of polyvinyl acetate phthalate (PVAP) and hypromellose (hydroxypropyl methylcellulose, HPMC). The solid dispersions were prepared using two different solvent methods: rotary evaporation (rotavap) and fluid bed drug layering on sugar spheres. The performance and physical stability of the dispersions were evaluated with non-sink dissolution testing, powder X-ray diffraction (PXRD), and modulated differential scanning calorimetry (mDSC). PXRD analysis demonstrated an amorphous state for glipizide, and mDSC showed no evidence of phase separation. Non-sink dissolution testing in pH 7.5 phosphate buffer indicated more than twofold increase in apparent solubility of the drug with PVAP–HPMC system. The glipizide solid dispersions demonstrated a high glass transition temperature (T g) and acceptable chemical and physical stability during the stability period irrespective of the manufacturing process. In conclusion, the polymeric blend of PVAP–HPMC offers a unique formulation approach for developing amorphous solid dispersions with the flexibility towards the use of these polymers in different ratios and combined quantities depending on drug properties.  相似文献   

5.
Some probable consequences of the dissolution/migration of a major solid dosage component in or into an applied film coating during or after a film coating operation have been investigated using free films of hydroxypropyl methylcellulose (HPMC) and polyvinyl alcohol (PVA) incorporating small amounts of either lactose (a diluent) or ephedrine hydrochloride (a drug). Intrinsic features of the films such as softening, glass transition, crystallinity and melting were examined by differential scanning calorimetry and thermomechanical analysis. Generally, the results indicate that ephedrine hydrochloride exhibited plasticizing activity in both HPMC and PVA films. On the other hand, incorporation of lactose produced an opposite effect (stiffening) in PVA films as demonstrated by increased glass transition temperature and crystallinity. On the basis of these findings, it was proposed that the undesired presence of a component of a solid dosage core in the applied film coating could significantly alter its end-use properties such as diffusivity and the incidence of film coating defects. It was also shown that the application of the relationship of Moelter & Schweizer (1949) in the evaluation of the plasticizer efficiency of non-homologous additives could pose problems of interpretation.  相似文献   

6.
To investigate role of specific interactions in aiding formation and stabilization of amorphous state in ternary and binary dispersions of a weakly acidic drug. Indomethacin (IMC), meglumine (MU), and polyvinyl pyrollidone (PVP) were the model drug, base, and polymer, respectively. Dispersions were prepared using solvent evaporation. Physical mixtures were cryogenically coground. XRPD, PLM, DSC, TGA, and FTIR were used for characterization. MU has a high crystallization tendency and is characterized by a low T(g) (17 degrees C). IMC crystallization was inhibited in ternary dispersion with MU compared to IMC/PVP alone. An amorphous state formed readily even in coground mixtures. Spectroscopic data are indicative of an IMC-MU amorphous salt and supports solid-state proton transfer. IMC-MU salt displays a low T(g) approximately 50 degrees C, but is more physically stable than IMC, which in molecular mixtures with MU, resisted crystallization even when present in stoichiometric excess of base. This is likely due to a disrupted local structure of amorphous IMC due to specific interactions. IMC showed improved physical stability on incorporating MU in polymer, in spite of low T(g) of the base indicating that chemical interactions play a dominant role in physical stabilization. Salt formation could be induced thermally and mechanically.  相似文献   

7.
In order to investigate the effects of solid carriers on the crystalline properties, dissolution and bioavailability of flurbiprofen in a solid self-nanoemulsifying drug delivery system (solid SNEDDS), different solid SNEDDS formulations were prepared by spray-drying the solutions containing liquid SNEDDS and various carriers. The liquid SNEDDS, composed of Labrafil M 1944 CS/Labrasol/Trasncutol HP (12.5/80/7.5%) with 2% w/v flurbiprofen, gave a z-average diameter of about 100 nm. Silicon dioxide, a hydrophobic solid carrier, produced an excellent conventional solid SNEDDS with a nanoemulsion droplet size of less than 100 nm, similar to the liquid SNEDDS and smaller than the other solid SNEDDS formulations. The drug was in an amorphous state in this solid SNEDDS. Furthermore, it greatly improved the dissolution rate and oral bioavailability of flurbiprofen in rats because it allowed the spontaneous formation of an interface between the oil droplets and the water. Magnesium stearate, a hydrophobic carrier, produced a solid SNEDDS with the largest diameter. However, it greatly enhanced the dissolution rate and oral bioavailability due to the formation of a simple eutectic mixture. The hydrophilic carriers such as polyvinyl alcohol (PVA), sodium carboxymethyl cellulose (Na-CMC) and hydroxypropyl-β-cyclodextrantrin (HP-β-CD) did not form a solid SNEDDS but rather a solid dispersion (or microcapsule). HP-β-CD improved the dissolution rate but did not improve the oral bioavailability as much as the hydrophobic polymers. PVA and Na-CMC hardly improved the dissolution rate but maintained constantly high plasma levels in rats for a long period. Thus, the selection of carrier is an important factor in the development of solid SNEDDS, since the carriers had significant effects on the crystalline properties, dissolution and oral bioavailability of flurbiprofen and on the formation of solid SNEDDS.  相似文献   

8.
In this study, a new and robust method was evaluated to prepare physically stable solid dispersions. Trehalose, sucrose, and two inulins having different chain lengths were used as carrier. Diazepam, nifedipine, Delta(9)-tetrahydrocannabinol, and cyclosporine A were used as model drugs. The sugar was dissolved in water and the drug in tertiary butyl alcohol (TBA). The two solutions were mixed in a 4/6 TBA/water volume ratio and subsequently freeze dried. Diazepam could be incorporated at drug loads up to 63% w/w. DSC measurements showed that, except in some sucrose dispersions, 97-100% of the diazepam was amorphous. In sucrose dispersions with high drug loads, about 10% of the diazepam had crystallised. After 60 days of exposure at 20 degrees C and 45% relative humidity (RH), diazepam remained fully amorphous in inulin dispersions, whereas in trehalose and sucrose crystallization of diazepam occurred. The excellent physical stability of inulin containing solid dispersions can be attributed to the high glass transition temperature (T(g)) of inulin. For the other drugs similar results were obtained. The residual amount of the low toxic TBA was only 0.1-0.5% w/w after freeze drying and exposure to 45% RH and 20 degrees C. Therefore, residual TBA will not cause any toxicity problems. This study provides a versatile technique, to produce solid dispersions. Inulin glasses are preferred because they provide an excellent physical stability of the incorporated amorphous lipophilic drugs.  相似文献   

9.
The effectiveness of different polymers, alone or in combination, in inhibiting the crystallization of celecoxib (CEX) from amorphous solid dispersions (ASDs) exposed to different temperatures and relative humidities was evaluated. It was found that polyvinylpyrrolidone (PVP) and PVP-vinyl acetate formed stronger or more extensive hydrogen bonding with CEX than cellulose-based polymers. This, combined with their better effectiveness in raising the glass transition temperature (Tg) of the dispersions, provided better physical stabilization of amorphous CEX against crystallization in the absence of moisture when compared with dispersions formed with cellulose derivatives. In ternary dispersions containing 2 polymers, the physical stability was minimally impaired by the presence of a cellulose-based polymer when the major polymer present was PVP. On exposure to moisture, stability of the CEX ASDs was strongly affected by both the dispersion hygroscopicity and the strength of the intermolecular interactions. Binary and ternary ASDs containing PVP appeared to undergo partial amorphous–amorphous phase separation when exposed 94% relative humidity, followed by crystallization, whereas other binary ASDs crystallized directly without amorphous–amorphous phase separation.  相似文献   

10.
The solid-state physical stability and recrystallization kinetics during storage stability are described for an amorphous solid dispersed drug substance, ibipinabant, at a low concentration (1.0%, w/w) in a solid oral dosage form (tablet). The recrystallization behavior of the amorphous ibipinabant-polyvinylpyrrolidone solid dispersion in the tablet product was characterized by Fourier transform (FT) Raman spectroscopy. A partial least-square analysis used for multivariate calibration based on Raman spectra was developed and validated to detect less than 5% (w/w) of the crystalline form (equivalent to less than 0.05% of the total mass of the tablet). The method provided reliable and highly accurate predictive crystallinity assessments after exposure to a variety of stability storage conditions. It was determined that exposure to moisture had a significant impact on the crystallinity of amorphous ibipinabant. The information provided by the method has potential utility for predictive physical stability assessments. Dissolution testing demonstrated that the predicted crystallinity had a direct correlation with this physical property of the drug product. Recrystallization kinetics was measured using FT Raman spectroscopy for the solid dispersion from the tablet product stored at controlled temperature and relative humidity. The measurements were evaluated by application of the Johnson-Mehl-Avrami (JMA) kinetic model to determine recrystallization rate constants and Avrami exponent (n = 2). The analysis showed that the JMA equation could describe the process very well, and indicated that the recrystallization kinetics observed was a two-step process with an induction period (nucleation) followed by rod-like crystal growth.  相似文献   

11.
For lung transplant patients, a respirable, inulin-based solid dispersion containing cyclosporine A (CsA) has been developed. The solid dispersions were prepared by spray freeze-drying. The solid dispersion was characterized by water vapor uptake, specific surface area analysis, and particle size analysis. Furthermore, the mode of inclusion of CsA in the dispersion was investigated with Fourier transform infrared spectroscopy. Finally, the dissolution behavior was determined and the aerosol that was formed by the powder was characterized. The powder had large specific surface areas (~ 160 m(2)). The water vapor uptake was dependant linearly on the drug load. The type of solid dispersion was a combination of a solid solution and solid suspension. At a 10% drug load, 55% of the CsA in the powder was in the form of a solid solution and 45% as solid suspension. At 50% drug load, the powder contained 90% of CsA as solid suspension. The powder showed excellent dispersion characteristics as shown by the high emitted fraction (95%), respirable fraction (75%), and fine-particle fraction (50%). The solid dispersions consisted of relatively large (x(50) approximately 7 mum), but low-density particles (rho approximately 0.2 g/cm(3)). The solid dispersions dissolved faster than the physical mixture, and inulin dissolved faster than CsA. The spray freeze-drying with inulin increased the specific surface area and wettability of CsA. In conclusion, the developed powder seems suitable for inhalation in the local treatment of lung transplant patients.  相似文献   

12.
PURPOSE: The purpose of the current study is to evaluate the solubility advantage offered by celecoxib (CEL) amorphous systems and to characterize and correlate the physical and thermodynamic properties of CEL and its amorphous molecular dispersions containing poly(vinylpyrrolidone) (PVP). METHODS: The measurement of crystalline content, glass transition temperatures, and enthalpy relaxation was performed using differential scanning calorimetry. Solubility and dissolutions studies were conducted at 37 degrees C to elucidate release mechanisms. Further, the amorphous systems were characterized by polarized light microscopy and X-ray powder diffraction studies. RESULTS: The PVP content has a prominent effect on the stability and solubility profiles of amorphous systems. A dispersion of 20% w/w PVP with CEL resulted in a maxima in terms of solubility enhancement and lowering of relaxation enthalpy. The release of drug from amorphous molecular dispersions was found to be drug-dependent and independent of the carrier. CONCLUSIONS: The solubility enhancement and enthalpy relaxation studies with respect to PVP concentration helped in a better prediction of role of carrier and optimization of concentration in the use of solid dispersions or amorphous systems. The drug release mechanism is drug-controlled rather than carrier-controlled.  相似文献   

13.
Drug delivery research has resulted in the availability of several enabling technologies for formulating poorly water-soluble compounds. In this study the vibrating nozzle device, originally used for encapsulation of drugs, cells and microorganisms, has been used to formulate nanoparticles (NP) with high loading capacity. Celecoxib was incorporated in NP of polylactic acid (PLA) and poly(lactic-co-glycolic acid) (PLGA) and the influence of polymers, initial drug : polymer ratio and stabilizer concentration on NP size and surface properties, entrapment efficiency, drug loading and in vitro release profile were investigated. NP were in the size range of 230–270 nm, with a polydispersity index less than 0.25 and a spherical shape. The highest celecoxib loading (13% w/w) was obtained at initial ratio celecoxib : Resomer RG 502 (PLA/PGA = 50/50) of 1 : 5 and 0.1% w/w polyvinyl alcohol concentration. Thermal analysis and X-ray diffraction suggested that celecoxib was amorphous or molecularly dispersed in the polymeric matrix. The release profile exhibited an initial burst followed by sustained release. The freeze-dried NP could be completely dispersed on addition of lyoprotectants. The production of NP by the vibrating nozzle device is highly reproducible, time saving, can be performed under aseptic conditions and offers the possibility of scale-up.  相似文献   

14.
Indomethacin (IMC) and three types of poly-(vinylpyrrolidone) (PVP 12PF, PVP K30 and PVP K90) were studied in the form of solid dispersion, prepared with the solvent evaporation method, by spectroscopic (Raman, FT-IR, X-ray diffraction), thermal (differential scanning calorimetry, thermogravimetry, hot-stage microscopy), fractal and image analysis. Raman and FT-IR micro-spectroscopy indicated the occurrence of drug/polymer interaction and the presence of an amorphous form of IMC, as also resulting from X-ray diffractometry. Hot-stage microscopy suggested that the interaction between IMC and the polymer occurring on heating of a physical mixture, is common to other acidic compounds and causes a depression of the temperature of the appearance of a molten phase. Co-evaporated particles were coated by spray-congealing process with molten stearic acid for gastroprotection, but also for stabilization of the amorphous structure of the drug: the final particles were spherically shaped. Dissolution tests carried out on the final microparticles showed that the coating with stearic acid prevents IMC release at acidic pH and also protects against recovery of the IMC crystallinity, at least after 9 months of aging: the extent and mode of the release, before and after aging, overlap perfectly. The test revealed a notable improvement of the drug release rate from the solid dispersion at suitable pH, with respect to pure IMC. The comparison of the present solid dispersion with IMC/PVP (surface) solid dispersion obtained by freeze-drying of an aqueous suspension, where IMC maintained its crystalline state, revealed that there was no difference concerning the release rate, but suggested a superior quality of this last process as a mean of improving IMC availability for the easiness of preparation and stability, due to the absence of the amorphous state of the drug, as a possible instability source of the system. Finally, the coating with stearic acid is discussed as a determining process for the practical application of solid dispersions.  相似文献   

15.
Amorphous forms of poorly soluble drugs are more frequently being incorporated into solid dispersions for administration and extensive research has led to a reasonable understanding of how these dispersions, although still kinetically unstable, improve stability relative to the pure amorphous form. There remains however a paucity of literature describing the effects on such solid dispersions of subsequent processing into solid dosage forms such as tablets. This paper addresses this area by looking at the effects of the addition of common excipients and different manufacturing routes on the stability of a spray-dried dispersion (SDD) of the cannabinoid CB-1 antagonist, ibipinabant. A marked difference in physical stability of tablets was seen with the different fillers with microcrystalline cellulose (MCC) giving the best stability profile. It was found that minimising the number of compression steps led to improved formulation stability with a direct compression process giving the best results. Increased levels of crystallinity were seen in coated tablets most likely due to the exposure of the amorphous matrix to moisture and heat during the coating process. DSIMS analysis of the SDD particles indicated increased levels of polymer on the surface.  相似文献   

16.
A series of co-spray dried microparticles containing di-sodium cromoglycate (DSCG) and polyvinyl alcohol (PVA - 0%, 30%, 50%, 70% and 90% w/w, respectively), were prepared as potential controlled release (CR) viscous/gelling vehicles for drug delivery to the respiratory tract. The microparticles were characterised in terms of particle size, crystal structure, density, surface morphology, moisture sorption, surface energy and in vitro aerosolisation efficiency. The co-spray dried particles were amorphous in nature and had spherical geometry. High-resolution atomic force microscopy analysis of the surfaces of the DSCG/PVA suggested no significant differences in roughness between microparticles containing 30-90% w/w PVA (ANOVA, p<0.05), while no specific trend in either size or density was observed with respect to PVA concentration. In comparison, a linear decrease in the relative moisture sorption (R2=0.997) and concurrent increase in total surface free energy (R2=0.870) were observed as PVA concentration was increased. Furthermore a linear increase in the aerosolisation efficiency, measured by inertial impaction, was observed as PVA concentration was increased (R2=0.993). In addition, the increase in aerosolisation efficiency showed good correlation with equilibrium moisture content (R2=0.974) and surface energy measurement (R2=0.905). These relationships can be attributed to the complex interplay of particle forces at the contiguous interfaces in this particulate system.  相似文献   

17.
目的:研究无定形聚合物聚丙烯酸树脂Ⅱ(Eudragit Ⅱ)制备的穿心莲内酯固体分散体的优良性质,为固体分散体的载体选择提供参考依据。方法:以无定形聚合物Eudragit Ⅱ为载体材料,按穿心莲内酯-载体质量比为1:3,采用喷雾干燥法制备穿心莲内酯固体分散体,并用傅里叶变换红外光谱(FTIR)、热重分析(TG)、X-射线衍射(XRD)、差示扫描量热(DSC)、扫描电镜(SEM)、比表面积、粒径和溶出度测定穿心莲内酯固体分散体的理化性质及溶出行为。结果:FTIR光谱和TG分析说明在穿心莲内酯固体分散体和物理混合物中穿心莲内酯与Eudragit Ⅱ之间都存在分子间相互作用,其中穿心莲固体分散体具有更好的热稳定性;DSC和XRD分析说明无定形载体Eudragit Ⅱ制备的固体分散体中穿心莲内酯主要以无定形形式存在;SEM显示,固体分散体中穿心莲内酯由块状晶体形态变为了不规则的圆形形态;同时与物理混合物相比,穿心莲内酯固体分散体具有更大的比表面积、更大的孔体积和更小的粒径等粉体学性质;溶出实验表明穿心莲内酯固体分散体具有增大溶出的优势,效果明显。结论:以无定形载体Eudragit Ⅱ制备的穿心莲内酯固体分散体具有优良的理化性质,同时比表面积大,孔体积大的特征更有利于水分子的进入,从而有效地增大穿心莲内酯的溶出速率。  相似文献   

18.
Stabilization of the amorphous form of a drug is conferred by additives that interact with it at the molecular level. Ternary systems of celecoxib, poly(vinyl pyrrolidone) (PVP) and meglumine were studied for molecular interactions responsible for enhanced drug stability and solubility in amorphous form. Meglumine was found to lower the glass transition temperature (T(g)) of the drug due to its plasticization effect. However, the presence of PVP masked its destabilizing effect and provided net anti-plasticization to the celecoxib-PVP-meglumine (7:2:1 w/w) ternary amorphous system. Positive deviation of the experimentally determined T(g mix) value for this composition, from those predicted by the Gordon-Taylor/Kelley-Bueche equation, inferred molecular interaction between the three species, which was also supported by band shifts from their Fourier-transform infra-red (FTIR) spectra. Further, shift of differential scanning calorimetry (DSC) melting endotherms of celecoxib in its amorphous systems from those observed for crystalline celecoxib confirmed the complexation between these components, which was also substantiated by molecular modelling studies that showed H-bonding of -S=O, 2-N of the pyrazole ring and -C-F groups of celecoxib with -O-H group of meglumine. These molecular interactions of amorphous celecoxib with meglumine were found to be the potential cause for enhanced stability and solubility of the celecoxib-PVP-meglumine ternary system.  相似文献   

19.
Solid dispersion is one of the most promising strategies to improve oral bioavailability of poorly soluble API. However, there are inconsistent dissolution performances of solid dispersion reported which entails further investigation. In this study, solid dispersions of ketoprofen in three hydrophilic carriers, i.e. PVP K30, PVPVA 6:4 and PVA were prepared and characterized. Physical characterization of the physical mixture of ketoprofen and carriers shows certain extent of amorphization of the API. This result is coinciding to evaluation of drug–polymer interaction using ATR-FTIR whereby higher amorphization was seen in samples with higher drug–polymer interaction. XRPD scanning confirms that fully amorphous solid dispersion was obtained for SD KTP PVP K30 and PVPVA system whereas partially crystalline system was obtained for SD KTP PVA. Interestingly, dissolution profiles of the solid dispersion had shown that degree of amorphization of KTP was not directly proportional to the dissolution rate enhancement of the solid dispersion system. Thus, it is concluded that complete amorphization does not guarantee dissolution enhancement of an amorphous solid dispersion system.  相似文献   

20.
Though there is an advantage in using the higher solubility amorphous state in cases where low solubility limits absorption, physical instability poses a significant barrier limiting its use in solid oral dosage forms. Unlike chemical instability, where useful accelerated stability testing protocols are common, no methodology has been established to predict physical instability. Therefore, an understanding of the factors affecting crystallization from the amorphous state is not only important from a scientific perspective but also has practical applications. Crystallization from the amorphous matrix has been linked to the molecular mobility in the amorphous matrix and recent research has focused on developing the link between these two fundamental properties of glass forming materials. Although researchers have been actively working in this area for some time, there is no current review describing the present state of understanding of crystallization from the amorphous state. The purpose of this review therefore is to examine the roles of different factors such as molecular mobility, thermodynamic factors, and the implication of different processing condition, in crystallization from the amorphous state. We believe an increased understanding of the relative contributions of molecular mobility and processing conditions are vital to increased usage of the amorphous state in solid oral dosage forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号