首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Somesthesis‐guided exploration of the external world requires cortical processing of both cutaneous and proprioceptive information and their integration into motor commands to guide further haptic movement. In the past, attention has been given mostly to the cortical circuits processing cutaneous information for somatic motor integration. By comparison, little has been examined about how cortical circuits are organized for higher order proprioceptive processing. Using the rat cortex as a model, we characterized the intrinsic and corticocortical circuits arising in the major proprioceptive region of the primary somatosensory cortex (SI) that is conventionally referred to as the dysgranular zone (DSZ). We made small injections of biotinylated dextran amine (BDA) as an anterograde tracer in various parts of the DSZ, revealing three distinct principles of its cortical circuit organization. First, its intrinsic circuits extend mainly along the major axis of DSZ to organize multiple patches of interconnections. Second, the central and peripheral regions of DSZ produce differential patterns of intra‐areal and corticocortical circuits. Third, the projection fields of DSZ encompass only selective regions of the second somatic (SII), posterior parietal (PPC), and primary motor (MI) cortices. These projection fields are at least partially separated from those of SI cutaneous areas. We hypothesize, based on these observations, that the cortical circuits of DSZ facilitate a modular integration of proprioceptive information along its major axis and disseminate this information to only selective parts of higher order somatic and MI cortices in parallel with cutaneous information. J. Comp. Neurol. 521:2585–2601, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
This article deals with the efferent connections of the hippocampal region, and considers the functional implications of these projections. The hippocampus receives indirect sensory information from many structures in the brain. Most of these afferents terminate in the superficial layers (I-III) of the entorhinal area. From cells in layers II and III of entorhinal area projections arise which terminate in hippocampus and fascia dentata, the perforant paths. Internal hippocampal projections constitute a unidirectional system of connections which project back to the deep layers (IV-VI) of the entorhinal area. The efferents from these layers may be divided into cortically terminating efferents, which originate from layer IV, and subcortically terminating efferents, which originate from layers V and VI. The cortically terminating projections end in regions of association cortex, and in limbic cortex. The subcortical projections terminate in the caudate, the putamen, and the accumbens nucleus. A hippocampal influence on these subcortical structures may seem surprising, but is logical when one takes into consideration reports on the functional associations between the striatum and the hippocampus. The findings suggest that the role of the hippocampus may be to gather input from all sensory modalities, to assign priorities continuously between these inputs, and as a result, to modify behavior via its influence on subcortical motor centres.  相似文献   

3.
The major cortical-subcortical re-entrant pathways through the basal ganglia and cerebellum are considered to represent anatomically segregated channels for information originating in different cortical areas. A capacity for integrating unique combinations of cortical inputs has been well documented in the basal ganglia circuits but is largely undefined in the precerebellar circuits. To compare and quantify the amount of overlap that occurs in the first link of the cortico-ponto-cerebellar pathway, a dual tracing approach was used to map the spatial relationship between projections originating from the primary somatosensory cortex (SI), the secondary somatosensory cortex (SII), and the primary motor cortex (MI). The anterograde tracers biotinylated dextran amine and Fluoro-Ruby were injected into homologous whisker representations of either SI and SII, or SI and MI. The ensuing pontine labeling patterns were analyzed using a computerized three-dimensional reconstruction approach. The results demonstrate that whisker-related projections from SI and MI are largely segregated. At some locations, the two projections are adjoining and partly overlapping. Furthermore, SI contributes significantly more corticopontine projections than MI. By comparison, projections from corresponding representations in SI and SII terminate in similar parts of the pontine nuclei and display considerable amounts of spatial overlap. Finally, comparison of corticopontine and corticostriatal projections in the same experimental animals reveals that SI-SII overlap is significantly larger in the pontine nuclei than in the neostriatum. These structural differences indicate a larger capacity for integration of information within the same sensory modality in the pontocerebellar system compared to the basal ganglia.  相似文献   

4.
The neural circuitry within sensory cortex determines its functional properties, and different solutions have evolved for integrating the activity that arises from an array of sensory inputs to cortex. In rodent, circumscribed receptors, such as whiskers, are represented in somatic sensory (S-I) cortex in islands of cells in layer IV called "barrels" surrounded by narrow channels that separate barrels called "septa." These two cortical domains were previously shown to receive sensory inputs through parallel subcortical pathways. Here, by using small biocytin injections, we demonstrate that distinct intrinsic and corticocortical circuitries arise from barrel and septal columns. The intracortical S-I projections originating from barrel columns are rather short-ranged, terminating for the most part within the far boundaries of the most immediate neighboring barrel columns, whereas corticocortical projections reach the second somatosensory (S-II) cortex. In contrast, the intrinsic projections arising from septal columns extend two to three barrels' distance along the row of whisker representation, producing terminals preferentially in other septal columns. Septal corticocortical projections terminate in the dysgranular cortex anterior to E-row barrels and in the posteromedial parietal cortex in addition to S-II. Whereas layer IV barrels are largely isolated from lateral connections, septa are the main conduits of intracortical projections arising from neighboring barrel and septal columns. These results indicate that the two subcortical pathways from whiskers to cortex continue as two distinct partially segregated pathways in cortex.  相似文献   

5.
Tomberg C 《Neuroreport》1999,10(12):2547-2550
Study of brain mechanisms subserving perception of passive finger movements revealed an unexpected contrast between cutaneous and deep inputs from fingers. Selective attention to tactile inputs from finger tips did not change the first response of primary area 3b, but elicited a cognitive P40 in second order postcentral cortex. For finger joint inputs, attention enhanced the very first cortical response elicited by thalamo-cortical input in postcentral area 2 whereby finger kinaesthesia information was integrated with the cutaneous features information received from primary somatic areas via corticocortical connections. Cognitive electrogeneses P40, P100, N140 and P300 manifested serial sensory features processing and prefrontal working memory matching whereby manipulated objects can be identified from their shape and texture in active touch.  相似文献   

6.
In the macaque monkey area 3a of the cerebral cortex separates area 4, a primary motor cortical field, from somatosensory area 3b, which has a subcortical input mainly from cutaneous mechanoreceptive neurons. That each of these cortical areas has a unique thalamic input was illustrated in the preceding paper. In the present experiments the cortical afferent projections to these 3 areas of the sensorimotor cortex monkey were visualized and compared, using 4 differentiable fluorescent dyes as axonal retrogradely transported labels. The cortical projection patterns to areas 3a, 3b, and 4 were similar in that they each consisted of (a) a “halo” of input from the immediately surrounding cortex, and (b) discrete projections from one or more remote cortical areas. However, the pattern of remote inputs from precentral, mesial, and posterior parietal cortex was different for each of the 3 cortical target areas. The cortical input configuration was least complex for area 3b, its remote input projecting mainly from insular cortex. The pattern of discrete cortical inputs to the motor area 4, however, was more complex, with projections from the cingulate motor area (24c/d), the supplementary motor area, postarcuate cortex, insular cortex, and postcentral areas 2/5. Area 3a, in addition to the proximal projections from the immediately surrounding cortex, also received input from the supplementary motor area, cingulate motor cortex, insular cortex, and areas 2/5. Thus, this pattern of cortical input to area 3a resembled more closely that of the adjacent motor rather than that of the somatosensory area 3b. Contrasting with this, however, the thalamic input to area 3a was largely from somatosensory VPLc (abbreviations from Olszewski [1952] The Thalamus of the Macaca mulatta. Basel: Karger) and not from VPLo (with input from cerebellum, and projecting to precentral motor areas). © 1993 Wiley-Liss, Inc.  相似文献   

7.
We have used retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase to examine the origin of the thalamic input to the two premotor areas with the densest projections to the motor cortex. These are: arcuate premotor area (APA) and the supplementary motor area (SMA). Retrograde transport demonstrated that the two premotor areas and the motor cortex each receive thalamic input from separate, cytoarchitectonically well-defined subdivisions of the ventrolateral thalamus. According to the nomenclature of Olszewski (1952), input to the APA originates largely from area X; input to the SMA originates largely from the pars oralis subdivision of the nucleus ventralis lateralis (VLo); and that to the motor cortex is largely from the pars oralis subdivision of the nucleus ventralis posterior lateralis (VPLo). These observations, when combined with prior studies on the termination of various subcortical efferents in the thalamus, lead to the following scheme of projections: rostral portions of the deep cerebellar nuclei project to motor cortex via VPLo, caudal portions of the deep cerebellar nuclei project to the APA via area X; and the globus pallidus projects to the SMA via VLo. Thus each thalamocortical pathway is associated with a distinct subcortical input.  相似文献   

8.
In the primate auditory cortex, information flows serially in the mediolateral dimension from core, to belt, to parabelt. In the caudorostral dimension, stepwise serial projections convey information through the primary, rostral, and rostrotemporal (AI, R, and RT) core areas on the supratemporal plane, continuing to the rostrotemporal polar area (RTp) and adjacent auditory‐related areas of the rostral superior temporal gyrus (STGr) and temporal pole. In addition to this cascade of corticocortical connections, the auditory cortex receives parallel thalamocortical projections from the medial geniculate nucleus (MGN). Previous studies have examined the projections from MGN to auditory cortex, but most have focused on the caudal core areas AI and R. In this study, we investigated the full extent of connections between MGN and AI, R, RT, RTp, and STGr using retrograde and anterograde anatomical tracers. Both AI and R received nearly 90% of their thalamic inputs from the ventral subdivision of the MGN (MGv; the primary/lemniscal auditory pathway). By contrast, RT received only ~45% from MGv, and an equal share from the dorsal subdivision (MGd). Area RTp received ~25% of its inputs from MGv, but received additional inputs from multisensory areas outside the MGN (30% in RTp vs. 1–5% in core areas). The MGN input to RTp distinguished this rostral extension of auditory cortex from the adjacent auditory‐related cortex of the STGr, which received 80% of its thalamic input from multisensory nuclei (primarily medial pulvinar). Anterograde tracers identified complementary descending connections by which highly processed auditory information may modulate thalamocortical inputs.  相似文献   

9.
T van Groen  J M Wyss 《Brain research》1990,529(1-2):165-177
The hippocampal formation contributes importantly to many cognitive functions, and therefore has been a focus of intense anatomical and physiological research. Most of this research has focused on the hippocampus proper and the fascia dentata, and much less attention has been given to the subicular cortex, the origin of most extrinsic projections from the hippocampal formation. The present experiments demonstrate that the postsubiculum is a distinct area of the subicular cortex. The major projections to the postsubiculum originate in the hippocampal formation, the cingulate cortex, and the thalamus (primarily from the anterodorsal (AD) nucleus and to a lesser extent from the anteroventral (AV) and lateral dorsal (LD) nuclei). These projections differ from the thalamic projections to presubiculum and parasubiculum. Efferent projections from the postsubiculum terminate in both cortical and subcortical areas. The cortical projections terminate in the subicular and retrosplenial cortices and in the caudal lateral entorhinal and perirhinal cortices. Subcortical projections primarily end in the AD and the LD nuclei of the thalamus. These thalamic projections end in areas that are distinct from those to which the presubiculum and parasubiculum project. For instance, the postsubiculum has a dense terminal field in the AD nucleus, but presubicular axons terminate predominantly in the AV nucleus. The cortical projections also distinguish postsubiculum. All subicular areas project to the entorhinal cortex, but the postsubicular projection ends in the deep layers (i.e. IV-VI), whereas presubiculum projects to layers I and III, and parasubiculum projects to layer II. Postsubiculum projects to retrosplenial granular b cortex and only incidentally to retrosplenial granular a cortex. In contrast presubiculum projects to the retrosplenial granular a cortex but not to the retrosplenial granular b cortex. These differences clearly mark the postsubiculum, the presubiculum, and the parasubiculum as distinct regions within the subicular cortex and suggest that they subserve different roles in the processing and integration of limbic system information.  相似文献   

10.
Orthograde axonal transport tracing methods were used to describe the projections to the basilar pontine nuclei (BPN) which arise within the face representation of motor or somatosensory cerebral cortex. Injections centered in motor face (MF) cortex resulted in the labeling of several corticopontine terminal fields which exhibit a rostrocaudal columnar arrangement within the ipsilateral BPN. The location of such terminal zones is consistent with the somatotopic pattern of termination previously described for limb sensorimotor cortices. In contrast, the projections from somatosensory face (SF) cortical regions largely terminate in BPN areas separate from those receiving either limb sensorimotor or MF inputs. Both MF and SF cortices also give rise to projections to the contralateral BPN; those from SF cortex are less extensive than those of MF origin. In addition to their relationship with limb sensorimotor corticopontine terminations, the MF projections to the BPN also seem to partially overlap the projection zones of the cerebellopontine system, particularly the regions projected upon by the lateral cerebellar nucleus. The SF projections, on the other hand, appear to terminate in BPN areas that also receive input from either the dorsal column nuclei or the spinal trigeminal complex. There is only minimal potential overlap between MF and SF projections in the BPN. With regard to the pontocerebellar system, the projections from MF cortex terminate among BPN neurons which project to the cerebellar hemispheres, particularly lobus simplex, crus I and crus II. The SF projections also overlap BPN neurons which project to the lateral hemispheres in addition to the paraflocculus and vermal lobules VII and IXa,b. Taken together these observations suggest that subsets of BPN neurons might exist such that some receive convergent inputs from systems whose function can generally be regarded as motor (sensorimotor cortex, cerebellopontine) while another population of BPN neurons might integrate signals from systems which transmit somatosensory information (dorsal column nuclei, spinal trigeminal).  相似文献   

11.
The nonhuman primate entorhinal cortex is the primary interface for information flow between the neocortex and the hippocampal formation. Based on previous retrograde tracer studies, neocortical afferents to the macaque monkey entorhinal cortex originate largely in polysensory cortical association areas. However, the topographical and laminar distributions of cortical inputs to the entorhinal cortex have not yet been comprehensively described. The present study examines the regional and laminar termination of projections within the entorhinal cortex arising from different cortical areas. The study is based on a library of 51 (3)H-amino acid injections that involve most of the afferent regions of the entorhinal cortex. The range of termination patterns was broad. Some areas, such as the medial portion of orbitofrontal area 13 and parahippocampal areas TF and TH, project widely within the entorhinal cortex. Other areas have a more focal and regionally selective termination. The lateral orbitofrontal, insular, anterior cingulate, and perirhinal cortices, for example, project only to rostral levels of the entorhinal cortex. The upper bank of the superior temporal sulcus projects mainly to intermediate levels of the entorhinal cortex, and the parietal and retrosplenial cortices project to caudal levels. The projections from some of these cortical regions preferentially terminate in the superficial layers (I-III) of the entorhinal cortex, whereas others project more heavily to the deep layers (V-VI). Thus, some of the cortical inputs may be more influential on the cortically directed outputs of the hippocampal formation or on gating neocortical information flow into the other fields of the hippocampal formation rather than contributing to the perforant path inputs to other hippocampal fields.  相似文献   

12.
Thalamic and corticocortical connections of the second somatic sensory area (SII) in the mouse cerebral cortex were investigated by means of the retrograde transport of horseradish peroxidase. Focal injections of the enzyme were made in physiologically determined locations within the parietal cortex. Results show that SII receives substantial inputs from topographically appropriate regions within the ipsilateral ventrobasal nucleus and from the ipsilateral posterior group. The limb representation, which was previously found to be responsive to auditory stimulation, received inputs also from the medial division of the medial geniculate body. The SII face representation, which is largely unresponsive to auditory stimuli, received little or no input from the medial geniculate body. SII injections yielded retrograde labeling in the topographically appropriate region in the first somatic sensory area (SI), and SI injections retrogradely labeled cells in SII in a pattern consistent with previous electrophysiological maps. Homotypical regions within SI and SII therefore appear to be reciprocally interconnected. SII also receives inputs from the ipsilateral motor cortex and from contralateral SI and SII. Finally, injections into the SI paw but not face regions yielded retrograde labeling in the thalamic ventrolateral nucleus. Thus, the distal limb representations in SI and SII each receive inputs from a third major relay nucleus (i.e., medial geniculate to SII, ventrolateral nucleus to SI) whereas the face representations do not. These results indicate a close functional interrelationship between homotypical areas in SI and SII, though the two areas differ in several important respects. It is proposed that SII in mice may complement the function of SI by helping to define the overall sensory context in which detailed tactile discriminations are made.  相似文献   

13.
The organization of subcortical inputs to the parahippocampal cortex, which in the present study in the cat is considered to comprise the entorhinal and perirhinal cortices, was studied by using retrograde and anterograde tracing techniques. The results of the retrograde tracer horseradish peroxidase (HRP), HRP conjugated with wheat germ agglutinine (WGA-HRP), Fast Blue (FB) or Nuclear Yellow (NY] injections indicate that the entorhinal and perirhinal cortices receive inputs from the magnocellular basal forebrain and from distinct portions of the amygdaloid complex, the claustrum, and the thalamus. The two cortices are further projected upon by fibers from the supramamillary region of the hypothalamus, the ventral tegmental area of the mesencephalon, the dorsal raphe nucleus, the nucleus centralis superior, and the locus coeruleus. The entorhinal cortex, in addition, receives projections from the medial septum. As regards the projections from the amygdaloid complex, it was observed that the entorhinal cortex receives its heaviest input from the basolateral amygdaloid nucleus, whereas the perirhinal cortex receives a strong projection from the lateral nucleus and a weaker projection from the basomedial nucleus of the amygdala. Of the thalamic nuclei that project to the parahippocampal cortex, the nucleus reuniens is only connected with the entorhinal cortex, while fibers from the medial geniculate nucleus and the lateral posterior nucleus terminate in the perirhinal cortex. Injections of tritiated amino acid (3H-leucine) were placed in the medial septum, the dorsal and ventral claustrum, the basolateral and basomedial amygdaloid nuclei, and the nucleus reuniens of the thalamus. The results of these experiments demonstrate that, with the exception of the claustrum, these subcortical areas project mainly to the superficial layers I-III and the lamina dissecans of the parahippocampal cortex, and to a lesser degree to the deep layers V and VI.  相似文献   

14.
Subplate neurons (SPNs) are a population of neurons in the mammalian cerebral cortex that exist predominantly in the prenatal and early postnatal period. Loss of SPNs prevents the functional maturation of the cerebral cortex. SPNs receive subcortical input from the thalamus and relay this information to the developing cortical plate and thereby can influence cortical activity in a feedforward manner. Little is known about potential feedback projections from the cortical plate to SPNs. Thus, we investigated the spatial distribution of intracortical synaptic inputs to SPNs in vitro in mouse auditory cortex by photostimulation. We find that SPNs fell into two broad classes based on their distinct spatial patterns of synaptic inputs. The first class of SPNs receives inputs from only deep cortical layers, while the second class of SPNs receives inputs from deep as well as superficial layers including layer 4. We find that superficial cortical inputs to SPNs emerge in the second postnatal week and that SPNs that receive superficial cortical input are located more superficially than those that do not. Our data thus suggest that distinct circuits are present in the subplate and that, while SPNs participate in an early feedforward circuit, they are also involved in a feedback circuit at older ages. Together, our results show that SPNs are tightly integrated into the developing thalamocortical and intracortical circuit. The feedback projections from the cortical plate might enable SPNs to amplify thalamic inputs to SPNs.  相似文献   

15.
We have used retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase to examine the origin of thalamic input to the two premotor areas with the densest projections to the motor cortex: the arcuate premotor area (APA) and the supplementary motor area (SMA). Retrograde transport demonstrated that the two premotor areas and the motor cortex each receive thalamic input from separate, cytoarchitectonically well defined subdivisions of the ventrolateral thalamus. According to the nomenclature of Olszewski (Olszewski, J. (1952) The Thalamus of the Macaca mulatta. An Atlas for Use with the Stereotaxic Instrument, S. Karger, AG, Basel), input to the APA originates largely from area X, input to the SMA originates largely from the pars oralis subdivision of nucleus ventralis lateralis (VLo), and that to the motor cortex originates largely from the pars oralis subdivision of nucleus ventralis posterior lateralis (VPLo). These observations, when combined with prior studies on the termination of various subcortical efferents in the thalamus, lead to the following scheme of connections: (1) rostral portions of the deep cerebellar nuclei project to the motor cortex via VPLo; (2) caudal portions of the deep cerebellar nuclei project to the APA via area X; and (3) the globus pallidus projects to the SMA via VLo. Thus, each thalamocortical pathway is associated with a distinct subcortical input.  相似文献   

16.
The parahippocampal region, which comprises the perirhinal, postrhinal, and entorhinal cortices, as well as the pre‐ and parasubiculum, receives inputs from several association cortices and provides the major cortical input to the hippocampus. This study examined the topographic organization of projections from the orbitofrontal cortex (OFC) to the parahippocampal region in rats by injecting anterograde tracers, biotinylated dextran amine (BDA) and Phaseolus vulgaris‐leucoagglutinin (PHA‐L), into four subdivisions of OFC. The rostral portion of the perirhinal cortex receives strong projections from the medial (MO), ventral (VO), and ventrolateral (VLO) orbitofrontal areas and the caudal portion of lateral orbitofrontal area (LO). These projections terminate in the dorsal bank and fundus of the rhinal sulcus. In contrast, the postrhinal cortex receives a strong projection specifically from VO. All four subdivisions of OFC give rise to projections to the dorsolateral parts of the lateral entorhinal cortex (LEC), preferentially distributing to more caudal levels of LEC. The medial entorhinal cortex (MEC) receives moderate input from VO and weak projections from MO, VLO, and LO. The presubiculum receives strong projections from caudal VO but only weak projections from other OFC regions. As for the laminar distribution of projections, axons originating from OFC terminate more densely in upper layers (layers I–III) than in deep layers in the parahippocampal region. These results thus show a striking topographic organization of OFC‐to‐parahippocampal connectivity. Whereas LO, VLO, VO, and MO interact with perirhinal–LEC circuits, the interactions with postrhinal cortex, presubiculum, and MEC are mediated predominantly through the projections of VO. J. Comp. Neurol. 522:772–793, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
We investigated the topographic and laminar organization of the efferent cortical projections of the perirhinal and parahippocampal cortices. Area 36 of the perirhinal cortex projects preferentially to areas TE and TEO, whereas area TF of the parahippocampal cortex projects preferentially to the posterior parietal cortex and area V4. Area TF projects to many regions of the frontal lobe, whereas area 36 projects mainly to the orbital surface. The insular and cingulate cortices receive projections from areas 36 and TF, whereas only area TF projects to the retrosplenial cortex. Projections to the superior temporal gyrus, including the dorsal bank of the superior temporal sulcus, arise predominantly from area TF. Area 36 projects only to rostral levels of the superior temporal gyrus. Area TF has, in general, reciprocal connections with the neocortex, whereas area 36 has more asymmetric connections. Area 36, for example, projects to more restricted regions of the frontal cortex and superior temporal sulcus than it receives inputs from. In contrast, it projects to larger portions of areas TE and TEO than it receives inputs from. The efferent projections of areas 36 and TF are primarily directed to the superficial layers of the neocortex, a laminar organization consistent with connections of the feedback type. Projections to unimodal visual areas terminate in large expanses of the cortex, but predominantly in layer I. Projections to other sensory and polymodal areas, in contrast, terminate in a columnar manner predominantly in layers II and III. In all areas receiving heavy projections, the projections extend throughout most cortical layers, largely avoiding layer IV. We discuss these findings in relation to current theories of memory consolidation.  相似文献   

18.
By using the Fink and Heimer method, patterns of organization of the cat corticotectal projection have been studied in more detail than previously known. Collicular projections from various cortical areas show specific laminar distributions in tectal layers, while there is a considerable overlap in areas of terminations. Thus the superficial layers of the superior colliculus receive fibers almost exclusively from the visual cortex, while the deep layers from the auditory and the somatic sensory areas. In the intermediate gray layer, fibers from the visual, auditory and somatic sensory areas terminate in extensive areas throughout the colliculus. These findings are in good accord with physiological observations. Fibers from the "association", orbital, proreate and cingulate areas end in the intermediate and deep layers as well. Patch-like terminations of projection zones from the somatic sensory cortex are observed in the superior colliculus, longitudinally arranged with approximately 200-250 micrometer width and spaced at 200-500 micrometer. Similar patterns of terminations appear to exist in projections from the visual cortex. The lateral portion of the mesencephalic periaqueductal gray matter has been found to be a recipient of cortical fibers from the somatic sensory, orbital and cingulate areas. Possible neuronal interconnections within the superior colliculus are discussed in connection with the recent physiological data.  相似文献   

19.
Direct projections from the forebrain to the nucleus of the solitary tract (NTS) and dorsal motor nucleus of the vagus in the rat medulla were mapped in detail using both retrograde axonal transport of the fluorescent tracer True Blue and anterograde axonal transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). In the retrograde tracing studies, cell groups in the medial prefrontal cortex, lateral prefrontal cortex (primarily ventral and posterior agranular insular cortex), bed nucleus of the stria terminalis, central nucleus of the amygdala, paraventricular, arcuate, and posterolateral areas of the hypothalamus were shown to project to the NTS and in some cases also to the dorsal motor nucleus of the vagus. The prefrontal cortical areas projecting to the NTS apparently overlap to a large degree with those cortical areas receiving mediodorsal thalamic and dopaminergic input. The retrogradely labeled cortical cells were situated in deep layers of the rat prefrontal cortex. The anterograde tracing studies revealed a prominent topography in the mediolateral termination pattern of forebrain projections to the rostral part of the NTS and to the dorsal pons. The projections to the NTS were generally bilateral, except for projections from the central nucleus of the amygdala and bed nucleus of the stria terminalis which were predominantly ipsilateral. The prefrontal cortical projections to the NTS travel through the cerebral peduncle and pyramidal tract and terminate throughout the rostrocaudal extent of the NTS. Specifically, the prefrontal cortex innervates dorsal portions of the NTS (lateral part of the dorsal division of the medial solitary nucleus, dorsal part of the lateral solitary nucleus and the caudal midline region of the commissural nucleus), areas which receive relatively sparse subcortical projections. These dorsal portions of the NTS receive major primary afferent projections from the vagal and glossopharyngeal nerves. In contrast, the subcortical projections, which travel through the midbrain and pontine tegmentum, terminate most heavily in the ventral portions of the NTS, i.e., the area immediately dorsal and lateral to the dorsal motor nucleus of the vagus. Only the paraventricular hypothalamic nucleus has substantial terminals throughout the dorsal motor nucleus of the vagus. Hypothalamic cell groups innervate the area postrema and, along with the prefrontal cortex, innervate the zone subjacent to the area postrema.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The aim of the experiments reported here was to identify cortical and subcortical forebrain structures from which anterior cingulate cortex (CGa) receives input in the cat. Deposits of retrograde tracers were placed at nine sites spanning the anterior cingulate area and patterns of retrograde transport were analyzed. Thalamic projections to CGa, in descending order of strength, originate in the anteromedial nucleus, lateroposterior nucleus, ventroanterior nucleus, rostral intralaminar complex, reuniens nucleus, mediodorsal nucleus, and laterodorsal nucleus. Minor and inconsistent ascending pathways arise in the paraventricular, parataenial, parafascicular, and subparafascicular thalamic nuclei. The basolateral nucleus of the amygdala, the hypothalamus, the nucleus of the diagonal band, and the claustrum are additional sources of ascending input. Cortical projections to CGa, in descending order of strength, derive from posterior cingulate cortex, prefrontal cortex, motor cortex (areas 4 and 6), parahippocampal cortex (entorhinal, perirhinal, postsubicular, parasubicular, and subicular areas), insular cortex, somesthetic cortex (areas 5 and SIV), and visual cortex (areas 7p, 20b, AMLS, PS and EPp). In general, the limbic, sensory, and motor afferents of CGa are weak. The dominant sources of input to CGa are other cortical areas with high-order functions. This finding calls into question the traditional characterization of cingulate cortex as a bridge between neocortical association areas and the limbic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号